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Abstract
We propose a novel attention network for doc-
ument annotation with user-generated tags.
The network is designed according to the hu-
man reading and annotation behaviour. Usu-
ally, users try to digest the title and obtain
a rough idea about the topic first, and then
read the content of the document. Present
research shows that the title metadata could
largely affect the social annotation. To bet-
ter utilise this information, we design a frame-
work that separates the title from the con-
tent of a document and apply a title-guided
attention mechanism over each sentence in
the content. We also propose two semantic-
based loss regularisers that enforce the output
of the network to conform to label semantic-
s, i.e. similarity and subsumption. We anal-
yse each part of the proposed system with t-
wo real-world open datasets on publication
and question annotation. The integrated ap-
proach, Joint Multi-label Attention Network
(JMAN), significantly outperformed the Bidi-
rectional Gated Recurrent Unit (Bi-GRU) by
around 13%-26% and the Hierarchical Atten-
tion Network (HAN) by around 4%-12% on
both datasets, with around 10%-30% reduction
of training time.

1 Introduction

Social annotation, or tagging, is a popular func-
tionality allowing users to assign “keywords” to
online resources for better semantic search and
recommendation (Vander Wal, 2007; Singer et al.,
2014; Gedikli and Jannach, 2014). Common so-
cially annotated textual resources include ques-
tions, papers, (micro-)blogs, product reviews, etc.
In practice, however, only a limited number of re-
sources is annotated with tags. Annotating a large
number of documents requires much cognitive ef-
fort and can be time-consuming. This has driven
research on document annotation based on exist-
ing tag sets (Belém et al., 2017; Nie et al., 2014).

Recent studies formalise the automated so-
cial annotation task as a multi-label classification
problem (Gibaja and Ventura, 2015) and apply
deep learning approaches (Li et al., 2016; Huang
et al., 2016; Hassan et al., 2018). A strong base-
line is the use of Bi-directional RNN (Schuster
and Paliwal, 1997) with GRU (Cho et al., 2014)
or LSTM (Hochreiter and Schmidhuber, 1997).
Another more recent improvement is achieved
through Hierarchical Attention Network (HAN)
(Yang et al., 2016) which discriminates importan-
t words and sentences from others, as adapted in
(Hassan et al., 2018) for annotation. These mod-
els, however, suffer from two issues: (i) simply s-
canning over the words and sentences, the models
do not fully mimic the way users read and anno-
tate documents, and (ii) semantic relations, simi-
larity and subsumption, among the labels are not
considered.

Our model focuses on simulating users’ read-
ing and annotation behaviour with attention mech-
anisms. The title of a document is highly abstract
while informative about the topics and has a direct
impact on users’ annotation choice (Lipczak and
Milios, 2010), showing high descriptive capacity
and effectiveness for annotation (Figueiredo et al.,
2013); the content provides complementary infor-
mation for annotation. Usually, users firstly read
the title, and based on their understanding of the
title, proceed to the content of the document. To
simulate this behaviour, we propose an attention
network with separated inputs (title and content)
and parallelled attention layers at both the word-
level and the sentence-level. One major distinction
to previous approaches is to represent the content
with a title-guided attention mechanism; this en-
ables the network to discriminate among sentences
based on its understanding of the title.

In addition, in the social context, users tend
to annotate documents collectively with tags of



1349

various semantic forms and granularities (Peters,
2009; Heymann and Garcia-Molina, 2006). One
challenging issue is how to exploit the relation-
s among labels (user-generated tags) (Zhang and
Zhou, 2014; Gibaja and Ventura, 2015) to improve
the learning performance. Among neural network
based methods, a recent attempt is to initialise
weights for dedicated neurons in the last layer to
memorise the label relations (Kurata et al., 2016;
Baker and Korhonen, 2017), however, the limita-
tion is the large number of neurons to be assigned,
making it inefficient (or inapplicable) for system-
s with large number of labels. To incorporate the
label semantics inferred from the data or from ex-
ternal knowledge bases into the network, we de-
sign two loss regularisers, for similarity and sub-
sumption relations, respectively. The regularisers
enforce the output layer of the network to satisfy
the semantic constraints of the labels.

