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Abstract

Linguistic features have shown promising ap-
plications for detecting various cognitive im-
pairments. To improve detection accuracies,
increasing the amount of data or the num-
ber of linguistic features have been two ap-
plicable approaches. However, acquiring addi-
tional clinical data can be expensive, and hand-
crafting features is burdensome. In this paper,
we take a third approach, proposing Consensus
Networks (CNs), a framework to classify after
reaching agreements between modalities. We
divide linguistic features into non-overlapping
subsets according to their modalities, and let
neural networks learn low-dimensional repre-
sentations that agree with each other. These
representations are passed into a classifier net-
work. All neural networks are optimized itera-
tively.

In this paper, we also present two methods
that improve the performance of CNs. We then
present ablation studies to illustrate the effec-
tiveness of modality division. To understand
further what happens in CNs, we visualize the
representations during training. Overall, using
all of the 413 linguistic features, our models
significantly outperform traditional classifiers,
which are used by the state-of-the-art papers.

1 Introduction

Alzheimer’s disease (AD) and its usual precur-
sor, mild cognitive impairment (MCI), are preva-
lent neurodegerative conditions that inhibit cog-
nitive abilities. Cognitive impairments are tradi-
tionally diagnosed only with standard clinical tests
like MoCA (Nasreddine et al., 2005) and the Rey-
Auditory Verbal learning Test (Rey, 1941), but
hiring clinicians to administer these tests and an-
alyze their results is costly. Fortunately, many
cognitive impairments can be observable in daily
life, because they impact one’s language abilities.
For example, cognitively impaired people tend to

use more pronouns instead of nouns, and pause
more often between sentences in narrative speech
(Roark et al., 2011).

This insight makes automatic detection possi-
ble. Machine learning classifiers can detect cogni-
tive impairments given descriptive linguistic fea-
tures. In recent work, linguistic features includ-
ing pronoun-noun-ratios, pauses, and so on, are
used to train classifiers to detect cognitive dis-
eases in various tasks. For example, Fraser et al.
(2015) achieved up to 82% accuracy on Demen-
tiaBank1, the largest publicly available dataset on
detecting cognitive impairments from speech, and
Weissenbacher et al. (2016) achieved up to 86%
accuracy on a corpus of 500 subjects. Yancheva
et al. (2015) estimated Mini-Mental State Estima-
tion scores (MMSEs), describing the cognitive sta-
tus and characterizing the extent of cognitive im-
pairment.

To improve the accuracy of automated assess-
ment using engineered linguistic features, there
are usually two approaches: incorporating more
clinical data or calculating more features. Tak-
ing the first approach, Noorian et al. (2017) in-
corporated normative data from Talk2Me2 and
the Wisconsin Longitudinal Study (Herd et al.,
2014) in addition to DementiaBank, which in-
creased AD:control accuracy up to 93%, and mod-
erateAD:mildAD:control three-way classification
accuracy to 70%. Taking the second approach,
Yancheva and Rudzicz (2016) used 12 features
derived from vector space models and reached a
.80 F-score on DementiaBank. Santos et al. (2017)
calculated features depicting characteristics of co-
occurrence graphs of narrative transcripts (e.g., the
degree of each vertex in the graph). Their clas-
sifiers reached 65% accuracy on DementiaBank

1https://talkbank.org/DementiaBank
2https://www.cs.toronto.edu/talk2me/
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(MCI versus a subset of Control).
There are limitations in either of the two ap-

proaches. On one hand, acquiring additional clin-
ical data can be expensive (Berndt and Cockburn,
2013). Moreover, the additional data should be
similar enough to existing training data to be help-
ful. On the other hand, crafting new features re-
quires creativity and collaboration with subject
matter experts, and the implementation can be
time consuming. Neither of these approaches is
satisfactory.

These limitations motivate us to take a third,
novel approach. Instead of using new data or com-
puting new features, we use the existing linguistic
features.

