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Abstract

Adversarial examples are important for under-
standing the behavior of neural models, and
can improve their robustness through adver-
sarial training. Recent work in natural lan-
guage processing generated adversarial exam-
ples by assuming white-box access to the at-
tacked model, and optimizing the input di-
rectly against it (Ebrahimi et al., 2018). In this
work, we show that the knowledge implicit
in the optimization procedure can be distilled
into another more efficient neural network. We
train a model to emulate the behavior of a
white-box attack and show that it generalizes
well across examples. Moreover, it reduces
adversarial example generation time by 19x-
39x. We also show that our approach trans-
fers to a black-box setting, by attacking The
Google Perspective API and exposing its vul-
nerability. Our attack flips the API-predicted
label in 42% of the generated examples, while
humans maintain high-accuracy in predicting
the gold label.

1 Introduction

Adversarial examples (Goodfellow et al., 2014)
have gained tremendous attention recently, as they
elucidate model limitations, and expose vulnerabili-
ties in deployed systems. Work in natural language
processing (NLP) either (a) used simple heuristics
for generating adversarial examples (Jia and Liang,
2017; Belinkov and Bisk, 2017; Iyyer et al., 2018),
or (b) assumed white-box access, where the at-
tacker has access to gradients of the model with re-
spect to the input (Feng et al., 2018; Ebrahimi et al.,
2018). In this approach, adversarial examples are
constructed through an optimization process that
uses gradient descent to search for input examples
that maximally change the predictions of a model.
However, developing attacks with only black-box
access to a model (no access to gradients) is still
under-explored in NLP.

∗ Equal contribution

Figure 1: (A) Using a white-box attack we generate
adversarial examples for a source toxicity model S(·).
We train our black-box attacker, DISTFLIP, to emulate
the white-box attack. (B) We use DISTFLIP to attack a
black-box model.

Inspired by work in computer vision (Papernot
et al., 2016; Liu et al., 2017), we show in this work
that a neural network can learn to emulate the op-
timization process of a white-box attack and gen-
eralize well to new examples. Figure 1 gives a
high-level overview of our approach. We assume a
text classification model and a white-box attack that
flips characters in the input to modify the model
prediction (Ebrahimi et al., 2018). We generate
output adversarial examples using the white-box
attack and train a neural network from these input-
output examples to imitate the white-box attack.
This results in a much more efficient attack whose
run-time is independent of the optimization process.
Moreover, assuming adversarial examples transfer
between different models, our distilled model can
now be used to generate adversarial examples for
black-box attacks directly.

We use our approach to attack a toxicity clas-
sifier, aimed at detecting toxic language on social
media (Hosseini et al., 2017). We show that our
model achieves a speed-up of 19x-39x in generat-
ing adversarial examples while maintaining similar
attack quality, compared to an optimization-based
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method. We then use our model for a black-box at-
tack against Google Perspective API for detecting
toxic sentences, and find that 42% of our gener-
ated sentences are misclassified by the API, while
humans agree that the sentences are toxic.

Our code can be downloaded from http://
github.com/orgoro/white-2-black.

2 Background

Adversarial examples have been extensively used
recently in NLP for probing and understanding
neural models (Jia and Liang, 2017; Weber et al.,
2018). Methods for generating such examples in-
clude adding random or heuristically constructed
noise (Belinkov and Bisk, 2017; Rodriguez and
Rojas-Galeano, 2018; Gao et al., 2018), meaning-
preserving modifications that change the surface
form (Iyyer et al., 2018; Ribeiro et al., 2018),
and human-in-the-loop generation (Wallace et al.,
2018). A weakness of such models is that they do
not directly try to modify the prediction of a model,
which can reduce efficacy (Kurakin et al., 2016).
In the white-box setting, Feng et al. (2018) have
changed the meaning of an input without chang-
ing model output using access to gradients, and
Ebrahimi et al. (2018) proposed HOTFLIP, the
aforementioned white-box attack that we emulate
for flipping input characters.

In computer vision, Papernot et al. (2016) and
Liu et al. (2017) have shown that adversarial exam-
ples generated by a white-box model can be helpful
for a black-box attack. Generating adversarial text
examples is more challenging than adversarial im-
ages, because images are points in a continuous
space, and thus it is easier to apply norm restric-
tions. Text examples have a discrete structure and
thus such approaches have not been investigated
for adversarial text generation yet.

3 HOTFLIP

HOTFLIP (Ebrahimi et al., 2018) is a white-box
method for generating adversarial examples for a
character-level neural model. It uses the gradient
with respect to a 1-hot input representation to esti-
mate the character flip that incurs the highest cost.
We briefly describe HOTFLIP, which we use to
generate training examples for our distilled model.

