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Abstract

We introduce a novel method for multilin-
gual transfer that utilizes deep contextual
embeddings, pretrained in an unsupervised
fashion. While contextual embeddings have
been shown to yield richer representations
of meaning compared to their static counter-
parts, aligning them poses a challenge due to
their dynamic nature. To this end, we con-
struct context-independent variants of the orig-
inal monolingual spaces and utilize their map-
ping to derive an alignment for the context-
dependent spaces. This mapping readily sup-
ports processing of a target language, improv-
ing transfer by context-aware embeddings.
Our experimental results demonstrate the ef-
fectiveness of this approach for zero-shot
and few-shot learning of dependency parsing.
Specifically, our method consistently outper-
forms the previous state-of-the-art on 6 tested
languages, yielding an improvement of 6.8
LAS points on average.1

1 Introduction

Multilingual embedding spaces have been demon-
strated to be a promising means for enabling cross-
lingual transfer in many natural language pro-
cessing tasks (e.g. Ammar et al. (2016); Lample
et al. (2018)). Similar to how universal part-of-
speech tags enabled parsing transfer across lan-
guages (Petrov et al., 2012), multilingual word
embeddings further improve transfer capacity by
enriching models with lexical information. Since
this lexical representation is learned in an un-
supervised fashion and thus can leverage large
amounts of raw data, it can capture a more nu-
anced representation of meaning than unlexical-
ized transfer. Naturally, this enrichment is trans-

∗ Equal contribution
1Code and models: https://github.com/

TalSchuster/CrossLingualELMo.

lated into improved transfer accuracy, especially
in low-resource scenarios (Guo et al., 2015).

In this paper, we are moving further along this
line and exploring the use of contextual word
embeddings for multilingual transfer. By dy-
namically linking words to their various con-
texts, these embeddings provide a richer se-
mantic and syntactic representation than tradi-
tional context-independent word embeddings (Pe-
ters et al., 2018). A straightforward way to utilize
this richer representation is to directly apply exist-
ing transfer algorithms on the contextual embed-
dings instead of their static counterparts. In this
case, however, each token pair is represented by
many different vectors corresponding to its spe-
cific context. Even when supervision is available
in the form of a dictionary, it is still unclear how
to utilize this information for multiple contextual
embeddings that correspond to a word translation
pair.

In this paper, we propose a simple but effec-
tive mechanism for constructing a multilingual
space of contextual embeddings. Instead of learn-
ing the alignment in the original, complex con-
textual space, we drive the mapping process us-
ing context-independent embedding anchors. We
obtain these anchors by factorizing the contextual
embedding space into context-independent and
context-dependent parts. Operating at the anchor
level not only compresses the space, but also en-
ables us to utilize a word-level bilingual dictionary
as a source of supervision, if available. Once the
anchor-level alignment is learned, it can be readily
applied to map the original spaces with contextual
embeddings.

Clearly, the value of word embeddings de-
pends on their quality, which is determined by
the amount of raw data available for their training
(Jiang et al., 2018). We are interested in expand-
ing the above approach to the truly low-resource

https://github.com/TalSchuster/CrossLingualELMo
https://github.com/TalSchuster/CrossLingualELMo
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scenario, where a language not only lacks anno-
tations, but also has limited amounts of raw data.
In this case, we can also rely on a data rich lan-
guage to stabilize monolingual embeddings of the
resource-limited language. As above, context-
independent anchors are informing this process.
Specifically, we introduce an alignment compo-
nent to the loss function of the language model,
pushing the anchors to be closer in the joint space.
While this augmentation is performed on the static
anchors, the benefit extends to the contextual em-
beddings space in which we operate.

We evaluate our aligned contextual embeddings
on the task of zero-shot cross-lingual dependency
parsing. Our model consistently outperforms
previous transfer methods, yielding absolute im-
provement of 6.8 LAS points over the prior state-
of-the-art (Ammar et al., 2016). We also per-
form comprehensive studies of simplified variants
of our model. Even without POS tag labeling
or a dictionary, our model performs on par with
context-independent models that do use such in-
formation. Our results also demonstrate the bene-
fits of this approach for few-shot learning, i.e. pro-
cessing languages with limited data. Specifically,
on the Kazakh tree-bank from the recent CoNLL
2018 shared task with only 38 trees for training,
the model yields 5 LAS points gain over the top
result (Smith et al., 2018a).

2 Related work

Multilingual Embeddings The topic of cross-
lingual embedding alignment is an active area of
research (Mikolov et al., 2013; Xing et al., 2015;
Dinu and Baroni, 2014; Lazaridou et al., 2015;
Zhang et al., 2017). Our work most closely re-
lates to MUSE (Conneau et al., 2018a), which con-
structs a multilingual space by aligning monolin-
gual embedding spaces. When a bilingual dic-
tionary is provided, their approach is similar to
those of (Smith et al., 2017; Artetxe et al., 2017).
MUSE extends these methods to the unsupervised
case by constructing a synthetic dictionary. The
resulting alignment achieves strong performance
in a range of NLP tasks, from sequence label-
ing (Lin et al., 2018) to natural language infer-
ence (Conneau et al., 2018b) and machine trans-
lation (Lample et al., 2018; Qi et al., 2018). Re-
cent work further improves the performance on
both the supervised (Joulin et al., 2018) and unsu-
pervised (Grave et al., 2018b; Alvarez-Melis and

Jaakkola, 2018; Hoshen and Wolf, 2018) settings
for context-independent embeddings.