If the speaker is cognitively impaired, and their
language ability is affected, features from each of
the acoustic, syntactic, and semantic modalities
should reflect such change (Szatloczki et al., 2015;
Moro et al., 2015; Fraser et al., 2015). We there-
fore need to distill the common information re-
vealed by features from multiple, mainly distinct,
modalities.

To utilize information common across differ-
ent modalities, Becker and Hinton (1992) and
de Sa (1994) let classifiers look at each modal-
ity and supervise each other. These examples il-
lustrated the effectiveness of multi-view learn-
ing in utilizing common information among dif-
ferent observations, but their algorithms fail to
train useful classifiers for cognitive impairments
in our datasets. Without explicit supervision, self-
supervised models almost always converge to a
state producing the same predictions for all peo-
ple, giving trivial classifiers.

Instead of aligning the predictions from modal-
ities, we let the representations of the modalities
agree. Generative adversarial networks (GANs)
provide an approach. In GANs, a “discriminator”
network is trained to tell whether a vector is drawn
from the real world or produced synthetically by a
“generator” neural network, while the generator is
trained to synthesize images as close to real data
as possible. We borrow this setting, and encourage
the neural networks interpreting different modal-
ities to produce representations of modalities as
similar to each other as possible. This leads to our
classifier framework, consensus networks (CNs).

Consensus networks constitute a framework us-
ing adversarial training to utilize common in-
formation among modalities for classification. In

this framework, several neural networks (“ePhysi-
cians”) are juxtaposed, each learning the repre-
sentation of a partition of linguistic features for
each transcript. Being trained towards producing
agreed representations, we show they are increas-
ingly able to capture common information con-
tained across disparate subsets of linguistic fea-
tures.

We empirically add two extensions to CN that
improve the classification accuracies, called the
“noise modality” and “cooperative optimization”
respectively, as explained below. To illustrate the
effectiveness of the consensus mechanisms, we
present two ablation studies. First, we compare
neural networks built with consensus (CN) and
those without (MLP). On partial or complete
modalities, CN outperforms MLP significantly.
Second, we compare CNs built with linguistic fea-
tures divided into random subsets. Division ac-
cording to their natural modalities train better con-
sensus networks. We also visualize the represen-
tations during training procedure, and show that
when the representations agree, their distributions
appear symmetric.

Overall, taking all 413 linguistic features, our
models significantly outperform traditional classi-
fiers (e.g., support vector machines, quadratic dis-
criminant analysis, random forest, Gaussian pro-
cess), which are used by the state-of-the-art.

2 Related Works

Generative Adversarial Networks The idea of
aligning representations by making them indistin-
guishable is inspired by GAN (Goodfellow et al.,
2014), where a generator produces fake images (or
other data) that are as similar to real data as possi-
ble. However, our model does not have a generator
component as GANs do. Instead, we only com-
press features into representations while trying to
align them.

Multi-view Learning Learning from multiple
modalities is also referred to as multi-view learn-
ing. Becker and Hinton (1992) set up multiple neu-
ral networks to look at separate parts of random-
dot stereograms of curved surfaces, and urge their
prediction to equal each other. The trained neu-
ral networks were able to discover depth with-
out prior knowledge about the third dimension.
de Sa (1994) divided linguistic features into two
modalities, and passed them to two separate neu-
ral networks. The two neural networks supervised
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each other (i.e., output labels that are used to train
the other) during alternative optimization steps
to reach a consensus. Their self-supervised sys-
tem reached 79±2% accuracy using the Peterson-
Barney vowel recognition dataset (Peterson and
Barney, 1952). Benediktsson et al. (1997) com-
puted multiple views from the same feature sets
and classified by taking their majority votes. Pou-
Prom and Rudzicz (2018) used canonical correla-
tion analysis (CCA) to classify using multiple as-
pects. Contrary to that work, our consensus net-
works take in distinct subsets of features as modal-
ities. Co-training (Blum and Mitchell, 1998) and
tri-training (Zhou and Li, 2005) use distinct sub-
sets of features, but they use them to train distinct
classifiers, and let the results directly supervise
each other. Their approach ‘bootstrapped’ clas-
sifications based on a few labeled data, but our
method explicitly uses a modality discriminator
that enforces alignments between modalities.

