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Abstract

Human phenotype-gene relations are funda-
mental to fully understand the origin of some
phenotypic abnormalities and their associated
diseases. Biomedical literature is the most
comprehensive source of these relations, how-
ever, we need Relation Extraction tools to au-
tomatically recognize them. Most of these
tools require an annotated corpus and to the
best of our knowledge, there is no corpus avail-
able annotated with human phenotype-gene
relations. This paper presents the Phenotype-
Gene Relations (PGR) corpus, a silver stan-
dard corpus of human phenotype and gene an-
notations and their relations. The corpus con-
sists of 1712 abstracts, 5676 human pheno-
type annotations, 13835 gene annotations, and
4283 relations1. We generated this corpus us-
ing Named-Entity Recognition tools, whose
results were partially evaluated by eight cura-
tors, obtaining a precision of 87.01%. By us-
ing the corpus we were able to obtain promis-
ing results with two state-of-the-art deep learn-
ing tools, namely 78.05% of precision. The
PGR corpus was made publicly available to
the research community.2

1 Introduction

Automatic extraction of relations between enti-
ties mentioned in literature is essential to ob-
tain knowledge that was already available but re-
quired considerable manual effort and time to re-
trieve. Recently, biomedical relation extraction
has gained momentum in several text-mining ap-
plications, such as event extraction and slot-filling
(Lamurias and Couto, 2019b). Some of the com-
monly extracted biomedical relations are protein-
protein interactions (Papanikolaou et al., 2015),
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1Query 1, corresponds to the 10/12/2018 release of PGR
2https://github.com/lasigeBioTM/PGR

drug-drug interactions (Lamurias et al., 2019) and
disease-gene relationships (Kim et al., 2017).

There are a few worth mention systems regard-
ing biomedical Relation Extraction (RE) (Verga
et al., 2018), and that specifically focus on the ex-
traction of phenotype-gene relations regarding dif-
ferent species types like plants (Xing et al., 2018)
and humans (Collier et al., 2015). The main prob-
lem that these systems face is a lack of specific
high quality annotated corpora (gold standard cor-
pus), mostly because this task requires not only a
considerable amount of manual effort but also spe-
cific expertise that is not widely available. A solu-
tion to these limitations is to generate the corpus in
a fully automated manner (silver standard corpus).

Connecting human phenotypes to genes helps
us to understand the origin of some phenotypic ab-
normalities and their associated diseases. To ex-
tract human phenotype-gene relations, both enti-
ties, human phenotypes and genes have to be rec-
ognized. With genes, as a result of lexical features
being relatively regular, many systems can suc-
cessfully identify them in text (Leaman and Gon-
zalez, 2008). Even though Named-Entity Recog-
nition (NER) research has significantly improved
in the last years, human phenotype identification
is still a complex task, only tackled by a handful
of systems (Lobo et al., 2017).

To generate a silver standard for phenotype-
gene relation extraction, we used a pipeline that
performs: i) NER to recognize genes and hu-
man phenotype entities; ii) RE to classify a rela-
tion between human phenotype and gene entities.
First, we gathered abstracts using the PubMed API
with manually defined keywords, namely each
gene name, homo sapiens, and disease. Then
we used the Minimal Named-Entity Recognizer
(MER) tool (Couto and Lamurias, 2018) to extract
gene mentions in the abstracts and the Identify-
ing Human Phenotypes (IHP) tool (Lobo et al.,
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2017) to extract human phenotype mentions. At
last, we used a gold standard relations file, pro-
vided by the Human Phenotype Ontology (HPO),
to classify the relations obtained by co-occurrence
in the same sentence as Known or Unknown.

To the best of our knowledge, there is no corpus
available specific to human phenotype-gene rela-
tions. This work, overcame this issue by creating
a large and versatile silver standard corpus. To as-
sess the quality of the Phenotype-Gene Relations
(PGR) corpus, eight curators manually evaluated
a subset of PGR. We obtained highly promising
results, for example 87.18% in precision. Finally,
we evaluated the impact of using the corpus on two
deep learning RE systems, obtaining 69.23% (BO-
LSTM) and 78.05% (BioBERT) in precision.

2 PGR Corpus

The HPO is responsible for providing a standard-
ized vocabulary of phenotypic abnormalities en-
countered in human diseases (Köhler et al., 2017).
The developers of the HPO also made available
a file that links these phenotypic abnormalities to
genes. These phenotype-gene relations are reg-
ularly extracted from texts in Online Mendelian
Inheritance in Man (OMIM) and Orphanet (OR-
PHA) databases, where all phenotype terms asso-
ciated with any disease that is related with a gene
are assigned to that gene in the relations file. In
this work, we used the relations file created by
HPO as a gold standard for human phenotype-
gene relations.