Let x = ((x11, . . . , x
n
1 ), . . . , (x1m, . . . , x

n
m)) be a

sentence represented as a sequence ofm characters,
encoded as 1-hot vectors over a vocabulary of size
n. Define L(x, y) to be the loss of a trained model

for the input x with respect to a label y.
HOTFLIP requires one function evaluation (for-

ward pass) and one gradient computation (back-
ward pass) to compute a first-order estimate of the
best possible character flip in x. Flipping the ith

character from a to b can be represented by this vec-
tor: −→vib = (. . . , (0, . . . ,−1, . . . , 1, . . . , 0)i, . . . ),
where −1 and 1 are in the positions for the ath and
bth characters respectively. A first-order estimate
of the change in loss can be obtained by comput-
ing∇xL(x, y) with back-propagation, and taking
a directional derivative along −→vib :

∇−→vibL(x, y) = ∇xL(x, y) · −→vib .

We can now choose the character-flip a to b that
maximizes this estimate using the gradients with
respect to the input x:

arg max
i,b

[∇L(x, y) · −→vib ] = arg max
i,b

[
∂L

∂xbi
− ∂L

∂xai
].

To perform a sequence of flips, any search proce-
dure can be applied. HOTFLIP uses beam search
of r steps, keeping at each step the top-K flip
sequences that increased L(x, y) the most. This
require O(K · r) forward and backward passes.
Character insertions and deletions are modeled as
multiple flips, but for simplicity, we only consider
character flips in our work.

The main drawbacks of HOTFLIP are that it does
not gain any knowledge from optimizing over mul-
tiple examples, and that its efficiency is strongly
tied to the search procedure used (O(K ·r) forward
and backward passes per example for beam-search).
Next, we present our model that overcomes these
limitations.

4 Distilling a Black-box Attack

We are interested in whether (a) the knowledge
in the optimization process of HOTFLIP can be
distilled into a neural model, and (b) whether this
model can generalize to a black-box attack. There-
fore, the outline of our approach is as follows:
1. Train a source text classification model on data

from a similar distribution to the data used to
train the target black-box model.

2. Generate adversarial examples by performing
white-box optimization (with HOTFLIP) on the
source model.

3. Train an efficient attacker to generate adversar-
ial examples, and perform a black-box attack
against the target model.
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We assume a training setD = {(xi, yi)}Ni=1 used
to train a character-based source model S(·) that
takes a character sequence x as input, and returns a
distribution over the output space Y (details on the
source model are in Section 5). We now elaborate
on the processes of data generation and training of
the attacker.

Data generation We take examples (x, y) from
D and run HOTFLIP with search until we obtain an
adversarial example x̄ such that the probability of
the gold label is low, that is, [S(x̄)]y < τ , where
[S(x̄)]y is the probability given by S(x̄) to y ∈ Y
and τ is a threshold (we use τ = 0.15).

Let s = ((x(0) = x), x(1), . . . , (x(l) = x̄)) be
the sequence of sentences generating x̄, where ev-
ery consecutive pair (x(i), x(i+1)) differs by a single
character: the character in position j(i) was flipped
to the character c(i). Our attacker is trained from ex-
amples (x(i), (j(i), c(i))) generated from every pair
of consecutive sentences in s. For example, if the
sentence is the one-word sentence “Asshole”, and
after flipping one character it becomes “Assnole”,
the example would be (“Asshole”, (4, ‘n’)).

Model training Our attacker takes a character se-
quence x as input and outputs a pair (j∗, c∗), where
j∗ ∈ [1, . . . ,m] is the position of the character to
be flipped, and c∗ is the target character.

Figure 2 describes the architecture of our model.
Our model embeds each character using a pre-

trained 300-dimensional character embedding1,
and then passes the character sequence through a 1-
layer bidirectional LSTM (Hochreiter and Schmid-
huber, 1997) with 512-dimensional hidden states.
The BiLSTM hj hidden state in every position are
passed through two feed-forward networks, one
for replacement prediction (which character to flip)
and one for target prediction (what target character
to choose). The network that perfoms replacement
prediction has 2 hidden layers of dimensions 100
and 50 with ReLU activations, and a single logit
lj as output per position. The output distribution
over the sentence positions is given by a softmax
over all character positions. At inference time j∗ is
computed with an argmax instead of a softmax.