Domain Adaptation In domain adaptation and
multi-task learning, there have been many at-
tempts to learn indistinguishable embeddings be-
tween domains. For example, Ganin et al. (2016)
and Joty et al. (2017) applied a gradient reversal
layer to let encoders minimize the domain clas-
sification loss. Baktashmotlagh et al. (2013) min-
imized the maximum-mean discrepancy (MMD)
loss in a reproductive kernel Hilbert space (RKHS)
of the latent representations. Motiian et al. (2017)
used semantic similarity loss between latent rep-
resentations of different class data to encourage
alignments between domains. Liu et al. (2017)
and Chen and Cardie (2018) used shared and pri-
vate networks to learn information contained ei-
ther commonly in domains or domain-specific.
Our work is unique. First, there is only one domain
in our problem setting. Second, we use iterative
optimization to encourage discrepancies between
domains. Third, we have two empirical improve-
ments (noise modality and cooperative optimiza-
tion) that make our Consensus Networks outper-
form traditional classifiers.

3 Methods

3.1 Dataset

We use DementiaBank, the largest publicly avail-
able dataset for detecting cognitive impairments. It
includes verbal descriptions (and associated tran-
scripts) of the Cookie Theft picture description

task from the Boston Diagnostic Aphasia Exam-
ination (Becker et al., 1994). The version we have
access to contains 240 speech samples labeled
Control (from 98 people), 234 with AD (from 148
people), and 43 with MCI (from 19 people)3. All
participants were older than 44 years.

3.2 Linguistic Features

The dataset contains narrative speech descriptions
and their transcriptions. We preprocess them by
extracting 413 linguistic features for each speech
sample. These linguistic features are proposed by
and identified as the most indicative of cogni-
tive impairments by various previous works, in-
cluding Roark et al. (2007), Chae and Nenkova
(2009), Roark et al. (2011), Fraser et al. (2015),
and Hernández-Domı́nguez et al. (2018). After
calculating these features, we use KNN imputation
to replace the undefined values (resulting from
divide-by-zero, for example), and then normal-
ize the features by their z-scores. The following
are brief descriptions of these features, grouped
by their natural categories. More detailed descrip-
tions are included in the Appendix.

There are 185 acoustic features (e.g., average
pause time), 117 syntactic features (e.g., Yngve
statistics (Yngve, 1960) of the parse tree, com-
puted by the LexParser in CoreNLP (Manning
et al., 2014)), and 31 semantic features (e.g., co-
sine similarity between pairs of utterances) More-
over, we use 80 part-of-speech features that relate
to both syntax and semantics but are here primar-
ily associated with the latter.

Modality Division After representing each sam-
ple with a 413-dimensional vector x consisting
of all available linguistic features, we divide the
vector into M partitions (‘modalities’) of approx-
imately equal sizes [x1, x2, ..., xM], according
to the groups mentioned above. Unless mentioned
otherwise (e.g., in the ablation study shuffling

3The version of DementiaBank dataset we acquired con-
tains a slightly different number of samples from what some
previous works used. In Control:AD, Fraser et al. (2015) used
233 Control and 240 AD samples; Yancheva and Rudzicz
(2016) had 241 Control and 255 AD samples; Hernández-
Domı́nguez et al. (2018) had 242 Control and 257 AD sam-
ples (with 10% control samples excluded from the evalua-
tion). In Control:MCI, Santos et al. (2017) used all 43 tran-
scriptions from MCI and 43 sampled from the Control group.
With no clear descriptions of the sampling procedures, the
constituents of the Control group might differ from our sam-
ple. In this paper, we run our models on the same tasks (i.e.,
Control:AD) and compare to the results of models used in the
literature.
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Figure 1: Overview of model structure when fea-
tures (blue rectangles) are divided into three modali-
ties (non-overlapping subsets). Each subset of features
are passed into an “ePhysician” neural network whose
outputs (green rectangles) are the representations. They
are passed (one by one) into a “Discriminator” neural
network and (after combined) into a “Classifier” net-
work, respectively.

modalities), this is our default choice for assign-
ing modalities.