While MUSE operates over token based embed-
dings, we are interested in aligning contextual em-
beddings, which have shown their benefits in sev-
eral monolingual applications (Peters et al., 2018;
McCann et al., 2017; Howard and Ruder, 2018;
Radford et al., 2018; Devlin et al., 2018). How-
ever, this expansion introduces new challenges
which we address in this paper.

In a concurrent study, Aldarmaki and Diab
(2019) introduced an alignment that is based only
on word pairs in the same context, using parallel
sentences. Our method achieves better word trans-
lations without relying on such supervision.

Our work also relates to prior approaches that
utilize bilingual dictionaries to improve embed-
dings that were trained on small datasets. For in-
stance, Xiao and Guo (2014) represent word pairs
as a mutual vector, while Adams et al. (2017)
jointly train cross-lingual word embeddings by re-
placing the predicted word with its translation. To
utilize a dictionary in the contextualized case, we
include a soft constraint that pushes those trans-
lations to be similar in their context-independent
representation. A similar style of regularization
was shown to be effective for cross-domain trans-
fer of word embeddings (Yang et al., 2017).

Multilingual Parsing In early work on multilin-
gual parsing, transfer was commonly implemented
using delexicalized representation such as part-of-
speech tags (McDonald et al., 2011; Petrov et al.,
2012; Naseem et al., 2012; Tiedemann, 2015).

Another approach for cross-lingual parsing in-
cludes annotation projection and treebank trans-
lation (Xiao and Guo, 2015; Wang and Eisner,
2016; Tiedemann, 2017), which mostly require
some source of supervision.

Advancements in multilingual word representa-
tions opened a possibility of lexicalized transfer.
Some of these approaches start by aligning mono-
lingual embedding spaces (Zhang and Barzilay,
2015; Guo et al., 2015, 2016; Ammar et al., 2016),
and using resulting word embeddings as word
representations instead of universal tags. Other
approaches are learning customized multilingual
syntactic embeddings bootstrapping from univer-
sal POS tags (Duong et al., 2015). While some
models also learn a language embedding (Ammar
et al., 2016; de Lhoneux et al., 2018), it is unfeasi-
ble in a zero-shot scenario.
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Dcos(ēi, ēj)
Dcos(ēi, ei,c)

ALL WORDS HOMONYMS

0.85 (±0.09) 0.18 (±0.04) 0.21 (±0.04)

Table 1: Average cosine distances between pairs of em-
bedding anchors (left column) and between contextu-
alized embeddings of words to their corresponding an-
chor. The right column includes these distances only
for homonyms, whereas the center column is averaged
across all words. Only alphabetic words with at least
100 occurrences were included.

In all of the above cases, token-level embed-
dings are used. Inspired by strong results of using
contextualized embeddings in monolingual pars-
ing (Che et al., 2018; Wang et al., 2018; Clark
et al., 2018), we aim to utilize them in the multi-
lingual transfer case. Our results demonstrate that
richer representation of lexical space does lead to
significant performance gains.

3 Aligning Contextual Word
Embeddings

In this section we describe several approaches
for aligning context-dependent embeddings from
a source language s to a target language t. We ad-
dress multiple scenarios, where different amounts
of supervision and data are present. Our approach
is motivated by interesting properties of context-
dependent embeddings, which we discuss later.

We begin with some notations:

• Context Dependent Embeddings: Given a
context c and a token i, we denote the em-
bedding of i in the context c by ei,c. We use
ei,· to denote the point cloud of all contextual
embeddings for token i.

• Embedding Anchor: Given a token i we de-
note the anchor of its context dependent em-
beddings by ēi, where:

ēi = Ec

[
ei,c
]
. (1)

In practice, we calculate the average over a
subset of the available unlabeled data.

• Shift From Mean: For any embedding ei,c
we can therefore define the shift êi,c from the
average via:

ei,c = ēi + êi,c . (2)

Figure 1: A two dimensional PCA showing examples
of contextual representations for four Spanish words.
Their corresponding anchors are presented as a star in
the same color. (best viewed in color)

• Embedding Alignment: Given an embed-
ding esi,c in s, we want to generate an embed-
ding es→t

i,c in the target language space, using
a linear mapping W s→t. Formally, our align-
ment is always of the following form:

es→t
i,c = W s→tesi,c . (3)

3.1 The Geometry of Context-Dependent
Embeddings

A given token i can generate multiple vectors ei,c,
each corresponding to a different context c. A
key question is how the point cloud ei,· is dis-
tributed. In what follows we explore this struc-
ture, and reach several conclusions that will mo-
tivate our alignment approach. The following ex-
periments are performed on ELMo (Peters et al.,
2018).

