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Abstract

Brown and Exchange word clusters have long
been successfully used as word representations
in Natural Language Processing (NLP) sys-
tems. Their success has been attributed to
their seeming ability to represent both seman-
tic and syntactic information. Using corpora
representing several language families, we test
the hypothesis that Brown and Exchange word
clusters are highly effective at encoding mor-
phosyntactic information. Our experiments
show that word clusters are highly capable of
distinguishing Parts of Speech. We show that
increases in Average Mutual Information, the
clustering algorithms’ optimization goal, are
highly correlated with improvements in encod-
ing of morphosyntactic information. Our re-
sults provide empirical evidence that down-
stream NLP systems addressing tasks depen-
dent on morphosyntactic information can ben-
efit from word cluster features.

1 Introduction

Distributionally generated word classes (often re-
ferred to as word clusters) are hard clusters, con-
taining all word types observed in a corpus, allo-
cated to clusters based on contextual information
observed in the corpus. They have found wide
use in Natural Language Processing (NLP) sys-
tems as an alternative to word embeddings such
as word2vec (Mikolov et al., 2013). Word clus-
ters differentiate themselves from word embed-
dings by requiring estimation of many fewer pa-
rameters, and by their ability to derive qualitative
representations from smaller corpora (Qu et al.,
2015; Bansal et al., 2014).

Brown Clusters (Brown et al., 1992) are a well-
known approach based on hard, hierarchical, dis-
tributionally derived groups of word types ob-
served in a corpus of unstructured text, with Av-
erage Mutual Information (AMI) as the optimiza-
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tion goal. Exchange Clusters are an alternative ap-
proach obtained by applying the Exchange Algo-
rithm (Kneser and Ney, 1993) to the same opti-
mization goal. Unlike Brown, Exchange outputs
a flat clustering, with no hierarchy (Martin et al.,
1998). When only the bottom of the hierarchy is
used, like in this paper, Exchange and Brown clus-
ters are interchangeable.

Both Brown and Exchange clusters have been
used as word representations for various Natu-
ral Language Processing tasks such as Part of
Speech tagging in clean and noisy text (Swain
and Cole, 2016; Owoputi et al., 2013; Derczyn-
ski et al., 2015), dependency parsing (Koo et al.,
2008; Bansal et al., 2014), Chinese Word Segmen-
tation (Liang, 2005), and Named Entity Recog-
nition (Swain and Cole, 2016; Derczynski et al.,
2015; Liang, 2005). Word clusters distinguish
themselves from word embedding models by their
ability to learn from little data (Bansal et al., 2014;
Quetal., 2015); for example, in cases like (Bansal
etal., 2014), word clusters outperform other kinds
of representations, including word embeddings.
In the literature, it is often observed that word
clusters seem to encode a considerable amount of
morphosyntactic and semantic knowledge (Brown
et al., 1992; Derczynski et al., 2015). However,
it has not yet been studied to which extent such
knowledge is encoded, as previous work on Brown
and Exchange clusters focuses mostly on algorith-
mic improvements and on applications to different
NLP tasks.

In this work, we present a principled study
of the morphosyntactic information encoded in
flat word clusters induced exclusively from class-
based language models via Brown Clustering and
Exchange algorithm. In particular, we focus on
how well these approaches derive clusters that rep-
resent Parts of Speech as a measure of the mor-
phosyntactic information encoded.
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We find that Brown and Exchange clusters are
highly effective at representing morphosyntactic
information, even when hyper-parameters are set
such that they match only the number of Parts of
Speech, thereby grouping into relatively few word
clusters only. Our results provide empirical evi-
dence for the observed performance gains when
including Brown and Exchange word clusters as
features in NLP systems that rely on morphosyn-
tactic information.

Furthermore, we find that there is a strong cor-
relation between the optimization goal of Brown
clustering and the Exchange Algorithm (i.e., Aver-
age Mutual Information), and performance at Parts
of Speech separation, which again confirms the
appropriateness of choosing AMI in word cluster-
ing for morphosyntactic information.

2 Background

Class-based language models address the problem
of brittleness in classic n-gram language models
by trading precision for performance stability over
different text styles (Brown et al., 1992).