3.3 Model
Figure 1 is an example of our model structure
(with M = 3 modalities), and this section elab-
orates the inference procedure, the training algo-
rithm, and our two improvements.

Inference With the extracted linguistic features
divided into subsets by their modalities, each
speech sample is described by M = 3 non-
overlapping feature vectors x = [x1, ...,xm].
These feature vectors are then passed into corre-
sponding ePhysician networks, each outputting a
vector im, which is a distilled representation of the
subject from a modal-specific perspective (e.g.,
the semantic). We also refer to it as the interpre-
tation vector and use them interchangeably. For-
mally, themth ePhysician can be written as a func-
tion, fm(.) generating the representation:

im = fm(xm)

To challenge the similarity of representations
from different modalities, we let a discriminator
neural network fD(.) take in each of the M repre-
sentations and predict the likelihood of the origi-
nating modality m.

P (m = k | i) = efD(i)k∑
k e

fD(i)k

where k = 1, ...,M .
To attempt a diagnosis, a classifier network

fC(.) takes in the combination of M representa-
tions of each speech sample, and outputs a predic-
tion probability for detection result y:

P (y = l |x) = efC(i1..M)l∑
l e

fC(i1..M)l

where l ∈ {0, 1} for two-class classification (i.e.,
0 for healthy and 1 for dementia). The predicted
class corresponds to those with the highest proba-
bility:

ŷ = argmax
l

P (y = l|x)

Optimization The training procedure optimizes
the adversarial objective, and the conventional
classifier objective:

• The adversarial objective sets up the ePhysi-
cians and the Discriminator to work in an
adversarial manners. The ePhysicians try
to produce indistinguishable representations,
while the discriminator tries to tell them
apart.

min
D

max
P
LD where

LD = ExEm=1..M {−logP (m̂ = m|im)}
(1)

• Make the classifier network as accurate as
possible. This is done by minimizing the
cross entropy classification loss:

min
C
LC where

LC = Ex {−logP (ŷ = y|i1..M)}
(2)

Overall, min
C
LC and min

D
max
P
LD set up a com-

plex optimization problem. We use iterative opti-
mization steps, similar to Goodfellow et al. (2014).

There are two tricks that we found to improve
the performance of the models. Namely, the noise
modality and the cooperative optimization. We ex-
plain them below.

Noise Modality For each participant session, we
add a “noise modality representation” i0 drawn
from a Gaussian distribution with the mean and
variance identical to those of other representation
vectors.

i0 ∼ N (µi1..M , σ
2
i1..M

)
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This additional representation vector is passed into
the discriminator, but not passed into the classifier.
The first optimization goal (1) is therefore:

min
D

max
P
LD where

LD = ExEm=0..M {−logP (m̂ = m|im)}
(3)

To some extent, the noise representation vector
works like a regularization mechanism to refrain
the discriminator from making decisions based on
superficial statistics. We show in 4.1 that this addi-
tion empirically improves classifier performance.

Cooperative Optimization When optimizing
the classifier, we find that allowing gradients to
propagate back to the ePhysicians improves the
model’s overall performance. During optimiza-
tion, the ePhysicians need to cooperate with the
classifier (while adversarial to the discriminator).
The second optimization goal (2) is therefore:

min
C,P
LC where

LC = Ex {−logP (ŷ = y|i1..M)}
(4)