Point Clouds are Well Separated A cloud ei,·
corresponds to occurrences of the word i in dif-
ferent contexts. Intuitively, we would expect its
points to be closer to each other than to points
from ej,· for a different word j. Indeed, when
measuring similarity between points ei,c and their
anchor ēi, we find that these are much more simi-
lar than anchors of different words ēi and ēj (see
Table 1). This observation supports our hypoth-
esis that anchor-driven alignment can guide the
construction of the alignment for the contextual
space. A visualized example of the contextual-
ized representations of four words is given in Fig-
ure 1, demonstrating the appropriateness of their
anchors. Still, as previous studies have shown, and
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Figure 2: Contextual embeddings for the English word
“bear” and its two possible translations in Spanish —
“oso” (animal) in blue and “tener” (to have) in red. The
figure shows a two dimensional PCA for the aligned
space of the two languages. The symbols are the an-
chors, the clouds represent the distribution of the con-
textualized Spanish words, and the black dots are for
contextualized embeddings of “bear”. The gray col-
ored triangles show the anchors of the English words
“dog”, “elephant”, “cat”, from left to right respectively.

as our results point, the context component is very
useful for downstream tasks.

Homonym Point Clouds are Multi-Modal
When a word i has multiple distinct senses, we
might expect the embeddings for i to reflect this
by separating into multiple distinct clouds, one for
each meaning. Figure 2 demonstrates that this in-
deed happens for the English word “bear”. Fur-
thermore, it can be seen that after alignment (Sec-
tion 3.3) with Spanish, the distinct point clouds are
aligned with their corresponding distinct words in
Spanish. See App. D for another example.

We examined the shift from mean for a list of
250 English homonyms from Wikipedia.2 As Ta-
ble 1 shows, the shift of these words is indeed
slightly higher than it is for other words. However,
they still remain relatively close to their per-token
anchor. Therefore, these anchors can still serve as
a good approximation for learning alignments.

3.2 Context-Independent Alignment

We begin by briefly reviewing previous ap-
proaches for aligning context-independent embed-
dings, as they are generalized in this work to the
contextual case. We denote the embedding of a
word i by ei. At first, assume we are given word
pairs {(esi , eti)} from a source language s and a

2https://en.wikipedia.org/wiki/List_
of_true_homonyms

target language t, and we look for a mapping be-
tween those. Mikolov et al. (2013) proposed to
learn a linear transformation whereby eti is ap-
proximated via Wesi , for a learned matrix W . We
focus on methods that follow this linear alignment.
The alignment matrix is found by solving:

W s→t = argmin
W∈Od(R)

n∑
i=1

∥∥∥Wesi − eti

∥∥∥2 , (4)

where Od(R) is the space of orthogonal matrices.
This constraint was proposed by Xing et al. (2015)
in order to preserve inter-lingual relations. Under
this constraint, Eq. 4 is an instance of the orthog-
onal Procrustes problem, which has a closed-form
solutionW s→t = UV T . The columns of U and V
are the left and right singular vectors of the multi-
plication of the source and (transposed) target em-
bedding matrices.

For the unsupervised case (i.e. when a dictio-
nary is absent), Conneau et al. (2018a) (MUSE)
suggested to learn the alignment via adversarial
training, such that a discriminator is trained to dis-
tinguish between target and aligned source embed-
dings. Thereafter, a refinement procedure is ap-
plied iteratively as follows. First, a dictionary is
built dynamically using the current alignment such
that only words with high confidence are consid-
ered. Using the dictionary, the alignment matrix is
re-calculated as in the supervised case.

3.3 Context-Dependent Alignment

We next turn our attention to the main task of this
paper, which is aligning context-dependent em-
beddings. We now describe our generalization of
the methods described in Section 3.2 for this case.
The first two methods are based only on anchors
while the third one uses the contextual vectors
themselves. Altogether, we suggest three align-
ment procedures, one aimed for the supervised and
two for the unsupervised cases.

Supervised Anchored Alignment As a first
step, we are assuming access to a dictionary for
the source and target domains. For each source
word i denote by D(i) the corresponding word in
the target language.3

In the context-dependent case, Eq. 4 is no
longer well-defined, as there are many correspond-
ing vectors to both the source and the target

3In practice, we may have multiple target words for a sin-
gle source word, and the extension is straight-forward.

https://en.wikipedia.org/wiki/List_of_true_homonyms
https://en.wikipedia.org/wiki/List_of_true_homonyms
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words. However, this challenge can be addressed
by aligning the vectors ēi for which we do have
one per word. This is motivated by our observa-
tions in Section 3.1 that context-dependent embed-
dings are well clustered around their centers.

