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Abstract

Generalization and reliability of multilingual
translation often highly depend on the amount
of available parallel data for each language
pair of interest. In this paper, we focus on
zero-shot generalization—a challenging setup
that tests models on translation directions they
have not been optimized for at training time.
To solve the problem, we (i) reformulate mul-
tilingual translation as probabilistic inference,
(ii) define the notion of zero-shot consistency
and show why standard training often results
in models unsuitable for zero-shot tasks, and
(iii) introduce a consistent agreement-based
training method that encourages the model to
produce equivalent translations of parallel sen-
tences in auxiliary languages. We test our mul-
tilingual NMT models on multiple public zero-
shot translation benchmarks (IWSLT17, UN
corpus, Europarl) and show that agreement-
based learning often results in 2-3 BLEU zero-
shot improvement over strong baselines with-
out any loss in performance on supervised
translation directions.

1 Introduction

Machine translation (MT) has made remarkable
advances with the advent of deep learning ap-
proaches (Bojar et al., 2016; Wu et al., 2016; Crego
et al., 2016; Junczys-Dowmunt et al., 2016). The
progress was largely driven by the encoder-decoder
framework (Sutskever et al., 2014; Cho et al., 2014)
and typically supplemented with an attention mech-
anism (Bahdanau et al., 2014; Luong et al., 2015b).

Compared to the traditional phrase-based sys-
tems (Koehn, 2009), neural machine translation
(NMT) requires large amounts of data in order
to reach high performance (Koehn and Knowles,
2017). Using NMT in a multilingual setting exacer-
bates the problem by the fact that given k languages
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Figure 1: Agreement-based training of a multilingual NMT.
At training time, given English-French (En ↔ Fr) and
English-German (En↔ De) parallel sentences, the model not
only is trained to translate between the pair but also to agree
on translations into a third language.

translating between all pairs would require O(k2)
parallel training corpora (and O(k2) models).

In an effort to address the problem, different
multilingual NMT approaches have been proposed
recently. Luong et al. (2015a); Firat et al. (2016a)
proposed to use O(k) encoders/decoders that are
then intermixed to translate between language pairs.
Johnson et al. (2016) proposed to use a single
model and prepend special symbols to the source
text to indicate the target language, which has
later been extended to other text preprocessing ap-
proaches (Ha et al., 2017) as well as language-
conditional parameter generation for encoders and
decoders of a single model (Platanios et al., 2018).

Johnson et al. (2016) also show that a single
multilingual system could potentially enable zero-
shot translation, i.e., it can translate between lan-
guage pairs not seen in training. For example,
given 3 languages—German (De), English (En),
and French (Fr)—and training parallel data only
for (De, En) and (En, Fr), at test time, the system
could additionally translate between (De, Fr).

Zero-shot translation is an important problem.
Solving the problem could significantly improve
data efficiency—a single multilingual model would
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be able to generalize and translate between any of
the O(k2) language pairs after being trained only
on O(k) parallel corpora. However, performance
on zero-shot tasks is often unstable and signifi-
cantly lags behind the supervised directions. More-
over, attempts to improve zero-shot performance
by fine-tuning (Firat et al., 2016b; Sestorain et al.,
2018) may negatively impact other directions.

In this work, we take a different approach and
aim to improve the training procedure of Johnson
et al. (2016). First, we analyze multilingual transla-
tion problem from a probabilistic perspective and
define the notion of zero-shot consistency that gives
insights as to why the vanilla training method may
not yield models with good zero-shot performance.
Next, we propose a novel training objective and a
modified learning algorithm that achieves consis-
tency via agreement-based learning (Liang et al.,
2006, 2008) and improves zero-shot translation.
Our training procedure encourages the model to
produce equivalent translations of parallel train-
ing sentences into an auxiliary language (Figure 1)
and is provably zero-shot consistent. In addition,
we make a simple change to the neural decoder to
make the agreement losses fully differentiable.

We conduct experiments on IWSLT17 (Mauro
et al., 2017), UN corpus (Ziemski et al., 2016), and
Europarl (Koehn, 2017), carefully removing com-
plete pivots from the training corpora. Agreement-
based learning results in up to +3 BLEU zero-shot
improvement over the baseline, compares favorably
(up to +2.4 BLEU) to other approaches in the lit-
erature (Cheng et al., 2017; Sestorain et al., 2018),
is competitive with pivoting, and does not lose in
performance on supervised directions.