Implementation As a note of implementation,
all ePhysicians, the classifier, and the discrim-
inator networks are fully connected networks
with Leaky ReLU activations (Nair and Hinton,
2010) and batch normalization (Ioffe and Szegedy,
2015). The hidden layer sizes are all 10 for all
ePhysician networks, and there are no hidden lay-
ers for the discriminator or classifier networks. Al-
though modalities might contain slightly different
numbers of input dimensions, we do not scale the
ePhysician sizes. This choice comes from the in-
tuition that the ePhysicians should extract into the
representation as similar information as possible.
We use three Adam optimizers (Kingma and Ba,
2014), each corresponding to the minimization of
ePhysician, Discriminator, and the Classifier, and
optimize iteratively for no more than 100 steps.
The optimization is stopped prior to step 100 if
the classification loss LC converges (i.e., does not
differ from the previous iteration by more than
1 × 10−4) on training set. The train / validation
/ test set are divided randomly in 60/20/20 propor-
tions.

Algorithm 1 The overall algorithm
1: Initialize the networks
2: for step := 1 to N do . N is a hyper-param
3: for minibatch x in training data X do
4: for modality m := 1 to M do
5: im = Im(xm)

6: Sample the noise modality i0
7: Calculate LD with i0..M
8: Concatenate i1..M and calculate LC
9: min

C,P
LC . Cooperative optimization

10: max
P
LD

11: for k:=1 to K do . K is a
hyper-param

12: min
D
LD

4 Experiments

We first show the effectiveness of our two im-
provements to the model. Next, we do two ab-
lation studies on the arrangements of modalities.
Then, we evaluate our model against several tradi-
tional supervised learning classifiers used by state-
of-the-art works. To understand the model further,
we also visualize the principal components of the
representation vectors throughout several runs.

4.1 Noise Modality Improves Performance

We compare a CN model with a noise modality to
one without (with other hyper parameters includ-
ing hidden dimensions and learning rates identi-
cal).

Table 1 shows that in the AD:MCI classification
task, the model with an additional noise modal-
ity is better than the one without (p = 0.04 on
2-tailed t-test with 18 DoF). Here is a possible
explanation. Without adding a noise modality, the
discriminators may simply look at the superficial
statistics, like the mean and variances of the rep-
resentations. This strategy tends to neglect the de-
tailed aspects encoded in the representation vec-
tors. Adding in the noise modality penalizes this
strategy and trains better discriminators by forcing
them to study the details.

In the following experiments, all models con-
tain the additional noise modality.

4.2 Effectiveness of Cooperative
Optimization

The second improvement, cooperative optimiza-
tion, also significantly improves model perfor-
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Model Micro F1 Macro F1
Noise .7995 ± .0450 .7998 ± .0449
No noise .7572 ± .0461 .7577 ± .0456

Table 1: Comparison of models with and without rep-
resentations in noise modality. The models containing
a Gaussian noise modality outperform those without.

mance. We compare Consensus Network classi-
fiers trained with cooperative optimization (i.e.,
min

C,P1..M

LC) to models with the same hyper-

parameters but trained non-cooperatively (i.e.,
min
C
LC). As shown in Table 2, the cooperative

variant produces higher-score classifiers than the
non-cooperative one (p < 0.001 on a 2-tailed
t-test with 18 DoF). With the cooperative opti-
mization setting, the ePhysicians are encouraged
towards producing representations both indistin-
guishable (by the discriminator) and beneficial
(for the classifier). Although the representations
might agree less with each other, they could con-
tain more complementary information, leading to
better overall classifier performances.

In other experiments, all of our models use co-
operative optimization.

Optimization Micro F1 Macro F1
Non-coop .6696 ± .0511 .6743 ± .0493
Cooperative .7995 ± .0450 .7998 ± .0449

Table 2: Comparison of models optimized in coopera-
tive and non-cooperative manner.

4.3 Effectiveness of Agreement Among
Modalities

In this and the next experiment, we illustrate the
effectiveness of our models on different config-
urations of modalities in an ablation study. We
show that our models work well because of the ef-
fectiveness of the “consensus between modalities”
scheme.