Thus, in the case where a dictionary is available,
we solve Eq. 4 with token anchors as inputs.

We emphasize that by constraining W s→t to
be orthogonal, we also preserve relations between
êi,c and êi,c′ that represent the contextual informa-
tion.

Unsupervised Anchored Alignment In this
setting, no dictionary is present. As in the su-
pervised case, we can naturally extend a context-
independent alignment procedure to the contextual
space by leveraging the anchor space ēi. This can
be done using the adversarial MUSE framework
proposed by Conneau et al. (2018a) and described
at the end of Section 3.2.

Unsupervised Context-based Alignment Al-
ternatively, the alignment could be learned directly
on the contextual space. To this end, we follow
again the adversarial algorithm of MUSE, but for
each word we use multiple embeddings induced
by different contexts, rather than the word anchor.

This context-based alignment presents oppor-
tunities but also introduces certain challenges.
On the one hand, it allows to directly handle
homonyms during the training process. However,
empirically we found that training in this setting
is less stable than unsupervised anchored align-
ments.

Refinement As a final step, for both of the unsu-
pervised methods, we perform the refinement pro-
cedure that is incorporated in MUSE (end of Sec-
tion 3.2). In order to synthesize a dictionary, we
use distance in the anchor space.

3.4 Learning Anchored Language Models

Thus far we assumed that embeddings for both
source and target languages are pretrained sepa-
rately. Afterwards, the source is mapped to the
target in a second step via a learned mapping.
However, this approach may not work well when
raw data for the source languages is scarce, result-
ing in deficient embeddings. In what follows, we
show how to address this problem when a dictio-
nary is available. We focus on embeddings that
are learned using a language model objective but

this can be easily generalized to other objectives
as well.

Our key idea is to constrain the embeddings
across languages such that word translations will
be close to each other in the embedding space.
This can serve as a regularizer for the resource-
limited language model. In this case, the anchors
are the model representations prior to its context-
aware components (e.g., the inputs to ELMo’s
LSTM).

Denote the anchor for word i in language s by
vs
i . Now, assume we have trained a model for

the target language and similarly have embeddings
vt
i. We propose to train the source model with an

added regularization term as follows:

λanchor ·
∑
i

‖vs
i − vt

D(i)‖
2
2 , (5)

where λanchor is a hyperparamter. This regular-
ization has two positive effects. First, it reduces
overfitting by reducing the effective number of pa-
rameters the model fits (e.g., if the regularizer has
large coefficient, these parameters are essentially
fixed). Second, it provides a certain level of align-
ment between the source and target language since
they are encouraged to use similar anchors.

4 Multilingual Dependency Parsing

Now that we presented our method for aligning
contextual embeddings, we turn to evaluate it on
the task of cross-lingual dependency parsing. We
first describe our baseline model, and then show
how our alignment can easily be incorporated into
this architecture to obtain a multilingual parser.

Baseline Parser Most previous cross-lingual
dependency parsing models used transition-based
models (Ammar et al., 2016; Guo et al., 2016).
We follow Che et al. (2018); Wang et al. (2018);
Clark et al. (2018) and use a first-order graph-
based model. Specifically, we adopt the neural
edge-scoring architecture from Dozat and Man-
ning (2017); Dozat et al. (2017), which is based
on Kiperwasser and Goldberg (2016). We now
briefly review this architecture. Given a sentence
s, let ei and pi be its word and POS-tag embed-
dings. These are concatenated and fed into a Bi-
LSTM to produce token-level contextual represen-
tations ri. Four Multi-Layer Perceptrons are ap-
plied on these vectors, resulting in new representa-
tions harc−dep

i , harc−head
i , hrel−dep

i and hrel−head
i
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for each word i. Arc scores are then obtained by:

sarcij =
(
harc−head
i

)T (
Uarcharc−dep

j + barc
)
.

(6)
Additionally, the score for predicting the depen-
dency label r for an edge (i, j) is defined as

srel(i,j),r =
(
hrel−head
i

)T
U rel
r hrel−dep

j +(
urel−head
r

)T
hrel−head
i +(

urel−dep
r

)T
hrel−dep
j + br .

(7)

At test time, MST is calculated to ensure valid
outputs.

Multilingual Parsing with Alignment We now
extend this model, in order to effectively use it for
transfer learning. First, we include contextualized
word embeddings by replacing the static embed-
dings with a pre-trained ELMo (Peters et al., 2018)
model (instead of ei). Second, we share all model
parameters across languages and use the contex-
tual word embeddings after they are aligned to a
joint space J . Formally, if s is a sentence of lan-
guage `, contextual word embeddings are obtained
via:

e`→J
i,s = W `→Jei,s , (8)

where W `→J is the alignment matrix from lan-
guage ` to the joint space.4 This alignment is
learned apriori and kept fixed during parser train-
ing. This setup is applicable for both single and
multiple training languages. For the tested lan-
guage, training data could be available, sometimes
limited (few-shot), or absent (zero-shot). The
alignment methods are described in detail in Sec-
tion 3.

