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Abstract

This study explores the necessity of perform-
ing cross-corpora evaluation for grammati-
cal error correction (GEC) models. GEC
models have been previously evaluated based
on a single commonly applied corpus: the
CoNLL-2014 benchmark. However, the eval-
uation remains incomplete because the task
difficulty varies depending on the test cor-
pus and conditions such as the proficiency
levels of the writers and essay topics. To
overcome this limitation, we evaluate the per-
formance of several GEC models, including
NMT-based (LSTM, CNN, and transformer)
and an SMT-based model, against various
learner corpora (CoNLL-2013, CoNLL-2014,
FCE, JFLEG, ICNALE, and KJ). Evaluation
results reveal that the models’ rankings consid-
erably vary depending on the corpus, indicat-
ing that single-corpus evaluation is insufficient
for GEC models.

1 Introduction

Grammatical error correction (GEC) is the task of
correcting various grammatical errors in a given
text, which is typically written by non-native
speakers. Previous studies focused on typical er-
rors such as those in the use of articles (Han et al.,
2006), prepositions (Felice and Pulman, 2008),
and noun numbers (Nagata et al., 2006). Machine
translation approaches are being presently ap-
plied for GEC (Junczys-Dowmunt et al., 2018;
Chollampatt and Ng, 2018; Ge et al., 2018;
Junczys-Dowmunt and Grundkiewicz, 2016). In
these approaches, GEC is treated as a translation
problem from the erroneous text to the correct
text (Mizumoto et al., 2012; Felice et al., 2014;
Junczys-Dowmunt and Grundkiewicz, 2014).

However, the evaluation of GEC performance
is unfortunately not complete because researchers
tend to evaluate their models on a single corpus.

The CoNLL-2014 shared task dataset (Ng et al.,
2014) has been recently used for such evaluation.

Single-corpus evaluation may be insufficient in
cases wherein a GEC model generally aims to
robustly correct grammatical errors in any writ-
ten text partly because the task difficulty varies
depending on proficiency levels and essay top-
ics. Although a model outperforms a baseline in
one corpus, the model in another corpus may per-
form better, leading to different conclusions from
what we know. This study explores the necessity
of performing cross-corpora evaluation for GEC
models. The performance of four recent models,
namely three neural machine translation (NMT)-
based models (LSTM, CNN, and transformer)
and a statistical machine translation (SMT)-
based model is evaluated against six learner
corpora (CoNLL-2014, CoNLL-2013 (Ng et al.,
2013), FCE (Yannakoudakis et al., 2011), JF-
LEG (Napoles et al., 2017), KJ (Nagata et al.,
2011), and ICNLAE (Ishikawa, 2013)). Evalua-
tion results show that the models’ rankings con-
siderably vary depending on the corpus. Empirical
results reveal that models must be evaluated using
multiple corpora from different perspectives.

The contributions of this study are as follows:

• We first explore the necessity of performing
cross-corpora evaluation for GEC models.

• We empirically show that the single-corpus
evaluation may be unreliable.

• Our source code is published for cross-
corpora evaluation so that researchers in the
community can adequately and easily evalu-
ate their models based on multiple corpora. 1

2 Related Work

We are motivated by the issue of robustness
in the parsing community. This field pre-

1 https://github.com/tomo-wb/GEC_CCE
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viously focused on improving parsing accu-
racy on Penn Treebank (Marcus et al., 1993).
However, robustness was largely improved by
evaluation using multiple corpora including
Ontonotes (Hovy et al., 2006) and Google Web
Treebank (Petrov and McDonald, 2012). A situ-
ation similar to this might also occur in GEC. In
other words, evaluation in GEC has relied heav-
ily on the CoNLL-2014 benchmark, which implies
that the field is overdeveloping on this dataset.

Other corpora are used for evaluation, such
as KJ (Mizumoto et al., 2012) and JFLEG
(Sakaguchi et al., 2017; Junczys-Dowmunt et al.,
2018; Chollampatt and Ng, 2018; Ge et al., 2018;
Xie et al., 2018). However, these corpora still de-
pend on one or at most two corpora.

3 Experimental Setup

3.1 Corpora for Evaluation
Cross-corpora evaluation is discussed herein us-
ing six corpora, namely CoNLL-2014, CoNLL-
2013, FCE, JFLEG, KJ, and ICNALE. The fol-
lowing conditions were considered when selecting
corpora:

• The corpus must be used at least once in the
GEC community.

• Based on the hypothesis that writers’ profi-
ciency affects the error distribution of any
given text, we add a corpus with relatively
low proficiency (KJ) compared to CoNLL-
2014.