In this experiment, we compare our Consensus
Network models (i.e., with agreements) with fully-
connected neural network classifiers (i.e., without
agreements) taking the same partial input features.
The networks are all simple multiple layer per-
ceptrons containing the same total number of neu-
rons as the ‘classifier pipeline’ of our models (i.e.,
ePhysicians plus the classifier)4 with batch nor-

4For example, for models taking in two modalities, if our

malization between hidden layers. A few observa-
tions could be made from Table 3:

1. Some features from particular modalities are
more expressive than others. For example,
acoustic features could be used for building
better classifiers than those in the semantic
(p = .005 for 2-tailed t-test with 18 DoF) or
syntactic modality (p < .001 for 2-tailed t-
test with 18 DoF). More specifically, the syn-
tactic features themselves do not tell much.
We think this is because the syntactic fea-
tures are largely based on the contents of the
speech, and remain similar across speakers.
For example, almost none of the speakers
asked questions, giving zero values in “occur-
rences” of corresponding syntactic patterns.

2. Our model is able to utilize multiple modal-
ities better than MLP. For MLP classifiers,
combining features from different modalities
does not always give better models. The syn-
tactic modality features confuse MLP and
“drag down” the accuracy. However, our
models built with the consensus framework
are able to utilize the less informative features
from additional modalities. In all scenarios
using two modalities, our models achieve ac-
curacies higher than neural networks trained
on any of the two individual modalities.

3. Given the same combinations of features, let-
ting neural networks produce representation
in agreement does improve the accuracy in
all four scenarios5.

4.4 Dividing Features by Natural Modalities
is Preferred

This is the second ablation study towards modality
arrangement. We show that dividing features into
subsets according to their natural modalities (i.e.,
the categories in which they are defined) is better
than doing so randomly.

In this experiment, we train CNs on features
grouped by either their natural modalities, or ran-
domly divided. For natural groupings, we try to

model contain ePhysicians with one layer of 20 hidden neu-
rons, the interpretation vector dimension 10, and classifier
5 neurons, then the benchmarking neural network contains
three hidden layers with [20×2, 10×2, 5] neurons.

5p = 3 × 10−12 on syntactic+semantic features, p =
0.044 on acoustic + semantic, p = 0.005 on acoustic + syn-
tactic, and p = 0.046 on all modalities. All 18 DoF one-tailed
t-tests.
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Models (Modality) Accuracy
MLP (Acoustic) .7519 ± .0245
MLP (Syntactic) .5222 ± .0180
MLP (Semantic) .6987 ± .0278
MLP (Syntactic + Semantic) .5819 ± .0216
CN (Syntactic + Semantic) .7257 ± .0344
MLP (Acoustic + Semantic) .7002 ± .1128
CN (Acoustic + Semantic) .7542 ± .0433
MLP (Acoustic + Syntactic) .6776 ± .0952
CN (Acoustic + Syntactic) .7574 ± .0361
MLP (All 3 modalities) .7528 ± .0520
CN (All 3 modalities) .7995 ± .0450

Table 3: Performance comparison between Consensus
Networks and fully-connected neural network classi-
fiers having certain modality information.

let each group contain comparable number of fea-
tures, resulting in the following settings:

• Two groups, natural: (a) acoustic + semantic,
216 features; (b) syntactic + PoS, 197 fea-
tures.

• Three groups, natural: (a) acoustic, 185 fea-
tures; (b) semantic and PoS, 111 features;
and (c) syntactic, 117 features. This is the de-
fault configuration used in other experiments
in this paper.

For random grouping, we divide the features
into almost equal-sized 2/3/4 groups randomly. As
shown in Table 4. The two natural modality divi-
sion methods produce higher accuracies than those
produced by any of the random modality division
methods.

Modality division method Accuracy
Three groups, random .7408 ± .0340
Two groups, random .7623 ± .0164
Four groups, random .7666 ± .0141
Two groups, natural .7769 ± .0449
Three groups, natural .7995 ± .0450

Table 4: Performance comparison between different
modality division methods, sorted by accuracy.