We started by retrieving abstracts from
PubMed, using the genes involved in phenotype-
gene relations and homo sapiens as keywords,
and the Entrez Programming Utilities (E-utilities)
web service (https://www.ncbi.nlm.
nih.gov/books/NBK25501/), retrieving
one abstract per gene (Query 1).

Later, we added the keyword disease and filter
for abstracts in English (Query 2)3. Query 2 rep-
resents a more focused search of the type of ab-
stracts to retrieve, such as abstracts regarding dis-
eases, their associated phenotypes and genes.

For each gene, we opted for the most recent ab-
stract (Query 1) and the two most recent abstracts
(Query 2).

We opted by searching per gene and not human
phenotype or the combination of both terms be-
cause this approach was the one that retrieved ab-

3Query 2, corresponds to the 11/03/2019 release of PGR

stracts with the higher number of gene and human
phenotype annotations, in the following NER and
RE phases. We removed the abstracts that did not
check the conditions of being written in English,
with a correct XML format and content. The fi-
nal number of abstracts was 1712 for Query 1 and
2657 for Query 2 as presented in Table 1. Then
we proceeded to use the MER tool (Couto and
Lamurias, 2018) for the annotation of the genes
and the IHP framework (Lobo et al., 2017) for the
annotation of human phenotype terms.

2.1 Gene Extraction

MER is a dictionary-based NER tool which given
any lexicon or ontology (e.g., an OWL file) and an
input text returns a list of recognized entities, their
location, and links to their respective classes.

To annotate genes with MER we need to pro-
vide a file of gene names and their respective
identifiers. To this goal, we used a list cre-
ated by the HUGO Gene Nomenclature Commit-
tee (HGNC) at the European Bioinformatics Insti-
tute (http://www.genenames.org/). The
HGNC is responsible for approving unique sym-
bols and names for human loci, including protein-
coding genes, ncRNA genes, and pseudogenes,
with the goal of promoting clear scientific com-
munication. Considering that we intended not
only to map the genes to their names but
also their Entrez Gene (www.ncbi.nlm.nih.
gov/gene/) identifiers, we used the API from
MyGene (http://mygene.info/) with the
keyword human in species. The MyGene API pro-
vides several gene characteristics, including the
confidence score for several possible genes that
match the query. For this work, we chose the
Entrez Gene identifier with a higher confidence
score.

After corresponding all gene names to their re-
spective identifiers, we were left with three genes
that did not have identifiers (CXorf36, OR4Q2,
and SCYGR9). For the first two genes (CXorf36
and OR4Q2), a simple search in Entrez Gene al-
lowed us to match them to their identifiers. For
the last gene (SCYGR9) we were not able to find
an Entrez Gene identifier, so we used the HGNC
identifier for that gene instead. We opted to
use the Entrez Gene identifiers because of their
widespread use in the biomedical research field.

To the original gene list, we added gene
synonyms using a synonyms list file provided by

https://www.ncbi.nlm.nih.gov/books/NBK25501/
https://www.ncbi.nlm.nih.gov/books/NBK25501/
http://www.genenames.org/
www.ncbi.nlm.nih.gov/gene/
www.ncbi.nlm.nih.gov/gene/
http://mygene.info/
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Query Abstracts
Annotations Relations

Phenotype Gene Known Unknown Total
1 (10/12/2018) 1712 5676 13835 1510 2773 4283

2 (11/03/2019) 2657 9553 23786 2480 5483 7963

Table 1: The final number of abstracts retrieved, number of phenotype and gene annotations extracted and the
number of known, unknown and total of relations extracted between phenotype and genes, for Query 1 and 2.

https://github.com/macarthur-lab/
gene_lists (expanding the original list almost
3-fold). These synonyms were matched to their
identifiers and filtered according to their length to
exclude one character length synonyms and avoid
a fair amount of false positives. The number of
genes in the original gene list was 19194, and by
including their synonyms that number increased
to 56670, representing a total gain of 37476 genes.

At last, we identified some missed gene anno-
tations that were caught using regular expressions.
These missed gene annotations were next to for-
ward/back slash and dashes characters (Example
1).

Example 1. Missed gene annotation because of
forward slash.

• Gene: BAX
• Gene Identifier: 581
• Abstract Identifier: 30273005
• Sentence: According to the morphological

observations and DNA fragmentation assay,
the MPS compound induced apoptosis in
both cell lines, and also cause a significant
increase in the expression of Bax/Bcl-2.