In their paper, Peters et al. (2018) suggest to
output a linear combination over the represen-
tations of each layer of ELMo, learning these
weights jointly with a downstream task. Our align-
ment is learned separately for each layer. There-
fore, we keep the weights of the combination fixed
during the training to ensure that the parser’s in-
puts are from the joint cross-lingual space. Alter-
natively, one can share the weights of the combi-
nation between the languages and learn them.

All the above modifications are at the word
embedding level, making them applicable to any
other NLP model that uses word embeddings.

4We use the space of the training language as our joint
space and align the tested language to it. In the multi-source
scenario, we align all embeddings to English.

5 Experimental Setup

Contextual Embeddings We use the ELMo
model (Peters et al., 2018) with its default param-
eters to generate embeddings of dimension 1024
for all languages. For each language, training data
comprises Wikipedia dumps5 that were tokenized
using UDpipe (Straka and Straková, 2017). We
randomly shuffle the sentences and, following the
setting of ELMO, use 95% of them for training
and 5% for evaluation.

Alignment We utilize the MUSE framework6

(Conneau et al., 2018a) and the dictionary tables
provided by them. The ēi (anchor) vectors for the
alignment are generated by computing the average
of representations on the evaluation set (except for
the limited unlabeled data case). To evaluate our
alignment, we use the anchors to produce word
translations. For all experiments we use the 50k
most common words in each language.

Dependency Parsing We used the biaffine
parser implemented in AllenNLP (Gardner et al.,
2018), refactored to handle our modifications as
described in Section 4.7 The parser is trained on
trees from a single or multiple languages, as de-
scribed in each setting (Section 6). For the multi-
ple case, we randomly alternate between the avail-
able languages, i.e. at each iteration we randomly
choose one language and sample a corresponding
batch. Dropout (Srivastava et al., 2014) is applied
on ELMo representations, Bi-LSTM representa-
tions and outputs of MLP layers. We also apply
early stopping, where validation accuracy is mea-
sured as average LAS score on the development
set across all training languages. The parser hyper-
parameters are the same as Dozat et al. (2017) ex-
cept we reduce the POS tag embedding size from
100 to 50 and increase the head/dependent MLP
dimension from 400 to 500. All hyperparameter
values used are listed in App. C.

From experiments on the English tree-bank, we
found that using the outputs of the first LSTM
layer is as good as learning a combination.8 This

5https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-1989

6https://github.com/facebookresearch/
MUSE/

7https://github.com/TalSchuster/
allennlp-MultiLang

8This was concurrently justified by Liu et al. (2019),
showing that the first layer alone can perform better than a
mixture.

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://github.com/facebookresearch/MUSE/
https://github.com/facebookresearch/MUSE/
https://github.com/TalSchuster/allennlp-MultiLang
https://github.com/TalSchuster/allennlp-MultiLang
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ALIGNMENT METHOD DE ES FR IT PT SV AVERAGE

SUPERVISED ANCHORED 78 85 86 82 74 68 79

UNSUPERVISED ANCHORED 63 61 70 58 35 22 52
+ REFINE 72 74 81 77 53 33 65

UNSUPERVISED CONTEXT-BASED 57 68 59 57 53 * 49
+ REFINE 73 82 77 73 66 * 62

Table 2: Word translation to English precision @5 using CSLS (Conneau et al., 2018a) with a dictionary (su-
pervised) and without (unsupervised) for German (DE), Spanish (ES), French (FR), Italian (IT), Portuguese (PT)
and Swedish (SV). Each of the unsupervised results is followed by a line with the results post the anchor-based
refinement steps. * stands for ’Failed to converge’.

MODEL DE ES FR IT PT SV AVERAGE

Zhang and Barzilay (2015) 54.1 68.3 68.8 69.4 72.5 62.5 65.9
Guo et al. (2016) 55.9 73.1 71.0 71.2 78.6 69.5 69.9
Ammar et al. (2016) 57.1 74.6 73.9 72.5 77.0 68.1 70.5

ALIGNED FASTTEXT 61.5 78.2 76.9 76.5 83.0 70.1 74.4
ALIGNED ē 58.0 76.7 76.7 76.1 79.2 71.9 73.1
OURS 65.2 80.0 80.8 79.8 82.7 75.4 77.3

OURS, NO DICTIONARY 64.1 77.8 79.8 79.7 79.1 69.6 75.0
OURS, NO POS 61.4 77.5 77.0 77.6 73.9 71.0 73.1
OURS, NO DICTIONARY, NO POS 61.7 76.6 76.3 77.1 69.1 54.2 69.2

Table 3: Zero-shot cross lingual LAS scores compared to previous methods, for German (DE), Spanish (ES), French
(FR), Italian (IT), Portuguese (PT) and Swedish (SV). Aligned FASTTEXT and ē context-independent embeddings
are also presented as baselines. The bottom three rows are models that don’t use POS tags at all and/or use an
unsupervised anchored alignment. Corresponding UAS results are provided in App. B.

agrees with Belinkov et al. (2017), showing that
lower layers capture more syntactic information.
Therefore, we fix the weights over ELMo layers
to [0, 1, 0], i.e. using only representations from the
first LSTM layer.