2 Related work

A simple (and yet effective) baseline for zero-shot
translation is pivoting that chain-translates, first to
a pivot language, then to a target (Cohn and Lapata,
2007; Wu and Wang, 2007; Utiyama and Isahara,
2007). Despite being a pipeline, pivoting gets better
as the supervised models improve, which makes it a
strong baseline in the zero-shot setting. Cheng et al.
(2017) proposed a joint pivoting learning strategy
that leads to further improvements.

Lu et al. (2018) and Arivazhagan et al. (2018)
proposed different techniques to obtain “neural in-
terlingual” representations that are passed to the
decoder. Sestorain et al. (2018) proposed another
fine-tuning technique that uses dual learning (He

et al., 2016), where a language model is used to pro-
vide a signal for fine-tuning zero-shot directions.

Another family of approaches is based on distil-
lation (Hinton et al., 2014; Kim and Rush, 2016).
Along these lines, Firat et al. (2016b) proposed to
fine tune a multilingual model to a specified zero-
shot-direction with pseudo-parallel data and Chen
et al. (2017) proposed a teacher-student framework.
While this can yield solid performance improve-
ments, it also adds multi-staging overhead and
often does not preserve performance of a single
model on the supervised directions. We note that
our approach (and agreement-based learning in gen-
eral) is somewhat similar to distillation at train-
ing time, which has been explored for large-scale
single-task prediction problems (Anil et al., 2018).

A setting harder than zero-shot is that of fully
unsupervised translation (Ravi and Knight, 2011;
Artetxe et al., 2017; Lample et al., 2017, 2018) in
which no parallel data is available for training. The
ideas proposed in these works (e.g., bilingual dictio-
naries (Conneau et al., 2017), backtranslation (Sen-
nrich et al., 2015a) and language models (He et al.,
2016)) are complementary to our approach, which
encourages agreement among different translation
directions in the zero-shot multilingual setting.

3 Background

We start by establishing more formal notation and
briefly reviewing some background on encoder-
decoder multilingual machine translation from a
probabilistic perspective.

3.1 Notation
Languages. We assume that we are given a col-
lection of k languages, L1, . . . , Lk, that share a
common vocabulary, V . A language, Li, is defined
by the marginal probability P (xi) it assigns to sen-
tences (i.e., sequences of tokens from the vocab-
ulary), denoted xi := (x1, . . . , xl), where l is the
length of the sequence. All languages together de-
fine a joint probability distribution, P (x1, . . . ,xk),
over k-tuples of equivalent sentences.

Corpora. While each sentence may have an
equivalent representation in all languages, we as-
sume that we have access to only partial sets of
equivalent sentences, which form corpora. In
this work, we consider bilingual corpora, denoted
Cij , that contain pairs of sentences sampled from
P (xi,xj) and monolingual corpora, denoted Ci,
that contain sentences sampled from P (xi).
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Figure 2: Translation graph: Languages (nodes), parallel
corpora (solid edges), and zero-shot directions (dotted edges).

Translation. Finally, we define a translation task
from language Li to Lj as learning to model the
conditional distribution P (xj | xi). The set of k
languages along with translation tasks can be rep-
resented as a directed graph G(V, E) with a set of
k nodes, V , that represent languages and edges, E ,
that indicate translation directions. We further dis-
tinguish between two disjoint subsets of edges: (i)
supervised edges, Es, for which we have parallel
data, and (ii) zero-shot edges, E0, that correspond
to zero-shot translation tasks. Figure 2 presents an
example translation graph with supervised edges
(En ↔ Es, En ↔ Fr, En ↔ Ru) and zero-shot
edges (Es↔ Fr, Es↔ Ru, Fr↔ Ru). We will
use this graph as our running example.