2.2 Phenotype Extraction
IHP is a Machine Learning-based NER tool,
specifically created to recognize HPO entities in
unstructured text. It uses Stanford CoreNLP
(Manning et al., 2014) for text processing and ap-
plies Conditional Random Fields trained with a
rich feature set, combined with hand-crafted vali-
dation rules and a dictionary to improve the recog-
nition of phenotypes.

To use the IHP system we chose to update the
HPO ontology for the most recent version4. The
annotations that originated from the IHP system
were matched to their HPO identifier. There was a
total of 7478 annotations for Query 1 and 10973
annotations for Query 2 that did not match any
HPO identifier. We put aside these annotations
to be confirmed or discarded manually as some of

409/10/2018 release

them are incorrectly identified entities but others
are parts of adjacent entities that can be combined
for an accurate annotation.

We did not use the MER system for phenotype
extraction mainly because a more efficient tool for
this task was available without the limitations of
a dictionary-based NER tool for complex terms as
phenotypes are.

2.3 Relation Extraction

After filtering abstracts that did not have annota-
tions of both types, gene and phenotype, we gath-
ered a total of 1712 abstracts for Query 1 and
2656 abstracts for Query 2 as presented in Table 1.
The abstracts retrieved by Query 1 were not spe-
cific enough for human phenotype-gene relations
and therefore about half of them did not contained
entities from both types, which we addressed in
Query 2, increasing from about 2.5 relations per
abstract to about 3.0 relations per abstract.

Using a distant supervision approach, with the
HPO file that links phenotypic abnormalities to
genes, we were able to classify a relation with
Known or Unknown. For this end, we extract pairs
of entities, of gene and human phenotype, by co-
occurrence in the same sentence (Example 2). The
final number of both Known and Unknown anno-
tations is also presented in Table 1.

Example 2. Relation extraction.

• Abstract Identifier: 23669344

• Sentence: A homozygous mutation of SER-
PINB6, a gene encoding an intracellu-
lar protease inhibitor, has recently been
associated with post-lingual, autosomal-
recessive, nonsyndromic hearing loss in hu-
mans (DFNB91).

• Gene: SERPINB6

• Gene Identifier: 5269

• Phenotype: hearing loss

• Phenotype Identifier: HP_0000365

• Relation: Known

https://github.com/macarthur-lab/gene_lists
https://github.com/macarthur-lab/gene_lists
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3 Evaluation

To evaluate the quality of the classifier, we ran-
domly selected 260 relations from Query 1 to be
reviewed by eight curators (50 relations each, with
an overlap of 20 relations). All researchers work
in the areas of Biology and Biochemistry. These
curators had to evaluate the correctness of the clas-
sifier by attributing to each sentence one of the fol-
lowing options: C (correct), I (incorrect) or U (un-
certain). The U option was given to identify cases
of ambiguity and possible errors in the NER phase.
We classified as a true positive (TP) a Known re-
lation that was marked C by the curator, a false
positive (FP) as a Known relation marked I, a false
negative (FN) as a Unknown relation marked I and
a true negative (TN) as a Unknown relation marked
C.

3.1 State-of-the-art Applications
The PGR corpus was applied to two state-of-
the-art systems that were compared against a co-
occurrence (or all-true) baseline method.

3.1.1 BO-LSTM Application
The BO-LSTM system (Lamurias et al., 2019)
is a deep learning system that is used to extract
and classify relations via long short-term mem-
ory networks along biomedical ontologies. This
system was initially created to detect and classify
drug-drug interactions and later adapted to detect
other types of relations between entities like hu-
man phenotype-gene relations. It takes advantage
of domain-specific ontologies, like the HPO and
the Gene Ontology (GO) (Ashburner et al., 2000).
The BO-LSTM system represents each entity as
the sequence of its ancestors in their respective on-
tology.

3.1.2 BioBERT Application
The BioBERT system (Lee et al., 2019) is a pre-
trained biomedical language representation model
for biomedical text mining based on the BERT
(Devlin et al., 2018) architecture. Trained on
large-scale biomedical corpora, this system is able
to perform diverse biomedical text mining tasks,
namely NER, RE and Question Answering (QA).
The novelty of the architecture is that these sys-
tems (BioBERT and BERT) are designed to pre-
train deep bidirectional representations by jointly
conditioning on both left and right context in all
layers. These feature allows easy adaption to sev-
eral tasks without loss in performance.

4 Results and Discussion

The final results are presented in Table 2. The
inter-curator agreement score, calculated from a
total of 20 relations classified by eight curators,
was 87.58%. Besides the fact that there were a few
incorrectly extracted relations due to errors in the
NER phase, that were discarded, the inter-curator
agreement is not higher due to the complexity of
the sentences where the relations between entities
were identified. Even with highly knowledgeable
curators in the fields of Biology and Biochem-
istry, most of them expressed difficulties in decid-
ing which mark to choose on complex sentences
that did not necessarily imply a relation between
the identified entities (Example 3).