2 Proposed Method

We propose a parallelled two-layered attention
network that simulates users’ reading and anno-
tation behaviour for document annotation. The
proposed Joint Multi-label Attention Network (J-
MAN) approach is depicted in Figure 1. The mod-
el inputs the title and content separately into t-
wo Bidirectional-RNNs with word-level attention
and sentence-level attention mechanisms to cap-
ture the important words and sentences. Each
target is a multi-hot (as opposed to an one-hot)
representation of the labels in the label set yd ∈
{0, 1}|T |, where T is a list all labels, “1” indi-
cates that a label appears in the label set of the
document d, “0” otherwise. In Figure 1, attention
mechanisms are indicated with dotted edges. One
key distinction from the HAN model (Yang et al.,
2016) is the title-guided sentence-level attention
that models the reading order for annotation (the
dotted edges linking ct and cta). The output lay-
er sd = σ(Wccd + bc), activated with the sigmoid
function σ, is further constraint by two loss regu-
larisers, emphasising two types of label relations,
similarity and subsumption, respectively.

For the RNN encoder, we apply the Gated Re-
current Unit (GRU) which can capture long ter-
m dependencies and is usually more time-efficient
than LSTM (Hochreiter and Schmidhuber, 1997)
in training. The Bidirectional-GRU (Bi-GRU) en-
coder (Cho et al., 2014) concatenates the hidden
states generated from two GRUs, one reading the

Figure 1: The Proposed Joint Multi-label Attention
Network (JMAN) for Social Text Annotation

words (or sentences) forward and the other reading
them backwards. This helps form a more complete
understanding of the current word (or sentence).

2.1 Hierarchical Attention

Hierarchical Attention captures the structure of
a document by a word-level attention on each
word’s hidden state to create a sentence represen-
tation, then a sentence-level attention to form a
content representation (Yang et al., 2016). The
attention coefficients are computed based on the
dot product between a non-linearly transformed
weight vector of the hidden state and an “infor-
mative” vector, which encodes “what is the most
informative word (or sentence)” in the sequence.
This “informative” vector is commonly treated as
a sequence of weights (Yang et al., 2016; Kumar
et al., 2018; Hassan et al., 2018), trained along
with other weights in the network. We applied par-
allelled word-level attention on the title and each
sentence in the content. The attention coefficient
and the final representation of a sequence is cal-
culated as (taking words in title as an example):

ct =
∑
i

αihi =
∑
i

exp(vwt • vi)∑
j exp(vwt • vj)

hi (1)

where vi = tanh(Wthi + bt) is the output of a
fully-connected layer of the hidden state hi for
each word in the title, vwt is the “informative” vec-
tor for titles, and ct is the resulting title represen-
tation. We can compute each sentence representa-
tion cs and the content representation ca in a simi-
lar manner (see Figure 1).

2.2 Title-guided Sentence-level Attention

The attention mechanisms above do not capture
the interaction between the title and content of the
document. Title represents highly abstract while
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important information about the topics of a docu-
ment. Selection of the important sentences in the
content should conform to the document’s general
topic, e.g. title. We can thus model the title-guided
sentence-level attention as:

cta =
∑
r

αrhr =
∑
r

exp(ct • vr)∑
k exp(ct • vk)

hr (2)

where vr = tanh(Wshr + bs) is a fully connected
layer with the hidden state of the rth sentence hr
as input and ct is the title representation obtained
from Equation 1.