Evaluation Scenarios for Dependency Parsing
For a fair comparison, we use the same setting as
used by previous models for each scenario. Our
main model (which we refer to as OURS) is using a
SUPERVISED ANCHORED ALIGNMENT (Section
3.3) to align the multilingual pretrained ELMo
embeddings which are used by the parser. We
compare against several variants of our model:

• ALIGNED FASTTEXT: instead of ELMo, we use
FASTTEXT pretrained embeddings (Grave et al.,
2018a), aligned to English using MUSE.

• ALIGNED ē: instead of contextualized embed-
dings, we use the anchors themselves as fixed
embeddings, aligned to English.

• NO DICTIONARY: we assume the absence
of a dictionary and use UNSUPERVISED AN-
CHORED ALIGNMENT.

• NO POS: no use of part of speech tags.

6 Results

Alignment As mentioned above, we use outputs
of the first LSTM layer of ELMo in our parsing
experiments. Therefore, we present the alignment
accuracy for those in Table 2, summarizing the
precision@5 word-translation from 6 languages
to English. Results for the other layers are pre-
sented in App. A. As expected, supervised align-
ments outperform unsupervised ones by a large
margin. Between the two unsupervised methods,
the context-based alignment achieved significantly
better results for Spanish and Portuguese but failed
to converge for Swedish. In both cases, the value
of anchors in the REFINE step is clear, substantially
improving the precision for all languages.
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# SENTENCES LANGUAGE MODEL
UAS / LAS PERPLEXITY

ALIGN
DEV TEST TRAIN DEV

28M ELMO 72.3 / 62.8 72.5 / 61.3 22 44 85

10K ELMO 52.9 / 38.3 50.1 / 33.1 4 4060 4
ANCHORED ELMO 59.2 / 47.3 57.2 / 42.2 92 600 12

Table 4: Zero-shot, single-source results for the Spanish limited unlabeled data experiments. The parsing results
are UAS/LAS scores, the perplexity is of the ELMo model, and the alignment scores are precision@5 on the
held-out set, based on CSLS. All embeddings were aligned to English using supervised anchored alignment.

MODEL LAS-F1

Rosa and Mareček (2018) 26.31
Smith et al. (2018a) 31.93
ALIGNED FASTTEXT 26.77
OURS 36.98

Table 5: Results for the Kazakh dataset from CoNLL
2018 Shared Task on Multilingual Parsing, compared
to the two leading models w.r.t. this treebank.

Zero-Shot Parsing, Multiple Source Languages
Table 3 summarizes the results for our zero-shot,
multi-source experiments on six languages from
Google universal dependency treebank version
2.0.9 For each tested language, the parser was
trained on all treebanks in the five other languages
and English. We align each of the six languages
to English. We compare our model to the perfor-
mance of previous methods in the same setting (re-
ferred to as Lt ∩ Ls = ∅ in Ammar et al. (2016)).
The results show that our multilingual parser out-
performs all previous parsers with a large margin
of 6.8 LAS points. Even with an unsupervised
alignment, our model consistently improves over
previous models.

To make a fair comparison to previous models,
we also use gold POS tags as inputs to our parser.
However, for low-resource languages, we might
not have access to such labels. Even without the
use of POS tags at all, in five out of six languages
the score is still higher than previous methods that
do consider such annotations. An exception is the
Portuguese language where it leads to a drop of
8.8 LAS points. While in the single language set-
ting this good performance can be explained by the
knowledge captured in the character level, contex-
tual embeddings (Smith et al., 2018b; Belinkov

9https://github.com/ryanmcd/
uni-dep-tb/

et al., 2017), the results suggest that this knowl-
edge transfers across languages.

In order to assess the value of contextual
embeddings, we also evaluate our model using
non-contextual embeddings produced by FAST-
TEXT (Bojanowski et al., 2017). While these
improve over previous works, our context-aware
model outperforms them for all six languages in
UAS score and for 5 out of 6 languages in LAS
score, obtaining an average higher by 3 points. To
further examine the impact of introducing context,
we run our model with precomputed anchors (ē).
Unlike FASTTEXT embeddings of size 300, these
anchors share the same dimension with contextual
embeddings but lack the contextual information.
Indeed, the context-aware model is consistently
better.