3.2 Encoder-decoder framework
First, consider a purely bilingual setting, where we
learn to translate from a source language, Ls, to
a target language, Lt. We can train a translation
model by optimizing the conditional log-likelihood
of the bilingual data under the model:

θ̂ := argmaxθ
∑
Cst

logPθ (xt | xs) (1)

where θ̂ are the estimated parameters of the model.
The encoder-decoder framework introduces a

latent sequence, u, and represents the model as:

Pθ (xt | xs) = Pdec
θ (xt | u = f encθ (xs)) (2)

where f encθ (xs) is the encoder that maps a source
sequence to a sequence of latent representations, u,
and the decoder defines Pdec

θ (xt | u).1 Note that u
is usually deterministic with respect to xs and ac-
curate representation of the conditional distribution
highly depends on the decoder. In neural machine
translation, the exact forms of encoder and decoder
are specified using RNNs (Sutskever et al., 2014),

1Slightly abusing the notation, we use θ to denote all pa-
rameters of the model: embeddings, encoder, and decoder.

CNNs (Gehring et al., 2016), and attention (Bah-
danau et al., 2014; Vaswani et al., 2017) as building
blocks. The decoding distribution, Pdec

θ (xt | u), is
typically modeled autoregressively.

3.3 Multilingual neural machine translation
In the multilingual setting, we would like to learn
to translate in all directions having access to only
few parallel bilingual corpora. In other words,
we would like to learn a collection of models,
{Pθ (xj | xi)}i,j∈E . We can assume that models
are independent and choose to learn them by maxi-
mizing the following objective:

Lind(θ) =
∑
i,j∈Es

∑
(xi,xj)∈Cij

logPθ (xj | xi) (3)

In the statistics literature, this estimation approach
is called maximum composite likelihood (Besag,
1975; Lindsay, 1988) as it composes the objec-
tive out of (sometimes weighted) terms that rep-
resent conditional sub-likelihoods (in our exam-
ple, Pθ (xj | xi)). Composite likelihoods are easy
to construct and tractable to optimize as they do
not require representing the full likelihood, which
would involve integrating out variables unobserved
in the data (see Appendix A.1).

Johnson et al. (2016) proposed to train a multi-
lingual NMT systems by optimizing a composite
likelihood objective (3) while representing all con-
ditional distributions, Pθ (xj | xi), with a shared
encoder and decoder and using language tags, lt,
to distinguish between translation directions:

P (xt | xs) = Pdec
θ (xt | ust = f encθ (xs, lt)) (4)

This approach has numerous advantages includ-
ing: (a) simplicity of training and the architecture
(by slightly changing the training data, we con-
vert a bilingual NMT into a multilingual one), (b)
sharing parameters of the model between differ-
ent translation tasks that may lead to better and
more robust representations. Johnson et al. (2016)
also show that resulting models seem to exhibit
some degree of zero-shot generalization enabled
by parameter sharing. However, since we lack data
for zero-shot directions, composite likelihood (3)
misses the terms that correspond to the zero-shot
models, and hence has no statistical guarantees for
performance on zero-shot tasks.2

2In fact, since the objective (3) assumes that the models are
independent, plausible zero-shot performance would be more
indicative of the limited capacity of the model or artifacts in
the data (e.g., presence of multi-parallel sentences) rather than
zero-shot generalization.
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4 Zero-shot generalization & consistency

Multilingual MT systems can be evaluated in terms
of zero-shot performance, or quality of translation
along the directions they have not been optimized
for (e.g., due to lack of data). We formally define
zero-shot generalization via consistency.

Definition 1 (Expected Zero-shot Consistency)
Let Es and E0 be supervised and zero-shot tasks,
respectively. Let `(·) be a non-negative loss
function and M be a model with maximum
expected supervised loss bounded by some ε > 0 :

max
(i,j)∈Es

Exi,xj [`(M)] < ε

We callM zero-shot consistent with respect to `(·)
if for some κ(ε) > 0

max
(i,j)∈E0

Exi,xj [`(M)] < κ(ε),

where κ(ε)→ 0 as ε→ 0.

In other words, we say that a machine translation
system is zero-shot consistent if low error on super-
vised tasks implies a low error on zero-shot tasks
in expectation (i.e., the system generalizes). We
also note that our notion of consistency somewhat
resembles error bounds in the domain adaptation
literature (Ben-David et al., 2010).

In practice, it is attractive to have MT systems
that are guaranteed to exhibit zero-shot general-
ization since the access to parallel data is always
limited and training is computationally expensive.
While the training method of Johnson et al. (2016)
does not have guarantees, we show that our pro-
posed approach is provably zero-shot consistent.