Example 3. Relation marked with U (Uncer-
tain).

• Abstract Identifier: 27666346
• Sentence: FRMD4A antibodies were used

to probe 78 paraffin-embedded specimens of
tongue squamous cell carcinoma and 15
normal tongue tissues, which served as con-
trols.

• Mark: U

The precision obtained from the test-set (about
6% of the total of relations), was 87.01%. Al-
though we cannot state that this test-set is repre-
sentative of the overall data-set, this is a solid evi-
dence of the effectiveness of our pipeline to auto-
mate RE corpus creation, especially between hu-
man phenotype and genes, and other domains if a
gold standard relations file is provided. Our lower
recall is mostly due to incorrectly retrieved human
phenotype annotations by IHP, that can be manu-
ally confirmed in a future optimized version of the
PGR corpus, as some of them are parts of adja-
cent entities that can be combined for an accurate
annotation.

4.1 Impact on Deep Learning

For BioBERT we used the available pre-trained
weights for training and testing of RE model
on our corpus. The results of BO-LSTM and
BioBERT in the test-set are presented in Table
3. We also measured the performance of the
co-occurrence (i.e. assuming all-true) baseline
method. This baseline method assumes that all re-
lations in the test-set are Known and therefore the
recall is 100%. These results are comparable to
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Relations Marked Relations Metrics

Known Unknown True
Positive

False
Negative

False
Positive

True
Negative Precision Recall F-Measure

77 143 67 86 10 57 0.8701 0.4379 0.5826

Table 2: The Known and Unknown number of relations selected, the number of true positives, false negatives, false
positives and true negatives, and the evaluation metrics for the Known relations.

Method Precision Recall F-Measure
Co-occurrence 0.3500 1.0000 0.5185

BO-LSTM 0.6923 0.4200 0.5228

BioBERT 0.7895 0.5844 0.6716

Table 3: Precision, recall and F-measure of the co-
occurrence baseline, BO-LSTM and BioBERT.

the ones obtained from the evaluation stage by the
curators, and show the applicability of our corpus.

BioBERT significantly outperforms BO-LSTM
in all metrics proving that is indeed a viable lan-
guage representation model for biomedical text
mining. Even though the recall for both systems
is relatively low, the purpose of this work was
mainly to extract correct relations between enti-
ties to facilitate Machine Learning (ML), which
was achieved by obtaining the precision of 69.23%
(BO-LSTM) and 78.95% (BioBERT).

The most relevant metric for a silver standard
corpus, directed towards ML tools, is precision.
ML tools depend on correct examples to create
effective models that can detect new cases, after-
wards, being able to deal with small amounts of
noise in the assigned labels.

5 Conclusions

This paper showed that our pipeline is a feasi-
ble way of generating a silver standard human
phenotype-gene relation corpus. The pipeline re-
quired the application of two NER tools, and
the availability of a list of known relations. We
manually evaluated the corpus using eight cura-
tors obtaining a 87.01% precision with an inter-
agreement of 87.58%. We also measured the
impact of using the corpus in state-of-the-art
deep learning RE systems, namely BO-LSTM
and BioBERT. The results were promising with
69.23%, and 78.95% in precision, respectively.
We believe that our pipeline and silver standard
corpus will be a highly useful contribution to over-
come the lack of gold standards.

Future work includes manually correcting the

human phenotype annotations that did not match
any HPO identifier, with the potential of expand-
ing the number of human phenotype annotations
almost 2-fold and increasing the overall recall.
Also, we intend to expand the corpus by iden-
tifying more missed gene annotations using pat-
tern matching, which is possible due to our ap-
proach being fully automated. Another possibil-
ity is the expansion of the test-set for a more ac-
curate capture of the variance in the corpus. For
example, we can select a subset of annotated doc-
uments in which two curators could work to grasp
the complexity of manually annotating some of
these abstracts. Further, we intend to use seman-
tic similarity to validate the human phenotype-
gene relations. Semantic similarity has been used
to compare different types of biomedical entities
(Lamurias and Couto, 2019a), and is a measure of
closeness based on their biological role. For exam-
ple, if the BRCA1 gene is semantically similar to
the BRAF gene and the BRCA1 has an established
relation with the tumor phenotype, it could be pos-
sible to infer that BRAF gene also has a relation
with the tumor phenotype, even if that is not evi-
dent by the training data. Finally, the effect of dif-
ferent NER systems applied to the pipeline should
be studied.
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