Few-Shot Parsing, Small Treebanks In this
scenario, we assume a very small tree-bank for
the tested language and no POS tags. We use
the Kazakh tree-bank from CoNLL 2018 shared
task (Zeman et al., 2018). The training set con-
sists of only 38 trees and no development set is
provided. Segmentation and tokenization are ap-
plied using UDPipe. Similar to Rosa and Mareček
(2018); Smith et al. (2018a), we utilize the avail-
able training data in Turkish as it is a related lan-
guage. To align contextual embeddings, we use
a dictionary generated and provided by Rosa and
Mareček (2018) and compute an alignment from
Kazakh to Turkish. The dictionary was obtained
using FastAlign (Dyer et al., 2013) on the Open-
Subtitles2018 (Lison and Tiedemann, 2016) par-
allel sentences dataset from OPUS (Tiedemann,
2012).10

Table 5 summarizes the results, showing that
our algorithm outperforms the best model from the
shared task by 5.05 LAS points and improves by

10https://github.com/CoNLL-UD-2018/
CUNI-x-ling

https://github.com/ryanmcd/uni-dep-tb/
https://github.com/ryanmcd/uni-dep-tb/
https://github.com/CoNLL-UD-2018/CUNI-x-ling
https://github.com/CoNLL-UD-2018/CUNI-x-ling
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over 10 points over a FASTTEXT baseline.

Zero-Shot Parsing, Limited Unlabeled Data
To evaluate our anchored language model (Sec-
tion 3.4), we simulate a low resource scenario by
extracting only 10k random sentences out of the
Spanish unlabeled data. We also extract 50k sen-
tences for LM evaluation but perform all computa-
tions, such as anchor extraction, on the 10k train-
ing data. For a dictionary, we used the 5k training
table from Conneau et al. (2018a).11 Another table
of size 1,500 was used to evaluate the alignment.
In this scenario, we assume a single training lan-
guage (English) and no usage of POS tags nor any
labeled data for the tested language.

Table 4 shows the results. Reducing the amount
of unlabeled data drastically decreases the preci-
sion by around 20 points. The regularization intro-
duced in our anchored LM significantly improves
the validation perplexity, leading to a gain of 7
UAS points and 9 LAS points.

7 Conclusion

We introduce a novel method for multilingual
transfer that utilizes deep contextual embeddings
of different languages, pretrained in an unsuper-
vised fashion. At the core of our methods, we
suggest to use anchors for tokens, reducing this
problem to context-independent alignment. Our
methods are compatible both for cases where a
dictionary is present and absent, as well as for low-
resource languages. The acquired alignment can
be used to improve cross-lingual transfer learning,
gaining from the contextual nature of the embed-
dings. We show that these methods lead to good
word translation results, and improve significantly
upon state-of-the-art zero-shot and few-shot cross-
lingual dependency parsing models.

In addition, our analysis reveals interesting
properties of the context-aware embeddings gen-
erated by the ELMo model. Those findings are
another step towards understanding the nature of
contextual word embeddings.

As our method is in its core task-independent,
we conjecture that it can generalize to other tasks
as well.
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Table 6 manifests word-to-word translation results
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ferent layer outputs from ELMo’s LSTM. Even
though layer zero produces context independent
representations, the anchors computed over the
contextual representations achieved higher preci-
sion. We conjecture that this is due to the language
model objective being applied to the output of the
second layer. Hence, unlike token-based embed-
dings such as FASTTEXT that optimize them di-
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top of them.
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LAYER DE ES FR IT PT SV AVERAGE

0 54 / 71 65 / 80 66 / 80 61 / 78 55 / 71 41 / 61 57 / 74
1 62 / 78 73 / 85 74 / 86 69 / 82 61 / 74 49 / 68 65 / 79
2 59 / 75 68 / 82 70 / 83 66 / 79 56 / 72 48 / 67 61 / 76

Table 6: Per ELMo layer word translation to English precision @1 / @5 using CSLS (Conneau et al., 2018a)
with a dictionary (supervised) for German (DE), Spanish (ES), French (FR), Italian (IT), Portuguese (PT) and
Swedish (SV). Layer 0 representations are the result of the character-level word embeddings (which are context
independent). Layer 1 and 2 alignments are based on anchors from the first and second LSTM layer output
respectively.

MODEL DE ES FR IT PT SV AVERAGE

Zhang and Barzilay (2015) 62.5 78.0 78.9 79.3 78.6 75.0 75.4
Guo et al. (2016) 65.0 79.0 77.7 78.5 81.9 78.3 76.7

ALIGNED FASTTEXT 69.2 83.4 84.6 84.3 86.0 80.6 81.4
ALIGNED ē 65.1 82.8 83.9 83.6 83.4 82.0 80.1
OURS 73.7 85.5 87.8 87.0 86.6 84.6 84.2

OURS, NO DICTIONARY 73.2 84.3 87.0 86.8 84.5 80.4 82.7
OURS, NO POS 69.7 84.8 85.3 85.3 79.7 81.7 81.1
OURS, NO DICTIONARY, NO POS 72.2 84.7 84.9 85.0 78.1 67.9 78.8

Table 7: Zero-shot cross lingual results compared to previous methods, measured in UAS. Aligned fastText and ē
context-independent models are also presented as baselines. The bottom three rows are models that don’t use POS
tags at all and/or use an unsupervised anchored alignment.
Note that Ammar et al. (2016) did not publish UAS results.