5 Approach

We propose a new training objective for multilin-
gual NMT architectures with shared encoders and
decoders that avoids the limitations of pure com-
posite likelihoods. Our method is based on the idea
of agreement-based learning initially proposed for
learning consistent alignments in phrase-based sta-
tistical machine translation (SMT) systems (Liang
et al., 2006, 2008). In terms of the final objective
function, the method ends up being reminiscent of
distillation (Kim and Rush, 2016), but suitable for
joint multilingual training.

5.1 Agreement-based likelihood
To introduce agreement-based objective, we use the
graph from Figure 2 that defines translation tasks
between 4 languages (En, Es, Fr, Ru). In particu-
lar, consider the composite likelihood objective (3)
for a pair of En− Fr sentences, (xEn,xFr):

LindEnFr(θ) (5)

= log [Pθ (xFr | xEn)Pθ (xEn | xFr)]

= log

 ∑
z′Es,z

′
Ru

Pθ
(
xFr, z

′
Es, z

′
Ru | xEn

)
×

∑
z′′Es,z

′′
Ru

Pθ
(
xEn, z

′′
Es, z

′′
Ru | xFr

)
where we introduced latent translations into Span-
ish (Es) and Russian (Ru) and marginalized them
out (by virtually summing over all sequences in
the corresponding languages). Again, note that this
objective assumes independence of En→ Fr and
Fr→ En models.

Following Liang et al. (2008), we propose
to tie together the single prime and the double
prime latent variables, zEs and zRu, to encourage
agreement between Pθ (xEn, zEs, zRu | xFr) and
Pθ (xFr, zEs, zRu | xEn) on the latent translations.
We interchange the sum and the product operations
inside the log in (5), denote z := (zEs, zRu) to
simplify notation, and arrive at the following new
objective function:

LagreeEnFr(θ) := (6)

log
∑
z

Pθ (xFr, z | xEn)Pθ (xEn, z | xFr)

Next, we factorize each term as:

P (x, z | y) = P (x | z,y)Pθ (z | y)

Assuming Pθ (xFr | z,xEn) ≈ Pθ (xFr | xEn),3
the objective (6) decomposes into two terms:

LagreeEnFr(θ) (7)

≈ logPθ (xFr | xEn) + logPθ (xEn | xFr)︸ ︷︷ ︸
composite likelihood terms

+

log
∑
z

Pθ (z | xEn)Pθ (z | xFr)︸ ︷︷ ︸
agreement term

3This means that it is sufficient to condition on a sentence
in one of the languages to determine probability of a transla-
tion in any other language.



1188

We call the expression given in (7) agreement-
based likelihood. Intuitively, this objective is
the likelihood of observing parallel sentences
(xEn,xFr) and having sub-models Pθ (z | xEn)
and Pθ (z | xFr) agree on all translations into Es
and Ru at the same time.

Lower bound. Summation in the agreement
term over z (i.e., over possible translations into Es
and Ru in our case) is intractable. Switching back
from z to (zEs, zRu) notation and using Jensen’s
inequality, we lower bound it with cross-entropy:4

log
∑
z

Pθ (z | xEn)Pθ (z | xFr)

≥EzEs|xEn [logPθ (zEs | xFr)] + (8)

EzRu|xEn [logPθ (zRu | xFr)]

We can estimate the expectations in the lower
bound on the agreement terms by sampling zEs ∼
Pθ (zEs | xEn) and zRu ∼ Pθ (zRu | xEn). In prac-
tice, instead of sampling we use greedy, continuous
decoding (with a fixed maximum sequence length)
that also makes zEs and zRu differentiable with
respect to parameters of the model.