Brown Clustering (Brown et al., 1992) and
Exchange (Kneser and Ney, 1993) are greedy
algorithms that construct word classes by opti-
mizing for higher Average Mutual Information
(AMI). Maximizing Average Mutual Information
is a proxy for maximizing the log-likelihood of
the underlying class-based language model on the
given corpus (Martin et al., 1998). Despite their
age, most research on Brown or Exchange clus-
ters has so far followed two major directions: al-
gorithm improvements and applications in Natural
Language Processing. In contrast little focus has
been placed on understanding and evaluating the
information content of the clusters.

In the direction of algorithm improvements,
work has been done on the effect of greedy
merge choices in Brown Clustering (Derczynski
and Chester, 2016; Ciosici, 2015) and extension
of AMI to n-grams (Martin et al., 1998). Model
relaxations, particularly to Exchange, aim to im-
prove computational performance by reducing the
effect of words swapping clusters (Dehdari et al.,
2016; Uszkoreit and Brants, 2008).

As mentioned earlier, both Brown and Ex-
change clusters have seen many applications in
Natural Language Processing (NLP) systems: PoS
tagging (Swain and Cole, 2016; Owoputi et al.,
2013; Derczynski et al., 2015), dependency pars-

ing (Koo et al., 2008; Bansal et al., 2014), Chinese
Word Segmentation (Liang, 2005), and Named
Entity Recognition (Swain and Cole, 2016; Der-
czynski et al., 2015; Liang, 2005). Most of this
work, like (Swain and Cole, 2016) uses the word
clusters as sources of features which are combined
with hand-designed ones. While word clusters de-
rived using Exchange and Brown clustering have
found wide use in NLP systems, their use has been
based on the assumption that they encode mor-
phosyntactic and semantic information rather that
a principled use.

In relation to Parts of Speech, early on Martin
et al. (1998) concluded that initializing Exchange
with PoS-homogeneous clusters has no effect on
final clustering AMI, but that it does help acceler-
ate convergence. More recently, Christodoulopou-
los et al. (2010) found that Brown clusters match
the performance of more sophisticated clustering
methods, despite their simple algorithmic con-
struction. The study focused on using word clus-
tering algorithms as sources of prototypal infor-
mation to prototype-driven learning models for
classification. In this paper, we study the amount
of morphosyntactic information encoded in Brown
and Exchange word clusters with the goal of pro-
viding empirical results for a principled use of
such clusters in downstream tasks.

3 Metric selection

In order to determine the amount of morphosyn-
tactic information encoded in Brown and Ex-
change word clusters, we measure their ability to
separate word types by their Parts of Speech. For
this, we require cluster quality measures. Brown
and Exchange clusters do not exist in a met-
ric space; therefore unsupervised cluster qual-
ity measures relying on distances between points
or clusters, such as the Silhouette coefficient
(Rousseeuw, 1987), cannot be used. Instead, we
focus on two quality measures that compare clus-
ters with a ground truth partitioning. We work un-
der the hypothesis that Brown and Exchange clus-
ters represent parts of speech and thus, we con-
sider parts of speech as the ground-truth partition-
ing of the data. This makes it possible to use clus-
ter quality measures that require as input an exist-
ing ground-truth partitioning. We use PoS tags re-
sulting from manual or automatic annotation. We
evaluate using a widespread and easy to interpret
measure based on overlap (purity), and an infor-
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mation theoretical measure (Adjusted Mutual In-
formation).

3.1 Clustering Purity

Cluster purity measures how many points in a
clustering (in our case words) have been assigned
to a cluster whose predominant label they share
(e.g. adjectives clustered with other adjectives,
nouns with other nouns etc). Intuitively, it mea-
sures the percentage of points properly classified
(via their cluster membership). Formally, cluster
purity is defined as:

purity(C;) = |é‘ l‘L‘ [label(Cy,1)| (1)
purity(C Z ’]V\ purity(C;) 2)
=2 Zmaxuabd(a,m (3)

Where the function label(C;, 1) provides the
number of elements from C; with label [ and L is
the set of labels. Purity reaches a value of 1 when
the clustering is identical to the ground-truth parti-
tioning, or each point is allocated to its own cluster
(i.e. K = |V]). When k = 1, purity is equal to the
fraction of points labeled with the most popular
label, and thus provides a baseline. In our case,
that is equal to the percentage of vocabulary allo-
cated to the most popular PoS class, usually nouns.
For values of k£ € (1,|V]), it varies depending on
cluster quality. If k& > |L|, purity can take a value
of 1 if each cluster is a subset of a ground par-
tition. Thus, purity is expected to increase as k
grows higher than |L|.