We explicitly describe each learner corpus as
follows:
CoNLL-2014 (Ng et al., 2014), the official
dataset of CoNLL-2014 shared task, is a collec-
tion of essays written by students at the National
University of Singapore and is commonly used as
test data for the CoNLL-2014 benchmark. This
dataset contains only two essay topics.
CoNLL-2013 (Ng et al., 2013), the official
dataset of CoNLL-2013 shared tasks, is com-
monly used as the development data for the
CoNLL-2014 benchmark and contains only two
essay topics.
Cambridge ESOL First Certificate in English
(FCE) (Yannakoudakis et al., 2011) is a dataset
containing 1,244 examination scripts of the Cam-
bridge FCE examination. Topics and first lan-
guages (L1s) in the dataset are diversified because

it contains essays for 10 topics written by non-
native speakers from various countries.
JHU FLuency-Extended GUG Corpus (JF-
LEG) (Napoles et al., 2017) contains approxi-
mately 1,500 sentences from an English profi-
ciency test. It contains sentences written by learn-
ers of the English language having various L1s and
proficiency levels.
Konan-JIEM Learner Corpus
(KJ) (Nagata et al., 2011) contains 233 essays
written on 10 topics by students of a Japanese
college, which are manually error-tagged and
shallow-parsed.
International Corpus Network of Asian
Learners of English, Written Essays (IC-
NALE) (Ishikawa, 2013) contains essays written
by college and graduate students from ten Asian
countries/regions (China, Hong Kong, Indonesia,
Japan, Korea, Pakistan, the Philippines, Sin-
gapore, Taiwan, and Thailand). The original
ICNALE is not error annotated. Therefore, we
sampled a total number of 1,736 sentences, which
are manually annotated with grammatical errors
based on KJ ’s annotation scheme.

Table 1 summarizes the properties of these cor-
pora. Let N and M denote the total number of
source words and sentences in a corpus, respec-
tively. Word error rate (WER) is defined as fol-
lows:

WER =

∑M
m=1 d(X

m, Y m)∑M
m=1N

m

where Xm denotes each source sentence, Y m

denotes each corrected sentence, and d(Xm, Y m)
denotes the edit distance between Xm and Y m us-
ing dynamic programming.

The following conclusions are derived: (1)
CoNLL-2014 has narrow coverage of topics, pro-
ficiency and L1s compared with other corporas
such as JFLEG and FCE. (2) Several learner cor-
pora are available for the evaluation of GEC mod-
els. These corpora can help investigate the perfor-
mance of GEC models under different conditions.

3.2 Models

The following factors are considered while select-
ing our model.

• The models must be recent and commonly
used.
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Corpus # sent. # refs. WER # topics Multiple L1 Multiple proficiency Public available

CoNLL-2014 1,312 2 12.35 2 No No Yes
CoNLL-2013 1,381 1 14.85 2 No No Yes
FCE 32,199 1 12.00 10 Yes Yes Yes
JFLEG 747 4 20.86 Many Yes Yes Yes
KJ 3,081 1 13.53 10 No No Yes
ICNALE 1,736 1 7.64 2 Yes Yes No

Table 1: Properties of evaluation corpora. Yes/No indicates whether the corpus exhibits each property in terms of
multiple L1, multiple proficiency and public available.

• Each model must be implemented to have a
competitive performance on CoNLL-2014.

We employed the following models based on
the aforementioned factors:
LSTM: We use a bi-directional LSTM in the en-
coder and an LSTM with an attention mechanism
in the decoder. Both the encoder and the decoder
comprise two layers. The LSTM hidden state and
word embedding sizes are set to be 500.
CNN: We follow the previous study
(Chollampatt and Ng, 2018), namely a fully
convolutional encoder–decoder architecture with
seven convolutional layers. The hyperparam-
eters used in a previous study are used herein
(Chollampatt and Ng, 2018).
Transformer: Transformer is the self-attention-
based model proposed by Vaswani et al. (2017).
Six layers are used for both the encoder and de-
coder along with eight attention heads. The word
embedding size is set to 1024 dimensions, and the
size of position-wise feed-forward networks is set
to 4096 dimensions at each inner layer.
SMT: We essentially follow the
idea used in a previous study
(Junczys-Dowmunt and Grundkiewicz, 2016),
with some key differences. Specifically, we
only use English Wikipedia for language model
training and only the NUS Corpus of Learner En-
glish (NUCLE) and the Lang-8 Learner Corpora
(Lang-8) for translation model training to make
the experimental settings equal in all models.

3.3 Experimental Settings

We use two public datasets, namely Lang-
8 (Mizumoto et al., 2011) and NUCLE
(Dahlmeier et al., 2013), for training. Our
pre-processing and experimental setup is similar
to that reported previously (Chollampatt and Ng,
2018). In particular, a subset of NUCLE (5.4K)

is utilized as the development data for select-
ing the model; the remaining subset (1.3M) is
utilized as the training data. All the models
are trained, tuned, and tested in the same way.
The models are tested on each test data shown
in Table 1. As an evaluation metric, we use
F0.5 score computed by applying the MaxMatch
scorer (Dahlmeier and Ng, 2012) and GLEU
(Napoles et al., 2015). We determine the average
F0.5 and average GLEU scores of the four models,
which are trained with different random initializa-
tions, following a previously reported approach
(Chollampatt and Ng, 2018).