Guiding sentence reading through title repre-
sentation facilitates content understanding, but
may lead to an overemphasis on the title in the an-
notation. In fact, the content itself, carrying more
terms, conveys detailed information not covered
by the title and may help suggest further tags for
annotation (Figueiredo et al., 2013). We thus con-
catenate the title guided content representation cta
and the content representation ca from the original
sentence-label attention, to form a more compre-
hensive representation of the content. The final
content representation is then concatenated with
the title representation cd = [ct, cta, ca]. In the
experiment, we will show the effectiveness of this
design against several variations of the model.

2.3 Semantic-based Loss Regularisers
Users tend to annotate documents collectively
with semantically related tags. Two major seman-
tic relations in user-generated tags are similarity
and subsumption (Stock, 2010; Peters, 2009). To
deal with this label correlation issue, we propose
two loss regularisers jointly learned with the bina-
ry cross entropy loss function. The intuition is that
the output values of the neural network sd, having
the dimensions as the label space |T |, should satis-
fy semantic relations among labels. Such relations
can be inferred from the label sets or observed in
external knowledge bases. The whole joint loss is
defined as L = LCE + λ1Lsim + λ2Lsub. LCE

is the binary cross entropy loss adopted for multi-
label text classification (Nam et al., 2014). Lsim

and Lsub are defined as:

Lsim =
1

2

∑
d

∑
(j,k)|Tj ,Tk∈yd

Simjk|sdj − sdk|2

Lsub =
1

2

∑
d

∑
(j,k)|Tj ,Tk∈yd

SubjkR(sdj)(1−R(sdk))

(3)

where yd is the label set (annotated tags) of the
document d. T is a list of all labels, where j and k

are the indices of the list T , corresponding to the
indices of nodes sdj and sdk in the output layer sd.
R() is the rounding function for binary prediction,
R(sdj) = 0 if Sdj < 0.5, otherwise R(sdj) = 1.

The similarity matrix Sim ∈ (0, 1)|T |∗|T | indi-
cates pairwise similarity between labels, the larg-
er the value of Simjk, the more similar the la-
bels Tj and Tk are. Each element Subjk in the
subsumption matrix Sub ∈ {0, 1}|T |∗|T | indicates
whether the label Tj is a child label of Tk. Both
the Sim and Sub matrix can be inferred from the
training data or from external knowledge bases be-
fore training. In implementation, Sim (if thresh-
olded) and Sub can be treated as sparse matrix to
reduce computational complexity. We also used
an adapted version of the loss regularisers in mini-
batch training (the same set of label pairs that co-
occurred within all documents in the same batch)
to further to reduce computational complexity.

The rationale is that the less the difference of the
two outputs of the similar labels is, the lower the
Lsim. On the contrary, for output values not re-
flecting the label similarity, i.e. large |sdj − sdk|2
when Simjk is close to 1, the error will be pe-
nalised with higher Lsim.

Given a document and a subsumption pair of la-
bels, if the child label is used for annotation, its
parent label has a relatively higher chance being
used as well. In Lsub, if a subsumption relation
< Tj → Tk > presents in the label set yd, the case
that the parent label Tk is predicted as false, i.e.
R(sdk) = 0, when its child label Tj is predicted
as true, i.e. R(sdj) = 1, will be penalised. Such
a case will result in a positive penalty, while the
penalty will be 0 in all other cases.

Thus, Lsim constrains similar labels to have
similar outputs, while Lsub reinforces each co-
occurring subsumption pair to satisfy the depen-
dency of the parent label on the child label.