In our experiments, purity measures the per-
centage of vocabulary that is labeled correctly. In
other words, purity does not depend on word fre-
quency. Thus, it is not an approximation of PoS
tagging accuracy, like the M-1 measure used by
Bansal et al. (2014). Since we focus on mor-
phosyntactic information encoded in word clus-
ters, we do not want a measure that takes into ac-
count word frequency in the given corpus (i.e, one
that is a good approximation of PoS tagging per-
formance), but one that focuses exclusively on the
clusters and their content.

3.2 Adjusted Mutual Information

Since the vocabulary size is fixed, as the number
of clusters k increases, purity can increase even if

Data Set | Vocabulary Length

EN UD 33904 488 579

EN EuroParl 159716 | 73577783
FR UD 51670 575887

FR EuroParl 204166 | 65878 206
CZ UD 164483 | 2226848

CZ EuroParl 177631 | 15193 309

Table 1: Overview of data sets

cluster membership is randomly assigned, as it is
easier for smaller clusters to randomly achieve la-
bel agreement. Adjusted Mutual Information (Ad-
JMI) (Vinh et al., 2009), not to be confused with
AMI (Brown and Exchange’s optimization goal),
measures the amount of information shared by the
ground truth partitioning U and a clustering C'. In
our evaluation that corresponds to the amount of
information shared by the PoS ground-truth par-
titioning and the clustering resulting from Brown
or Exchange. AdjMI corrects for the mutual infor-
mation expected to exist between the ground truth
partitioning U and a random clustering. Formally,
it is defined as:

AdMI(U,C) =
MI(U,C) — E{MI(U,C)} )
avg{HWU),H(C)} — E{MI(U,C)}

Where M and H stand for Mutual Informa-
tion and Entropy, respectively. Intuitively, AdjMI
measures how much information we gain about a
point’s membership in to a cluster in the ground-
truth partitioning U, when we know its member-
ship to a cluster in an induced clustering C, and the
other way around. As k increases over the number
of ground partitions L, AdjMI has the opposite ef-
fect to purity, i.e., it scores lower due to the higher
effect attributed to randomness. Just like purity,
AdjMI takes values in the interval [0, 1]. An Ad-
JMI value of 1 corresponds to a clustering identi-
cal to the ground-truth partitioning, while a value
of 0 corresponds to a clustering that is not better
than a random allocation of points to clusters. Un-
like purity, values of AdjMI cannot be interpreted
to say anything about the percentage of points that
have been properly allocated. In other words, a
value of, say 0.3, does not indicate that 30% of the
points have been properly separated.
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4 Experiments

4.1 Data and preprocessing

We use manually annotated data from Universal
Dependencies (UD) (Leung et al., 2017) for En-
glish, French and Czech!. We chose the group of
languages so that it represents different language
families. Our choice of languages is based on the
amount of manually labeled data, and the presence
of each language in the larger, not annotated, Eu-
roParl corpus. We append the manual or automatic
PoS tags and convert text to lowercase. There-
fore, a sentence such as “Words have meaning.”
is transformed into “words_ NOUN have_VERB
meaning NOUN ._PUNCT”. Both word cluster-
ing algorithms studied in this paper are insen-
sitive to the appended PoS tags as they operate
at word and not character level. The appended
tags allow us to evaluate the quality of word clus-
ters using the measures described in the previous
section. We replace all numbers, dates, times,
URLs and emails with placeholders in order to
reduce vocabulary size. Universal Dependencies
is the largest manually annotated corpus we have
access to. For experiments on larger corpora,
we use the unlabeled EuroParl corpus (Koehn,
2005). More specifically, the English-French and
English-Czech pairs. Since manually annotated
PoS tags are not available for Europarl, we ap-
pend automatically assigned PoS tags, obtained
by using UDPipe (Straka and Strakova, 2017) pre-
trained on manually annotated corpora from Uni-
versal Dependencies.