4 Cross-Corpora Evaluation

Figure 1 shows the performance of each model
sorted from best to worst based on their F0.5 score,
revealing that the performance substantially varies
depending on the corpus. For example, the perfor-
mance of the transformer ranges from the score of
F0.5, which is as low as 36.20 on CoNLL-2013,
to as high as 60.06 on JFLEG. Notably, their rank-
ings also considerably vary. Transformer performs
best on CoNLL-2014. However, it exhibits third-
best performance among FCE, KJ, and ICNALE;
LSTM outperforms the other models by a large
margin of up to 5.3 F0.5 points. Some exam-
ples of the model outputs are presented in Table
2 and Table 3. Some situations are successfully
corrected using transformer (Table 2), whereas it
failed to perform in other situations (Table 3). The
reason for difference in the model rankings can-
not be generally stated because it is influenced by
various factors such as the learner’s proficiency,
essay topic, and L1. The experimental results
show, however, that discussions based on the per-
formance on CoNLL-2014 may only hold under
certain conditions.

Figure 2 shows the performance measured in
GLEU having a similar trend. However, their
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Figure 1: Average F0.5 of the four models (trained with different random initializations), ranked best to worst.

Figure 2: Average GLEU of the four models (trained with different random initializations), ranked best to worst.

rankings on FCE show different trends in Figure
1 and Figure 2. This is partly because F0.5 and
GLEU evaluate different perspectives of the mod-
els. Furthermore, evaluation data and metric must
be appropriately set depending on the factors that
need to be evaluated in the model.

5 Discussion

5.1 Is Diverse Single-Corpus Evaluation
Sufficient?

Experimental results indicate that the benchmark
single-corpus evaluation is not robust; however,
more diverse corpora remain undetermined. Both
JFLEG and FCE can be diverse corpora because
they contain examination scripts written by lan-
guage learners from all over the world. JFLEG
is particularly designed to contain more diverse
corpus for developing and evaluating GEC models
(Napoles et al., 2017). If a diverse single-corpus
evaluation suffices, the rankings of the models will
remain the same. However, experimental results
have shown that the model rankings on both JF-
LEG and FCE are different (Figure 1). Thus,
single-corpus evaluation is deemed weak regard-
less of its diversity.

5.2 Advantage of Cross-Corpora Evaluation
This study discusses the importance of evaluat-
ing GEC models from various perspectives us-
ing multiple corpora. Multi-perspective evaluation
does not necessarily mean using multiple corpora.
Many aspects in a corpus can be used for analysis,
such as the proficiency of the writers, essay topics,
and the writer ’s native language. As a case study,
we evaluate and analyze the models regarding the

essay WER. Table 4 shows the performance (in
precision, recall, and F0.5) of all the models when
WER is the lowest (7.64 % for ICNALE) and
the highest (20.86 % for JFLEG). Transformer
and LSTM outperform all the other models in the
highest and the lowest error-rated corpora, respec-
tively. Experimental results show that LSTM and
transformer may be more precision-oriented and
recall-oriented, respectively. Further, precision-
oriented models have an advantage over recall-
oriented models when a given text contains sev-
eral errors, and vice versa. This knowledge en-
ables choosing a model based on the task that has
to be completed.

6 Conclusion

This study explored the necessity of perform-
ing cross-corpora evaluation for GEC models,
for which the performance of several GEC mod-
els was investigated against various learner cor-
pora. Empirical evaluation results revealed that
the model performance and rankings considerably
vary depending on the corpus, suggesting that a
single-corpus evaluation can be unreliable. There-
fore, cross-corpora evaluation should be applied to
GEC models. We also published our source code
for the cross-corpora evaluation framework so that
researchers in the community can adequately and
easily evaluate their models based on multiple cor-
pora. Our future study will further examine the ro-
bustness of several existing evaluation metrics and
explore new metrics appropriate for cross-corpora
and/or cross-domain evaluation.
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Sentence
Source Hence , some seen it as being considerate in keeping the genetic risk of getting the

disease in confidential .
Reference Hence , some see it as being considerate in keeping the genetic risk of getting the

disease [DEL] confidential .
1. Transformer Hence , some see it as being considerate in keeping the genetic risk of getting the

disease [DEL] confidential .
2. LSTM Hence , some seen it as being considerate in keeping the genetic risk of getting the

disease in confidentiality .
3. CNN Hence , some seen it as being considerate in keeping the genetic risk of getting the

disease in confidentiality .

Table 2: Examples of model outputs on CoNLL-2014.

Sentence
Source In that day , the time I left school was about eleven p.m .
Reference On that day , the time I left school was about eleven p.m .
1. LSTM On that day , the time I left school was about eleven p.m .
2. CNN On that day , the time I left school was about eleven p.m .
3. Transformer That day , the time I left school was about eleven p.m .

Table 3: Examples of model outputs on KJ.

WER (%) Low (7.64) High (20.86)

P R F0.5 P R F0.5

Transformer 37.69 37.67 37.72 67.27 42.05 60.06
LSTM 48.68 29.37 43.02 72.97 31.09 57.47
CNN 44.35 30.87 40.78 70.85 32.77 57.49
SMT 40.73 18.60 32.91 67.95 16.89 42.35

Table 4: Performance in precision, recall, and F0.5 of
all models on the corpora when the WER is lowest and
highest.
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