3 Experiments

3.1 Datasets

We evaluate our proposed approach for automat-
ed social annotation on two representative open
datasets in social tagging, Bibsonomy1 (academ-
ic publication annotation) and Zhihu2 (general do-
main social question annotation). For Bibsono-
my, we used the cleaned dataset from (Dong et al.,

1
https://www.kde.cs.uni-kassel.de/bibsonomy/dumps

2
https://biendata.com/competition/zhihu/

https://www.kde.cs.uni-kassel.de/bibsonomy/dumps
https://biendata.com/competition/zhihu/
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Bibsonomy Precision Recall F1 Score Time/Fold
Bi-GRU .522±.020∗ .217±.016∗ .306±.019∗ 1480±92s
HAN .572±.008∗ .246±.012∗ .344±.013∗ 1164±52s
JMAN-s-tg .591±.010 .269±.006∗ .370±.007∗ 1075±87s
JMAN-s-att .586±.009 .269±.005∗ .369±.006∗ 968±81s
JMAN-s .586±.004 .282±.005 .380±.005 894±55s
JMAN .592±.009 .284±.006 .384±.007 1044±73s
∗ Paired t-tests at 95 percent significance level against the JMAN model.

Table 1: Comparison Results on the Bibsonomy dataset

Zhihu Precision Recall F1 Score Time/Fold
Bi-GRU .238±.011∗ .154±.009∗ .187±.010∗ 1455±69s
HAN .257±.012 .167±.010∗ .203±.011∗ 1387±78s
JMAN-s-tg .257±.005 .175±.003∗ .208±.006∗∗ 1220±81s
JMAN-s-att .254±.007∗∗ .174±.005∗ .207±.005∗ 1275±99s
JMAN-s .257±.008 .177±.005 .210±.007 1147±44s
JMAN .260±.006 .179±.003 .212±.004 1135±52s
∗ Paired t-tests at 95 percent significance level against the JMAN model.
∗∗ Paired t-tests at 90 percent significance level against the JMAN model.

Table 2: Comparison Results on the Zhihu dataset

2017) and further selected the tags related to Com-
puter Sciences according to the ACM Computing
Classification System3 and selected the document
that have both title and abstract (content); for Zhi-
hu, we randomly sampled around 100,000 ques-
tions from the original data dump.

The cleaned Bibsonomy dataset has 12,101 doc-
uments, 17,619 vocabularies and 5,196 labels; the
average number of labels per document is 11.59.
The sample Zhihu dataset has 108,168 documents
(questions), 62,519 vocabularies and 1,999 labels;
the average number of labels per document is 2.45.

3.2 Implementation Details

To calculate Sim, we used cosine similarity, nor-
malised to between 0 and 1, of self-trained skip-
gram embedding (Mikolov et al., 2013) on all la-
bel sets in each dataset. To obtain Sub, about sub-
sumption relations, for Bibsonomy, we resorted to
an external knowledge source Microsoft Concept
Graph4 for label mapping and semantic ground-
ing; for Zhihu, we used the provided crowd-
sourced label subsumption relations. We tuned the
λ1 and λ2 in L based on 10-fold cross-validation5.

We implemented the proposed Joint Multi-label
Attention Network (JMAN) model in Figure 1

3
https://www.acm.org/publications/class-2012

4
https://concept.research.microsoft.com/Home

5λ1, λ2 were tuned to 1e-4, 1e-1 for Bibsonomy and 1e-3,
1e-1 for Zhihu, respectively.

on Tensorflow (Abadi et al., 2016) along with
the baselines6 based on brightmart’s implemen-
tation7 of TextRNN and HAN under the MIT li-
cense. Two strong baselines were chosen Bi-GRU
(Schuster and Paliwal, 1997; Cho et al., 2014) and
HAN (Yang et al., 2016; Hassan et al., 2018).
Several variations of JMAN were also consid-
ered: (i) JMAN-s, the proposed model without
semantic-based loss regularisers; (ii) JMAN-s-tg,
the proposed model without semantic-based reg-
ularisers and title guided sentence-level attention,
cd = [ct, ca]; (iii) JMAN-s-att, the proposed mod-
el without semantic-based regularisers and the o-
riginal sentence-level attention, cd = [ct, cta].