5.2 Consistency by agreement

We argue that models produced by maximizing
agreement-based likelihood (7) are zero-shot con-
sistent. Informally, consider again our running
example from Figure 2. Given a pair of paral-
lel sentences in (En,Fr), agreement loss encour-
ages translations from En to {Es,Ru} and trans-
lations from Fr to {Es,Ru} to coincide. Note
that En → {Es,Fr,Ru} are supervised direc-
tions. Therefore, agreement ensures that transla-
tions along the zero-shot edges in the graph match
supervised translations. Formally, we state it as:

Theorem 2 (Agreement Zero-shot Consistency)
Let L1, L2, and L3 be a collection of languages
with L1 ↔ L2 and L2 ↔ L3 be supervised while
L1 ↔ L3 be a zero-shot direction. Let Pθ (xj | xi)
be sub-models represented by a multilingual MT
system. If the expected agreement-based loss,
Ex1,x2,x3 [Lagree12 (θ) + Lagree23 (θ)], is bounded by
some ε > 0, then, under some mild technical
assumptions on the true distribution of the
equivalent translations, the zero-shot cross-entropy

4Note that expectations in (8) are conditional on xEn. Sym-
metrically, we can have a lower bound with expectations con-
ditional on xFr. In practice, we symmetrize the objective.

Algorithm 1 Agreement-based M-NMT training
input Architecture (GNMT), agreement coefficient (γ)
1: Initialize: θ ← θ0
2: while not (converged or step limit reached) do
3: Get a mini-batch of parallel src-tgt pairs, (Xs,Xt)
4: Supervised loss: Lsup(θ)← log Pθ (Xt | Xs)
5: Auxiliary languages: La ∼ Unif({1, . . . , k})
6: Auxiliary translations:

Za←s ← Decode (Za | fenc
θ (Xs, La))

Za←t ← Decode (Za | fenc
θ (Xt, La))

7: Agreement log-probabilities:
`ta←s ← log Pθ (Za←s | Xt)
`sa←t ← log Pθ (Za←t | Xs)

8: Apply stop-gradients to supervised `ta←s and `sa←t
9: Total loss: Ltotal(θ)← Lsup(θ) + γ(`ta←s + `sa←t)

10: Update: θ ← optimizer update(Ltotal, θ)
11: end while
output θ

loss is bounded as follows:

Ex1,x3 [− logPθ (x3 | x1)] ≤ κ(ε)

where κ(ε)→ 0 as ε→ 0.

For discussion of the assumptions and details on
the proof of the bound, see Appendix A.2. Note
that Theorem 2 is straightforward to extend from
triplets of languages to arbitrary connected graphs,
as given in the following corollary.

Corollary 3 Agreement-based learning yields zero
shot consistent MT models (with respect to the cross
entropy loss) for arbitrary translation graphs as
long as supervised directions span the graph.

Alternative ways to ensure consistency. Note
that there are other ways to ensure zero-shot con-
sistency, e.g., by fine-tuning or post-processing a
trained multilingual model. For instance, pivot-
ing through an intermediate language is also zero-
shot consistent, but the proof requires stronger
assumptions about the quality of the supervised
source-pivot model.5 Similarly, using model dis-
tillation (Kim and Rush, 2016; Chen et al., 2017)
would be also provably consistent under the same
assumptions as given in Theorem 2, but for a sin-
gle, pre-selected zero-shot direction. Note that our
proposed agreement-based learning framework is
provably consistent for all zero-shot directions and
does not require any post-processing. For discus-
sion of the alternative approaches and consistency
proof for pivoting, see Appendix A.3.

5Intuitively, we have to assume that source-pivot model
does not assign high probabilities to unlikely translations as
the pivot-target model may react to those unpredictably.
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Figure 3: A. Computation graph for the encoder. The representations depend on the input sequence and the target language tag.
B. Computation graph for the agreement loss. First, encode source and target sequences with the auxiliary language tags. Next,
decode zEs from both xEn and xFr using continuous greedy decoder. Finally, evaluate log probabilities, log Pθ (zEs(xEn) | xFr)
and log Pθ (zEs(xFr) | xEn), and compute a sample estimate of the agreement loss.

5.3 Agreement-based learning algorithm

Having derived a new objective function (7), we
can now learn consistent multilingual NMT models
using stochastic gradient method with a couple of
extra tricks (Algorithm 1). The computation graph
for the agreement loss is given in Figure 3.