We use flat clusters from the Exchange clus-
tering algorithm for all experiments reported in
this section as they outperform the flat cluster-
ing resulting from Brown in terms of Average
Mutual Information (their optimization goal), Ad-
Jjusted Mutual Information (AdjMI) and cluster pu-
rity. All observations in the following section also
apply to the flat clusters resulting from Brown. For
interested readers, we include all experiments with
Brown Clustering as supplementary material. The
fact that Exchange outperforms Brown Clustering
in terms of AMI is well-understood (Brown et al.,
1992), but its effect on cluster content is not.

"We use data from release 2.2 of Universal Dependencies.

4.2 Morphosyntactic content in Exchange
and Brown clusters

Using Exchange, we induce flat clusterings with
k in the range 18 to 800. We start with £k = 18
as it matches the observed number of distinct PoS
tags in the Universal Dependencies corpora (17
distinct tags and one catch-all tag). When setting
the hyper-parameter k to be higher than 18, if Ex-
change separates clusters by Parts of Speech, then
the expectation is that clusters are subsets of words
sharing the same PoS tags, and that purity for such
clusterings will be high. In Figure 1a, we show pu-
rity measured on the aforementioned clusters. We
can see that, even when the number of clusters is
equal to that of PoS tags (k = 18), between 55%
and 62% of the vocabulary is properly separated.
Purity increases as k increases towards 100. At
k = 500 and & = 800, between 64% and 70% of
the vocabulary is grouped based on PoS, not that
much more than at £ = 100.

Increasing the number of clusters k£ to high
values is not guaranteed to improve purity, for
any of the languages studied. This is contrary to
the expectation that purity increases when k£ >
18.  This indicates that Exchange and Brown
do not exclusively optimize for Part of Speech
separation. We believe the clustering algorithms
might be striking a balance between encoding se-
mantic and morphosyntactic information, since at
higher values of & we usually see more clusters
with a coherent semantic theme such as names
of geographic locations, names of men, names
of women, nouns determining times, similar to
the clusters observed in previous literature (Brown
et al., 1992). For example, when using £ = 18
in English, the token “cat NOUN” appears in the
same cluster as the plural version “cats NOUN”.
At k = 800, the clusters distinguish between the
two tokens and “cat NOUN” is placed together
with a number of nouns in the singular such as
“budget NOUN, computer NOUN, pet NOUN,
wheel NOUN”, while “cats_ NOUN” is placed in
a cluster of mostly pluralized nouns like ‘“chil-
dren NOUN, rooms_NOUN, dogs_NOUN, fami-
liesZ NOUN.

Adjusted Mutual Information (AdjMI) for the
same clusterings, Figure 1b, shows a considerable
decrease as the hyper-parameter k increases, espe-
cially at high values of 500 and 800. This is in line
with the expected punishment due to the effect at-
tributed to randomness (see the term for expected

1544



value of Mutual Information in Equation (4)). At
values of k closer to the number of PoS tags in
the data, AdjMI varies little from one clustering
to the other. More interestingly, the relative order
of separation performance between the languages
studied is maintained going from purity to AdjMI,
suggesting that no measure-specific effects are at
play.

By studying the frequency of incorrectly classi-
fied words types (i.e., of those whose PoS tag does
not match the most popular one in their cluster),
we find that most (about 85%) occur less than 5
times in the corpora. Such few observations likely
do not provide enough information for Brown or
Exchange to properly place those words. There-
fore, from the already computed clusterings, we
remove words with a frequency less than 5 and re-
calculate the two quality measures.

In Figures 1c and 1d, we can see that both pu-
rity and AdjMI improve considerably. Even in the
most difficult case (k = 18), where the number
of clusters matches that of distinct PoS tags, be-
tween 68% and 78% of words are properly placed,
an increase of 21% — 28% compared to the val-
ues in Figure 1a. For AdjMI, the scores more than
double. These results show that even for small cor-
pora, a large amount of morphosyntactic informa-
tion can be encoded, completely unsupervised, us-
ing the Exchange clustering algorithm. (The same
behavior can be observed for clusters derived us-
ing the Brown Clustering algorithm, see supple-
mentary material.) It also shows that, for low fre-
quency terms, there is not enough contextual in-
formation for a proper clustering.