4.5 Visualizing the Representations

To further understand what happens inside con-
sensus network models during training, we visu-
alize the representation vectors with PCA. Figure
2 consists of the visualizations drawn from an ar-

bitrary trial in training the model. Each represen-
tation vector is shown on the figure as a data point,
with its color representing its originating modality
(including the noise modality).

Several common themes could be observed:

1. The clusters are symmetric. Initially the con-
figurations of representations largely depend
on the initializations of the network param-
eters. Gradually the representations of the
same modality tend to form clusters. Opti-
mizing the ePhysicians towards both targets
make they compress modalities into repre-
sentations which are symmetrical in an ag-
gregate manner.

2. The agreements are simple. The variances ex-
plained by the first a few principal compo-
nents usually increase as the optimizations
proceed. When distilling information rele-
vant to detection, the agreement tend to be-
come simple.

3. The agreements are imperfect. As shown in
Figure 2, the modal representations do not
overlap. Also, the discriminator loss is low
(usually at 10−3 when training is done). This
confirms that these representations are still
easily distinguishable. This may because the
modalities inherently have some complemen-
tary information, leading to the ePhysicians
projecting the modalities differently.

4. The representations are complex. Their
shapes do not resemble the noise represen-
tations (Gaussian) lying at the center of the
three petals. This shows that the representa-
tions are not simply Gaussian.

5. The accuracy increases. The accuracy in val-
idation set generally increases as the training
proceeds. Note that the distributions of repre-
sentation vectors are increasingly similar in
shape but remains distinct in spatial alloca-
tions. This confirms our conjecture that the
information about cognitive impairment re-
sides in complicated details instead of super-
ficial statistics, which neural networks could
represent.

4.6 Evaluation Against Benchmarks
With the previous sets of experiments, we have
a best working architecture. We now evaluate it
against traditional classifiers, which are used by
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(a) Step 5
LD = 1.34
Val accr .74%
Variance 71.2%

(b) Step 10
LD = 1.32
Val accr .76%
Variance 72.9%

(c) Step 20
LD = 1.17
Val accr .77%
Variance 77.1%

(d) Step 30
LD = 0.89
Val accr .79%
Variance 77.0%

(e) Step 40
LD = 0.64
Val accr .79%
Variance 80.8%

Figure 2: Initially, the representations from the three modalities are mixed. As the training go on, the three modali-
ties gradually form three symmetric “petals”, while the (Gaussian) noise modality stays in the center. These petals
do not overlap, as they contain complementary information when combined and passed into the classifier. Instead,
their distributions become symmetric. (Best viewed in colours.)

the state-of-the-art papers (Hernández-Domı́nguez
et al., 2018; Santos et al., 2017; Fraser et al., 2015)
on our 413 features. Note that the results could be
different from what they reported, because the fea-
ture sets are different.

We test several traditional supervised learn-
ing benchmark algorithms here: support vector
machine (SVM), quadratic discriminant analysis
(QDA), random forest (RF), and Gaussian pro-
cess (GP). For completeness, multiple layer per-
ceptrons (MLPs) containing all features as inputs
are also mentioned in Table 5. On the binary clas-
sification task (healthy control vs. dementia), our
model does better than them all.

Classifier Micro F1 Macro F1
SVM .4810 ± .0383 .6488 ± .0329
QDA .5243 ± .0886 .5147 ± .0904
RF .6184 ± .0400 .6202 ± .0422
GP .6775 ± .0892 .6873 ± .0819
MLP .7528 ± .0520 .7561 ± .0444
CN .7995 ± .0450 .7998 ± .0449

Table 5: Comparison with different traditional classi-
fiers in AD:Control classification task. In particular,
our model has higher accuracy than the best traditional
classifier, MLP.

5 Conclusion and Future Works

We introduce the consensus network framework,
in which neural networks are encouraged to
compress various modalities into indistinguish-
able representations (‘interpretation vectors’). We
show that consensus networks, with the noise
modality and cooperative optimization, improve
upon traditional neural network baselines given
the same features. Specifically, with all 413 lin-

guistic features, our models outperform fully-
connected neural networks and other traditional
classifiers used by state-of-the-art papers.