The network that produces target prediction has
two-hidden layers of dimensions 100 and 100 with
ReLU activations and outputs a vector of logits
vj ∈ R96 per position with a softmax layer, which

1https://github.com/minimaxir/char-
embeddings/blob/master/glove.840B.300d-
char.txt

Figure 2: The architecture of our attacker network.

provides a distribution over the character vocabu-
lary. The target character c∗ is computed at infer-
ence time with an argmax over the target position
xj∗ .

Our loss function is simply the sum of two cross-
entropy terms: one for the gold position, and one
for the gold character in the gold position.

Running our model is more efficient that HOT-
FLIP and run-time is independent of the optimiza-
tion procedure. A forward pass in our model is
equivalent to 2 ·K steps in HOTFLIP with beam-
search. We show this leads to large practical speed-
ups in Section 5.

5 Experiments

We now empirically investigate whether our
method can be used to attack classifiers for de-
tecting “toxic” language on social media. Recently
a challenge by Alphabet aimed to improve labeling
of toxic comments that are rude and disrespectful.
Alphabet released a dataset2 of 160K comments
from Wikipedia discussions, and classified each
comment to six labels. We focus on the Toxic label
only, which represents 9.5% of the dataset.

We used the dataset to train the source model
S(·), which runs a 2-layer bidirectional GRU (Cho
et al., 2014) over the input x, and then uses an
attention (Bahdanau et al., 2015) pooling layer to
obtain a fixed dimensional vector for x. This vector
is passed through a feed-forward layer to compute
the probability that x is toxic. The accuracy of the
source model is 96.5% AUC – comparable to the
top submissions in the challenge.

We used the 13,815 toxic-labeled sentences from
the training set to generate adversarial examples for
training the attacker as described above. Dataset

2https://www.kaggle.com/c/jigsaw-
toxic-comment-classification-challenge/
data
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generation depends on the search procedure, and
we experiment with 3 setups: (a) HOTFLIP-5:
beam-search with K=5, (b) HOTFLIP-10: beam-
search with K=10, and (C) HOTFLIP+: a more
expensive search procedure that calls S(·) more
frequently. We describe the details of this proce-
dure in Appendix A. Because our attacker is inde-
pendent of the search procedure, inference time is
not affected by the search procedure at data gener-
ation time. This results in three distilled models:
DISTFLIP-5, DISTFLIP-10, and DISTFLIP+.3

Attacking the source model We compare the
performance of DISTFLIP variants against HOT-
FLIP variant, including HOTFLIP-1 (K=1). We
also compare to a RANDOM baseline, which
chooses a position and target character randomly,
and to an ATTENTION baseline, which uses the
attention layer of S(·) to choose the character posi-
tion with maximum attention to flip, and selects a
target character randomly.

Table 1 summarizes our results. We report the
average number of flips required to change the pre-
diction of toxic sentences in the source model, the
slow-down per single character-flip, and the slow-
down per attack, which is computed by multiplying
slow-down per flip by the ratio of the number of
flips required per attack. Because roughly 15% of
the examples in the dataset mostly contain repeated
profanities that require many flips, we also report
the average number of flips for the other 85% of
the examples.

We observe that HOTFLIP+ requires the fewest
flips to change model prediction, but attacks are
very slow. The number of flips per attack for
DISTFLIP+ is comparable to HOTFLIP-5 and
HOTFLIP-10, but it achieves a speed-up of 19x-
39x. DISTFLIP-5 and DISTFLIP-10 require a few
more flips compared to DISTFLIP+. Overall attack
quality is high, with less than two flips necessary
for 85% of the examples for DISTFLIP+.

Figure 3 provides a more fine-grained view of
the results by showing the proportion of sentences
classified as toxic as a function of the number of
flips. Overall, the picture is similar to Table 1, with
DISTFLIP+ being comparable to HOTFLIP-10.

Attacking The Google Perspective API The
Google perspective API4 returns the probability

3DISTFLIP-5 is trained on 64K generated examples,
DISTFLIP-10 on 62K examples, and DISTFLIP+ on 46K.

4https://www.perspectiveapi.com

Figure 3: Proportion of sentences classified as toxic as
a function of the number of flips for all models on the
test set.

that a sentence is toxic, where probability > 0.7
is classified as toxic, < 0.3 is non-toxic, and oth-
erwise uncertain. The model itself is not publicly
available. We randomly selected 136 toxic exam-
ples from the validation set and attacked them with
DISTFLIP+ until the source model probability was
< 0.5.

We measured the toxicity probability before and
after our attack and found that the average toxi-
city probability decreased from 0.9 to 0.67, with
an average of 5.0 flips per sentence. The label is
flipped from toxic to uncertain or non-toxic in 42%
of these examples.