Subsampling auxiliary languages. Computing
agreement over all languages for each pair of sen-
tences at training time would be quite computa-
tionally expensive (to agree on k translations, we
would need to encode-decode the source and target
sequences k times each). However, since the agree-
ment lower bound is a sum over expectations (8),
we can approximate it by subsampling: at each
training step (and for each sample in the mini-
batch), we pick an auxiliary language uniformly at
random and compute stochastic approximation of
the agreement lower bound (8) for that language
only. This stochastic approximation is simple, unbi-
ased, and reduces per step computational overhead
for the agreement term from O(k) to O(1).6

Overview of the agreement loss computation.
Given a pair of parallel sentences, xEn and xFr, and
an auxiliary language, say Es, an estimate of the
lower bound on the agreement term (8) is computed
as follows. First, we concatenate Es language tags
to both xEn and xFr and encode the sequences so
that both can be translated into Es (the encoding

6In practice, note that there is still a constant factor over-
head due to extra encoding-decoding steps to/from auxiliary
languages, which is about ×4 when training on a single GPU.
Parallelizing the model across multiple GPUs would easily
compensate this overhead.

process is depicted in Figure 3A). Next, we decode
each of the encoded sentences and obtain auxiliary
translations, zEs(xEn) and zEs(xFr), depicted as
blue blocks in Figure 3B. Note that we now can
treat pairs (xFr, zEs(xEn)) and (xEn, zEs(xFr)) as
new parallel data for En→ Es and Fr→ Es.

Finally, using these pairs, we can compute two
log-probability terms (Figure 3B):

logPθ (zEs(xFr) | xEn)
logPθ (zEs(xEn) | xFr)

(9)

using encoding-decoding with teacher forcing
(same way as typically done for the supervised
directions). Crucially, note that zEs(xEn) corre-
sponds to a supervised direction, En→ Es, while
zEs(xFr) corresponds to zero-shot, Fr→ Es. We
want each of the components to (i) improve the
zero-shot direction while (ii) minimally affecting
the supervised direction. To achieve (i), we use con-
tinuous decoding, and for (ii) we use stop-gradient-
based protection of the supervised directions. Both
techniques are described below.

Greedy continuous decoding. In order to make
zEs(xEn) and zEs(xFr) differentiable with respect
to θ (hence, continuous decoding), at each decod-
ing step t, we treat the output of the RNN, ht, as
the key and use dot-product attention over the em-
bedding vocabulary, V, to construct ztEs:

ztEs := softmax
{
(ht)>V

}
V (10)

In other words, auxiliary translations, zEs(xEn)
and zEs(xFr), are fixed length sequences of differ-
entiable embeddings computed in a greedy fashion.
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Protecting supervised directions. Algorithm 1
scales agreement losses by a small coefficient γ.
We found experimentally that training could be
sensitive to this hyperparameter since the agree-
ment loss also affects the supervised sub-models.
For example, agreement of En→ Es (supervised)
and Fr → Es (zero-shot) may push the former
towards a worse translation, especially at the be-
ginning of training. To stabilize training, we apply
the stop gradient operator to the log probabil-
ities and samples produced by the supervised sub-
models before computing the agreement terms (9),
to zero-out the corresponding gradient updates.

6 Experiments

We evaluate agreement-based training against base-
lines from the literature on three public datasets
that have multi-parallel evaluation data that allows
assessing zero-shot performance. We report results
in terms of the BLEU score (Papineni et al., 2002)
that was computed using mteval-v13a.perl.

6.1 Datasets
UN corpus. Following the setup introduced in
Sestorain et al. (2018), we use two datasets,
UNcorpus-1 and UNcorpus-2, derived from the
United Nations Parallel Corpus (Ziemski et al.,
2016). UNcorpus-1 consists of data in 3 languages,
En, Es, Fr, where UNcorpus-2 has Ru as the 4th
language. For training, we use parallel corpora
between En and the rest of the languages, each
about 1M sentences, sub-sampled from the official
training data in a way that ensures no multi-parallel
training data. The dev and test sets contain 4,000
sentences and are all multi-parallel.

Europarl v77. We consider the following lan-
guages: De, En, Es, Fr. For training, we use
parallel data between En and the rest of the lan-
guages (about 1M sentences per corpus), prepro-
cessed to avoid multi-parallel sentences, as was
also done by Cheng et al. (2017) and Chen et al.
(2017) and described below. The dev and test sets
contain 2,000 multi-parallel sentences.