In the future, the “agreement among modali-
ties” concept may be applied to design objective
functions for training classifiers in various tasks,
and from other data sets (for example, education
and occupation “modalities” for the bank market-
ing prediction task). Furthermore, the mechanisms
that represent linguistic features into symmetric
spaces should be analyzed within the context of
explainable AI.
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Bédirian, Simon Charbonneau, Victor Whitehead,
Isabelle Collin, Jeffrey L Cummings, and Howard
Chertkow. 2005. The Montreal Cognitive Assess-
ment, MoCA: a brief screening tool for mild cogni-
tive impairment. Journal of the American Geriatrics
Society, 53(4):695–699.
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A Appendices

Linguistic Features

Acoustic

• The fluency of speech. We quantify it with
phonation rate, duration of pauses, and num-
ber of filled pauses (e.g., ”um”) of various
lengths.

• Following the convention of speech process-
ing literatures (Zhou et al., 2016; Yancheva
et al., 2015; Zhao et al., 2014), we compute
Mel-scaled cepstral coefficients (MFCCs)
containing the amount of energy in 12 differ-
ent frequency intervals for each time frame
of 40 milliseconds, as well as their first- and
second-order derivatives. We calculate the
mean, variance, kurtosis, and skewness of the
MFCCs and include them as features.

Semantic and Lexical

• Lexical norms, including age-of-acquisition,
familiarity, imageability, and frequency
(Taler et al., 2009). These are averaged
over the entire transcript and specific PoS
categories, respectively.

• Lexical richness, including moving-average
type-token ratio over different window sizes
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(Covington and McFall, 2010), Brunet’s in-
dex, and Honoré’s statistics (Guinn and
Habash, 2012).

• Cosine similarity statistics (minimum, max-
imum, average, etc.) between pairs of utter-
ances (represented as sparse vectors based on
lemmatized words)

• Average word length, counts of total words,
not-in-dictionary words, and fillers. The dic-
tionary we use contains around 98,000 en-
tries, including common words, plural forms
of countable nouns, possessive forms of sub-
jective nouns, different tenses of verbs, etc.

Syntactic

• Composition of languages. We describe it
by several features, including the average
proportion of context-free grammar (CFG)
phrase types6, the rates of these phrase
types7, and the average phrase type length8

(Chae and Nenkova, 2009)

• The syntactic complexity of languages. We
characterize it by the average heights of
the context-free grammar (CFG) parse trees,
across all utterances in each transcript. Each
tree comes from an utterance parsed by a con-
text free grammar parser (LexParser im-
plemented in Stanford CoreNLP (Manning
et al., 2014)). In addition, we compute the
Yngve scores statistics of CFG parse trees
(Yngve, 1960; Roark et al., 2007), where Yn-
gve score is the degree of left-branching of
each node in a parsed tree.

• Syntactic components. We describe them
by including the number of occurrences of
a set of 104 context-free production rules
(e.g.,S->VP) in the CFG parse trees.

Part-of-speech

• The number of occurrences of part-of-speech
(PoS) tags from Penn-treebank9.

6number of words in these types of phrases, divided by
the total number of words in the transcript

7number of occurrences in a transcript, divided by the to-
tal number of words in the transcript

8number of words belonging to this phrase type in a tran-
script, divided by the occurrences of this phrase type in a tran-
script

9Using https://spacy.io

• The ratio of occurrences of several PoS tags,
including noun-pronoun ratio.

• Number of occurrences of words in each
of the five categories: subordinate (e.g: “be-
cause”, “since”, etc.), demonstratives (e.g:
“this”, “that”), function (e.g: words with PoS
tag CC, DT, and IN), light verbs (e.g: “be”,
“have”), and inflected verbs (words with PoS
tag VBD, VBG, VBN, and VBZ), borrowing
the categorization method in Kortmann and
Szmrecsanyi (2004)