One disadvantage of thresholding by frequency
is that, due to the zipfian distribution of word
frequencies in natural language, only a fraction
of the original vocabulary remains after filtering
out words with a frequency less than 5: English
(8143 words — 24.01%), French (9 020 words —
17.45%), Czech (37 026 words — 22.51%). In or-
der to benefit from more reliable word usage es-
timates, it is necessary to perform the same ex-
periment on larger corpora. Unfortunately big-
ger manually annotated data sets do not exist. We
therefore turn to automatic PoS tagging.

We use UDPipe (Straka and Strakova, 2017)
with models pretrained on the Universal Depen-
dencies corpora to automatically tag text from the
EuroPar]l multi-language corpus containing tran-
scriptions of European Parliament proceedings

(Koehn, 2005). Automated annotations introduce
labeling noise that should lead to a decrease in sep-
aration performance. Despite this, we expect to
still be able to observe good PoS separation.

After filtering the EuroParl corpora, the size
of remaining vocabulary is considerably larger:
English (60373 words — 37.80%), French
(78 822 words—38.60%), Czech (62 512 words—
35.19%). In Figure 2a we can see that there is
a drop in performance that varies with language,
but when looking at purity, even in the worst per-
forming clustering (French at & = 50), 60% of the
vocabulary is still properly separated according to
Parts of Speech. A drop in performance can also
be observed for AdjMI in Figure 2b, with the value
dropping for all languages, in some cases reducing
by half.

More interestingly, the relative performance or-
der of the languages is changed. PoS separa-
tion for Czech outperforms that of the other lan-
guages. Actually, PoS separation for Czech on
EuroParl data (Figure 2) is scored higher than that
of Czech on Universal Dependencies (Figures 1c
and 1d). The source of this improvement requires
more study for a proper attribution, but could be
due to “beneficial” noise introduced by the auto-
matic tagging, or due to the introduction of more
sentence structure by human translators.

The fact that even at low values of k, for all lan-
guages studied, on both corpora, Exchange Word
clusters (and also Brown word clusters, see sup-
plementary material) can successfully separate by
Parts of Speech, helps understand why word clus-
ters have had such success at PoS tagging whether
coupled with Markov Models (Derczynski et al.,
2015), Markov Models and morphological fea-
tures (Owoputi et al., 2013), or just by themselves
via M-1 (Bansal et al., 2014).

4.3 The relation between AMI and PoS

Neither Exchange, nor Brown are guaranteed to
converge to a global optimum. Both are greedy
algorithms that optimize for high Average Mutual
Information (AMI). As we have mentioned earlier,
word clusters resulting from Exchange outperform
those induced using the Brown clustering algo-
rithm in terms of both AMI (the algorithm’s op-
timization goal), PoS purity and Adjusted Mutual
Information (AdjMI). A natural question to ask is:
can one improve the morphosyntactic content of
word clusters by obtaining higher AMI, maybe by
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Figure 1: Cluster agreement with manual labels from UD.

developing new and better AMI-based clustering
algorithms?

We answer this question by studying the cor-
relation between Average Mutual Information and
the two cluster quality measures used earlier: pu-
rity and AdjMI. Brown clustering is a predictable,
bottom-up, agglomerative, hard clustering algo-
rithm that for the same hyper-parameter k, gener-
ates the same clusters and therefore only one data
sample.> However, the Exchange algorithm is an
iterative clustering algorithm that has a complete
and valid cluster partitioning at the end of each it-
eration. Thus, we can also measure morphosyn-
tactic content in each of these clusterings. In our
experiments, we only obtain 10 different data sam-
ples from each run of the algorithm, not enough
for a correlation analysis.

In order to collect more data samples (i.e. more
clusterings), we suggest using a stochastic version
of Exchange where a percentage of all swaps are
performed at random, rather than with the goal of
improving AMI. This version of Exchange termi-

2Assuming a stable and repeatable tie-breaking process;
this is undefined in the literature.

nates based on the number of iterations, and gen-
erates valid word partitionings of varying quality
(from an AMI perspective) at the end of each itera-
tion. In this manner, it provides us with more data
points (i.e. more different clusterings) for analy-
sis. Due to the small amount of random swaps,
at varying AMI, we obtain a sufficient number of
distinct clusterings to perform a correlation study
with sufficient data.