IWSLT178. We use data from the official mul-
tilingual task: 5 languages (De, En, It, Nl,
Ro), 20 translation tasks of which 4 zero-shot
(De ↔ Nl and It ↔ Ro) and the rest 16 su-
pervised. Note that this dataset has a significant

7http://www.statmt.org/europarl/
8https://sites.google.com/site/

iwsltevaluation2017/TED-tasks

overlap between parallel corpora in the supervised
directions (up to 100K sentence pairs per direc-
tion). This implicitly makes the dataset multi-
parallel and defeats the purpose of zero-shot eval-
uation (Dabre et al., 2017). To avoid spurious ef-
fects, we also derived IWSLT17? dataset from the
original one by restricting supervised data to only
En ↔ {De,Nl,It,Ro} and removing overlap-
ping pivoting sentences. We report results on both
the official and preprocessed datasets.

Preprocessing. To properly evaluate systems in
terms of zero-shot generalization, we preprocess
Europarl and IWSLT? to avoid multi-lingual paral-
lel sentences of the form source-pivot-target, where
source-target is a zero-shot direction. To do so, we
follow Cheng et al. (2017); Chen et al. (2017) and
randomly split the overlapping pivot sentences of
the original source-pivot and pivot-target corpora
into two parts and merge them separately with the
non-overlapping parts for each pair. Along with
each parallel training sentence, we save informa-
tion about source and target tags, after which all
the data is combined and shuffled. Finally, we use a
shared multilingual subword vocabulary (Sennrich
et al., 2015b) on the training data (with 32K merge
ops), separately for each dataset. Data statistics are
provided in Appendix A.5.

6.2 Training and evaluation
Additional details on the hyperparameters can be
found in Appendix A.4.

Models. We use a smaller version of the GNMT
architecture (Wu et al., 2016) in all our experiments:
512-dimensional embeddings (separate for source
and target sides), 2 bidirectional LSTM layers of
512 units each for encoding, and GNMT-style, 4-
layer, 512-unit LSMT decoder with residual con-
nections from the 2nd layer onward.

Training. We trained the above model using the
standard method of Johnson et al. (2016) and us-
ing our proposed agreement-based training (Algo-
rithm 1). In both cases, the model was optimized
using Adafactor (Shazeer and Stern, 2018) on a
machine with 4 P100 GPUs for up to 500K steps,
with early stopping on the dev set.

Evaluation. We focus our evaluation mainly on
zero-shot performance of the following methods:
(a) Basic, which stands for directly evaluating
a multilingual GNMT model after standard train-
ing (Johnson et al., 2016).

http://www.statmt.org/europarl/
https://sites.google.com/site/iwsltevaluation2017/TED-tasks
https://sites.google.com/site/iwsltevaluation2017/TED-tasks
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Sestorain et al. (2018)† Our baselines

PBSMT NMT-0 Dual-0 Basic Pivot Agree

En → Es 61.26 51.93 — 56.58 56.58 56.36
En → Fr 50.09 40.56 — 44.27 44.27 44.80
Es → En 59.89 51.58 — 55.70 55.70 55.24
Fr → En 52.22 43.33 — 46.46 46.46 46.17

Supervised (avg.) 55.87 46.85 — 50.75 50.75 50.64

Es → Fr 52.44 20.29 36.68 34.75 38.10 37.54
Fr → Es 49.79 19.01 39.19 37.67 40.84 40.02

Zero-shot (avg.) 51.11 19.69 37.93 36.21 39.47 38.78
†Source: https://openreview.net/forum?id=ByecAoAqK7.

Table 1: Results on UNCorpus-1.

Sestorain et al. (2018) Our baselines

PBSMT NMT-0 Dual-0 Basic Pivot Agree

En → Es 61.26 47.51 44.30 55.15 55.15 54.30
En → Fr 50.09 36.70 34.34 43.42 43.42 42.57
En → Ru 43.25 30.45 29.47 36.26 36.26 35.89
Es → En 59.89 48.56 45.55 54.35 54.35 54.33
Fr → En 52.22 40.75 37.75 45.55 45.55 45.87
Ru → En 52.59 39.35 37.96 45.52 45.52 44.67

Supervised (avg.) 53.22 40.55 36.74 46.71 46.71 46.27

Es → Fr 52.44 25.85 34.51 34.73 35.93 36.02
Fr → Es 49.79 22.68 37.71 38.20 39.51 39.94
Es → Ru 39.69 9.36 24.55 26.29 27.15 28.08
Ru → Es 49.61 26.26 33.23 33.43 37.17 35.01
Fr → Ru 36.48 9.35 22.76 23.88 24.99 25.13
Ru → Fr 43.37 22.43 26.49 28.52 30.06 29.53

Zero-shot (avg.) 45.23 26.26 29.88 30.84 32.47 32.29

Table 2: Results on UNCorpus-2.