C Hyperparameters

We now detail the hyperparameters used through-
out our experiments. All alignment experiments
were performed using the default hyperparameters
of the MUSE framework (see their github reposi-
tory). Table 8 depicts the values used in multilin-
gual parsing experiments.

D Additional Alignment Example

We provide an additional example of a homonym.
Figure 3 shows the contextual embeddings of the
word “bank” in English and the words “banco”
(a financial establishment) and “orilla” (shore) in
Spanish. In this case, unlike the “bear” example
(Figure 2), the embeddings do not form two obvi-
ous clusters in the reduced two dimensional space.
A possible explanation is that here the two mean-
ings have the same POS tag (Noun). Even so, as
shown in Table 9, the alignment succeeds to place
the embeddings of words from each context close
to the matching translation.

The nearest-neighbors for the “bear” example
are presented in Table 10.

HYPERPARAMETER VALUE

BATCH SIZE (# SENTENCES) 32
INSTANCES PER EPOCH 32,000
EPOCHS (MAX.) 40
PATIENCE (EARLY STOPPING) 10
ENCODER TYPE BI-LSTM
POS TAG EMBEDDING DIM. 50
LSTM, HIDDEN SIZE 200
LSTM, # LAYERS 3
DROPOUT RATE 0.33
ARC REPRESENTATION DIM. 500
TAG REPRESENTATION DIM. 100
ADAM (DEFAULT)

Table 8: Hyper-parameters used in parsing experi-
ments, shared across different settings.
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k “BANCO” ANCHOR

1 Unlike in primary succession , the species that dominate secondary succession , are usually present from the start of the
process , often in the soil seed bank .

2 Canto XLV is a litany against Usura or usury , which Pound later defined as a charge on credit regardless of potential or
actual production and the creation of wealth ex nihilo by a bank to the benefit of its shareholders .

3 This prompted some investigation , led by Sir Benjamin Hall , which quickly turned up the fact that O’ Connor was
registered as the owner of all the estates , and of the associated bank .

4 The commercial NaS battery bank offers : ( Japanese ) .

5 Both team leaders are given a mystery word , which along with their team - mates use gigantic foam blocks and place
them on the clue bank ( similar to Boggle ) with only giving a clue to the word ...

k “ORILLA” ANCHOR

1 The combined Protestant forces , now numbering 25,000 strong , positioned themselves on the western bank of the Rhine
River .

2 The Romans had a small advance guard of auxiliaries and cavalry on the opposite bank of the river .

3 Between Vaugirard and the river Seine he had a considerable force of cavalry , the front of which was flanked by a battery
advantageously posted near Auteuil on the right bank of the river .

4 Mallus therefore stood on the eastern bank of the river .
5 The Argentine squadron spent the night of February 7 anchored between Juncal Island and the west bank of the river .

6 After marching north from Tewkesbury , Sir William Waller tried to contain the cavalry forces of Maurice on the western
bank of the Severn , cutting this substantial force off from the rest of the Royalist army .

Table 9: Nearest-neighbors (after alignment) of the Spanish anchors “banco” (a financial establishment) and
“orilla” (shore) from the contextual embeddings of the word “bank” in English. The full sentence is presented
for context.

Figure 3: Contextual embeddings for the English word
“bank” and its two possible translations in Spanish —
“banco” (a financial establishment) in red and “orilla”
(shore) in blue. The figure shows a two dimensional
PCA for the aligned space of the two languages. The
symbols are the anchors and the dots are the contextu-
alized embeddings. (best viewed in color)
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k “TENER” ANCHOR

1 It may be difficult for the patient to bear the odour of the smoke at first , but once he gets used to such a smell ,
it does not really matter .

2 No matter what the better class of slave owners might do , they had to bear the stigma of cruelty with the worst of tyrants ...
3 Every new car will bear the lan name instead of Van Diemen , so the highly successful marque will gradually disappear .
4 had a sufficient economic stake to bear the litigation burden necessary to maintain a private suit for recovery under section 4 .
5 In this example , consumers bear the entire burden of the tax ; the tax incidence falls on consumers .

k “OSO” ANCHOR

1 In 2010 , the government of the NWT decided to update its version of the polar bear - shaped plate .

2 Salad Fingers appears to be masochistic , as he can be seen taking pleasure from impaling his finger on a nail ,
rubbing stinging nettles on himself or stepping onto a bear trap .

3 The old bear - hunter , on being toasted , made a speech to the Texians , replete with his usual dry humor .
4 Balto arrives , distracts the bear , saves Aleu , they both escape and the bear disappears .
5 Defeated , the polar bear shrinks and transforms into a plush toy .

Table 10: Nearest-neighbors (after alignment) of the Spanish anchors “tener” (carry, verb) and “oso” (animal,
noun) from the contextual embeddings of the word “bear” in English. The full sentence is presented for context.