With the stochastic implementation of Ex-
change, we run 50 iterations for all languages and
k combinations studied earlier. In Tables 2 and 3,
we show the Pearson and Spearman correlation
coefficients between AMI of all clusterings gener-
ated by StochasticExchange for a given run, and
the two scores used earlier: purity and AdjMI.
Due to space considerations, we only show results
for £ = 18 (i.e., same number of clusters as the
number of PoS tags). Correlation coefficients for
other combinations are included in the supplemen-
tary material. p < 0.01 for all correlation experi-
ments here and in the supplementary material and
for both correlation coefficients. The analysis pre-
sented below also holds for all the correlation re-
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Figure 2: Cluster agreement with automatically gener-
ated labels from EuroParl. Only words with frequency
minimum 5.

Data Set ‘ Pearson ‘ Spearman

ENUD | 0.9776 0.7173
FRUD | 0.9863 0.3976
CZUD | 0.9883 0.7378

Table 2: Correlation between Average Mutual Infor-
mation and PoS purity of the clustering resulted from
Exchange with & = 18. Words with frequency < 5
have been filtered. p < 0.01 for all coefficients.

Data Set | Pearson | Spearman
ENUD | 0.9897 0.7464
FRUD | 0.9845 0.7192
CZUD | 0.9859 0.8930

Table 3: Correlation between Average Mutual Infor-
mation and AdjMI of the clustering resulted from Ex-
change with £ = 18. Words with frequency < 5 have
been filtered. p < 0.01 for all coefficients.

sults included in the supplementary material.

For both purity and AdjMI, there is a strong
Pearson correlation between higher AMI and bet-
ter values of the evaluation score. This is indepen-
dent of the language studied or the number of clus-
ters derived. For Spearman, except for one case,
in all combinations studied, there is a high corre-
lation, although to a slightly less extreme degree
as with Pearson.

Our experiments show that there is strong corre-
lation between AMI and performance in separation
of Parts of Speech as measured by purity and Ad-
JjMI. The strong correlation provides grounding for
research into new AMI-maximizing word cluster-
ing algorithms that can achieve higher AMI than
Exchange, or Brown, as such algorithms might be
able to separate Parts of Speech even better.

4.4 Effect of polysemy on cluster purity

In previous sections, we studied the ability of word
clusters to encode morphosyntactic information.
We clustered word types from unstructured text,
where each token had its Part of Speech tag ap-
pended. The post-pended PoS tags are not used by
either Brown, or Exchange. They are essentially
invisible to the algorithms, since the both Brown
and Exchange recognize words exclusively by in-
ternally assigned integer IDs and do not operate at
character level.

However, post-pending PoS tags does introduce
some information into the text by providing PoS-
role disambiguation for each word occurrence.
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For example, without post-pended PoS tags, both
Exchange, and Brown algorithms, would conflate
the two distinct grammatical roles of show in the
sentence: ‘“Everyone must show their show tickets
at the entrance”. In this section, we study PoS sep-
aration effects caused by such polysemy on Brown
and Exchange word clusters.

Both Exchange and Brown construct hard clus-
ters, i.e. each word can be assigned to exactly
one word class. Thus, words with multiple roles,
such as denominal verbs or deverbal nouns, can-
not be differentiated by the algorithms when op-
erating on corpora from languages where the such
morphological derivations are performed without
employing suffixes or prefixes. In other words, if
the lexical form does not change, neither Brown
nor Exchange can identify which tokens represent
what grammatical role.

The extent of this effect is dependent on lan-
guage. In English, for example, nouns are of-
ten turned into verbs without changing the lexical
form through morphological derivation, e.g. show
as a verb vs show as a noun. On the other hand,
Czech is highly inflected accounting for gender,
case, number and person. This property of each
language was not problematic in the experiments
we have performed so far due to the fact that post-
pending the PoS tag from ground-truth (or auto-
matic tags) effectively provides disambiguation of
grammatical role. Measuring on the Universal De-
pendencies corpora, we find that the percentage
of polyclass words (i.e. word types that are as-
signed more than one PoS class tag throughout the
corpus) varies by language and increases (as per-
centage of remaining vocabulary) as we raise the
minimum frequency threshold, see Table 4. For
English and French, up to 43% of the vocabulary
words have more than one tag, while only 5, 5%
of the Czech vocabulary shares the same property.
Part of the reason why so many words have mul-
tiple PoS tags has to do with how the various lan-
guage families derive new words, and part of the
reason stems from errors in PoS tagging of large
text corpora (Silberztein, 2018).