We optimised the joint loss L using the Adam
optimiser (Kingma and Ba, 2014) and set the num-
ber of hidden units as 100, learning rate as 0.01
and dropout rate as 0.5 (Srivastava et al., 2014)
for all models. The batch sizes for Bibsonomy
and Zhihu were set as 128 and 1,024, respectively.
The sequence lengths of the title (also the length of
each sentence) and the content were padded to 30
and 300 for Bibsonomy and 25 and 100 for Zhi-
hu. Non-static input embedding for the title and
the sentences were initialised as 100-dimension
self-trained skip-gram embedding (Mikolov et al.,

6Our code and datasets are available at https://github.
com/acadTags/Automated-Social-Annotation.

7
https://github.com/brightmart/text_

classification

https://www.acm.org/publications/class-2012
https://concept.research.microsoft.com/Home
https://github.com/acadTags/Automated-Social-Annotation
https://github.com/acadTags/Automated-Social-Annotation
https://github.com/brightmart/text_classification
https://github.com/brightmart/text_classification
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2013). We decayed the learning rate by half when
the loss on validation set increased and set an ear-
ly stopping point when learning rate is below 2e-
5. All experiments were run on a GPU server, N-
VIDIA GeForce GTX 1080 Ti.

3.3 Results

We report the mean and the standard deviation
of the testing results on models trained with 10-
fold cross-validation. The cleaned user-generated
tags, i.e. labels, for each dataset were taken as the
ground truth and the widely used example-based
metrics, Precision, Recall and F1 score (God-
bole and Sarawagi, 2004; Tsoumakas et al., 2010;
Zhang and Zhou, 2014), were adopted. The aver-
age training time per fold was also recorded.

The results with respect to the two datasets are
presented in the Table 1 and 2 respectively. Our
proposed JMAN model significantly outperforms
Bi-GRU and HAN. In terms of F1, with the Bib-
sonomy dataset, the proposed JMAN model pro-
vides a 7.8% absolute increase (by 25.5%) over
Bi-GRU and 4.0% (by 11.6%) over HAN; on the
Zhihu dataset, our model is 2.5% absolutely (by
13.4%) better than Bi-GRU and 0.9% (by 4.4%)
than HAN. This is mostly attributed to the boost
of recall through modeling the title metadata and
the title-guided attention mechanism. The JMAN
model also converges (“understands”) much faster
than HAN with around 10.3% (for Bibsonomy)
and 18.2% (for Zhihu) less training time per fold
and converges even faster than Bi-GRU (by 29.5%
and 22.0% for the Bibsonomy and Zhihu dataset
in terms of training time, respectively). Recal-
l and F1 score drop significantly, with training
time increased, when the title-guided or the orig-
inal sentence-level attention is removed. Adding
semantic-based loss regularisers further boosts the
precision, recall and F1 of the model.

We also noticed that, compared to the results on
the Bibsonomy dataset, the improvement on the
Zhihu dataset with the proposed model is less sig-
nificant. This may be related to the characterstics
of the dataset: Zhihu has shorter texts (padded to
1/3 of the Bibsonomy dataset), more vocabularies
(over 3 folds), less number of labels (about 40%)
and less average number of labels per documen-
t (about 1/5) than the Bibsonomy dataset. This
would warrant further study on the datasets and
on validating the model with datasets from other
social media platforms.

4 Conclusion

We proposed a parallelled two-layer attention net-
work for text annotation based on user-generated
tags. It models the behaviour how human user-
s read and understand document with the title-
guided attention mechanism and leverages label
semantics through two loss regularisers to con-
strain the network outputs. Experimental results
show the effectiveness of this method with superi-
or performance and training speed. This system
can be applied to various types of social media
platforms to support document organisation.

Future studies will explore the possibility of ap-
plying the title-guided attention mechanism to oth-
er large datasets on major social media platforms.
It is also interesting to see whether the semantic-
based loss regularisers can be adapted to improve
the performance of the recent pre-trained transfer-
able deep learning models, such as the Bidirec-
tional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2018).
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