Human validation To validate that toxic sen-
tences remain toxic after our attack, we showed
5 independent annotators a total of 150 sentences
from three classes: toxic sentences, non-toxic
sentences, and attacked sentences (attacked by
DISTFLIP-5). The same annotator was never
shown a toxic sentence and its attacked counter-
part. We asked annotators whether sentences are
toxic, and measured average annotated toxicity.

We found that 89.8% of the toxic sentences were
annotated as toxic, compared to 87.6% in the at-
tacked toxic sentences. This shows that humans
clearly view the sentences as toxic, even after our
attack. Table 2 shows examples for sentences at-
tacked by DISTFLIP-10 and the change in toxicity
score according to The Google Perspective API.

6 Conclusion

In this work we present a general approach for
distilling the knowledge in any white-box attack
into a trained model. We show that this results in
substantial speed-up (19x-39x) while maintaining
comparable quality. Moreover, we show that our
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DISTFLIP+ DISTFLIP-10 DISTFLIP-5 HOTFLIP+ HOTFLIP-10 HOTFLIP-5 HOTFLIP-1 RAND. ATT.

#flips 5.05 7.5 8.6 3.2 4.5 4.6 13.8 56.0 70.6
#flips for 85% 1.88 2.27 2.30 1.66 2.16 2.18 2.24 24.57 36.09
Flip slow-down 1x 1x 1x 168.8x 43.3x 21.3x 6.1x - -

Attack slow-down 1x 1.48x 1.7x 108x 38.6x 19.4x 16.7x - -

Table 1: Average number of flips to change the prediction of toxic sentences, average number of flips to change
the prediction for 85% of the examples that do not contain repeated profanities, slow-down per flip compared
to DISTFLIP+, and slow-down per sentence attack compared to DISTFLIP+. One character-flip using DISTFLIP
takes 12ms on an Nvidia GTX1080Ti.

Original Adversarial Google score

decline=I don’t fucking think so decline=I don’t vucking think so 0.79 → 0.07
its an AP article you asshole, how is it not neutral??? its an AP article you assnole, how is it not neutral??? 0.96 → 0.48
I think the 1 million sales is total bullshit though. I think the 1 million sales is total bullshkt though. 0.79 → 0.07
do not know juden! silence is golde juden, now shut up. do not know juden! silence is golden juden, now xhjt up. 0.69 → 0.37
This article sucks . . woo woo wooooooo This article xuxks . . woo woo wooooooo 0.93 → 0.22
Also bring back the brendle article you piece of shit. Also bring back the brendle article you pkece of xhkt. 0.98 → 0.32
to be driven away and die to be driven away and dke 0.82 → 0.32

Table 2: Examples of sentences attacked by DISTFLIP-10 and The Google Perspective toxicity score before and
after the attack.

attack transfers to a black-box setting: we expose
the vulnerability of The Google Perspective API,
and are able to change the prediction for 42% of
input toxic examples, while humans easily detect
that examples are still toxic.
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A Appendix: HotFlip+

Algorithm 1 describes the search procedure of HOT-
FLIP+. The main motivation behind this search
procedure is that HOTFLIP uses gradients to es-
timate the character-flip that maximally changes
the predictions of a model, but this estimate is not
guaranteed to be correct. In HOTFLIP+ we try
to overcome this limitation by performing prun-
ing with gradients, and then actually evaluating
a larger number of possible flips by running the
source model on many possible flips. This makes
the search procedure slower, because we have to
run the source model (forward pass) much more
frequently. For this algorithm we use beam size 3.

In Algorithm 1, the toxicity score of a sentence
is the result of running it through the source model,
and the beam score is the first-order estimate de-
scribed in Section 3.
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Algorithm 1 HotFlip+
1: procedure HOTFLIP+(sentence)
2: beam← Initialize beam with the original sentence and its toxicity score.
3: while True do
4: bf, tox← Pop from the beam the flipped sentence with lowest toxicity, and its toxicity.
5: if tox < 0.5 then
6: break

7: create a new beam.
8: for every beam entry in the current beam do
9: compute all possible flipped sentences and their beam score (as in HOTFLIP).

10: for flip sent, flip score in flipped sentences do
11: min score← minimal beam score on the beam.
12: if flip score > min score then . Prune using beam score
13: tox← Compute the toxicity of flip sent with a forward pass.
14: max tox in beam← Pop from the new beam the maximal toxicity score.
15: if tox < max tox in beam then
16: push flip sent, flip score, tox to the new beam.
17: return bf