From a practical point of view, polysemous
words create an upper bound on the effectiveness
of hard clustering for Part of Speech separation
(PoS). In Figure 3, we show PoS purity for clus-
ters induced over Universal Dependencies (UD)
corpora, where we consider all polyclass words
as clustered incorrectly. We also show the mini-

mum purity (when £ = 1) as well as the upper
bound given by the polysemy of each language
as observed from the manual labels. The evalua-
tion strictly penalizes multiclass polysemy and ig-
nores errors in labeling, such as those identified
by Silberztein (2018). For example, in the UD En-
glish corpus, even though only 3 occurrences of
the word “them” are incorrectly tagged as adverb,
while the remaining 750 are correctly labeled as
pronoun. We defer to the data and consider the
word to be impossible to correctly allocate to a
cluster. We use such a strict evaluation as it pro-
vides a lower bound on what can be expected from
Exchange and Brown clusters given the current
data. Correcting PoS tags in the data would prob-
ably improve PoS separation, however, such cor-
rections are outside the scope of the work in this

paper.

We should point out that this evaluation is not
representative of the expected PoS tagging perfor-
mance of word clusters on any given corpus, as for
such taggers one would employ a different strat-
egy, such as, for instance, always outputting the
most popular PoS tag for any given word type. On
top of that, our evaluation here does not take into
account the frequency of tokens, which would be
highly relevant for PoS taggining performance, but
not for our evaluation.

As expected, the most affected language is En-
glish, due to the high level of polysemy in the
data. Here purity drops from 72.4 to 42.32 for
k = 18, when compared with results in Figure 1c.
It is followed by a 20 point drop for French, and
only a few points for Czech, the most morpholog-
ically rich of the three and with the least amount
of ambiguity in grammatical role. The results sug-
gest that even in the presence of language ambi-
guity, and considering the strictest evaluation, Ex-
change and Brown clusters successfully encode a
considerable amount of morphosyntactic informa-
tion, which varies by language. These, together
with results presented earlier in this paper provide
empirical evidence for using word clusters as word
representations in downstream NLP systems ad-
dressing tasks that rely on morphosyntactic knowl-
edge of the language targeted (e.g. dependency
parsing), or for use in new paradigms such as data
programming (Ratner et al., 2016), where cluster
membership can be a strong signal for probabilis-
tic data labeling, even when considering language
ambiguity.
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Data Set \ Min 1 \ Min 5

ENUD | 15.39 | 43.02
FRUD | 9.09 | 41.04
CZ2UD 1.81 5.51

Table 4: Percentage of vocabulary with multiple PoS
tags. Values are calculated relative to the vocabulary
remaining after application of threshold.

—8— English

0.91 French

—8— Czech

0 100 200 300 400 500 600 700 800
Number of clusters

Figure 3: Cluster purity for manually annotated cor-
pora from UD. Only words with frequency minimum
5. Dotted lines are baselines for £ = 1 and highest
achievable purity given polysemy in corpus.

5 Conclusion

In this paper, we quantified the amount of mor-
phosyntactic information encoded in Brown and
Exchange word clusters, in a number of languages,
from different language families. Our empirical
quantification helps explain the success of word
clusters as word representations in NLP tasks that
rely on morphosyntactic information, such as PoS
tagging and Named Entity Recognition. It further
provides empirical evidence for using word clus-
ters as word representations in other NLP tasks
that require morphosyntactic knowledge of the
language targeted (e.g. dependency parsing), or
for use in new paradigms such as data program-
ming (Ratner et al., 2016), where cluster mem-
bership can be a strong signal for probabilistic
data labeling. We have also shown that there is a
strong correlation between AMI (Brown and Ex-
change’s optimization goal) and performance in
PoS separation. The strong correlation demon-
strated provides grounding for research into new
AMI-maximizing word representation algorithms
that can achieve even better AMI optimization
than Exchange or Brown.
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