(b) Pivot, which performs pivoting-based infer-
ence using a multilingual GNMT model (after stan-
dard training); often regarded as gold-standard.
(c) Agree, which applies a multilingual GNMT
model trained with agreement losses directly to
zero-shot directions.

To ensure a fair comparison in terms of model
capacity, all the techniques above use the same
multilingual GNMT architecture described in the
previous section. All other results provided in the
tables are as reported in the literature.

Implementation. All our methods were imple-
mented using TensorFlow (Abadi et al., 2016) on
top of tensor2tensor library (Vaswani et al., 2018).
Our code will be made publicly available.9

6.3 Results on UN Corpus and Europarl

UN Corpus. Tables 1 and 2 show results on
the UNCorpus datasets. Our approach consis-
tently outperforms Basic and Dual-0, despite
the latter being trained with additional monolin-
gual data (Sestorain et al., 2018). We see that mod-
els trained with agreement perform comparably to
Pivot, outperforming it in some cases, e.g., when
the target is Russian, perhaps because it is quite

9www.cs.cmu.edu/˜mshediva/code/

Previous work Our baselines

Soft‡ Distill† Basic Pivot Agree

En → Es — — 34.69 34.69 33.80
En → De — — 23.06 23.06 22.44
En → Fr 31.40 — 33.87 33.87 32.55
Es → En 31.96 — 34.77 34.77 34.53
De → En 26.55 — 29.06 29.06 29.07
Fr → En — — 33.67 33.67 33.30

Supervised (avg.) — — 31.52 31.52 30.95

Es → De — — 18.23 20.14 20.70
De → Es — — 20.28 26.50 22.45
Es → Fr 30.57 33.86 27.99 32.56 30.94
Fr → Es — — 27.12 32.96 29.91
De → Fr 23.79 27.03 21.36 25.67 24.45
Fr → De — — 18.57 19.86 19.15

Zero-shot (avg.) — — 22.25 26.28 24.60
†Soft pivoting (Cheng et al., 2017). ‡Distillation (Chen et al., 2017).

Table 3: Zero-shot results on Europarl. Note that Soft and
Distill are not multilingual systems.

Previous work Our baselines

SOTA† CPG‡ Basic Pivot Agree

Supervised (avg.) 24.10 19.75 24.63 24.63 23.97
Zero-shot (avg.) 20.55 11.69 19.86 19.26 20.58

†Table 2 from Dabre et al. (2017). ‡Table 2 from Platanios et al. (2018).

Table 4: Results on the official IWSLT17 multilingual task.

Basic Pivot Agree

Supervised (avg.) 28.72 28.72 29.17
Zero-shot (avg.) 12.61 17.68 15.23

Table 5: Results on our proposed IWSLT17?.

different linguistically from the English pivot.
Furthermore, unlike Dual-0, Agree main-

tains high performance in the supervised directions
(within 1 BLEU point compared to Basic), indi-
cating that our agreement-based approach is effec-
tive as a part of a single multilingual system.

Europarl. Table 3 shows the results on the Eu-
roparl corpus. On this dataset, our approach con-
sistently outperforms Basic by 2-3 BLEU points
but lags a bit behind Pivot on average (except on
Es→ De where it is better). Cheng et al. (2017)10

and Chen et al. (2017) have reported zero-resource
results on a subset of these directions and our ap-
proach outperforms the former but not the latter
on these pairs. Note that both Cheng et al. (2017)
and Chen et al. (2017) train separate models for
each language pair and the approach of Chen et al.
(2017) would require training O(k2) models to en-
compass all the pairs. In contrast, we use a single
multilingual architecture which has more limited
model capacity (although in theory, our approach
is also compatible with using separate models for
each direction).

10We only show their best zero-resource result in the table
since some of their methods require direct parallel data.

https://openreview.net/forum?id=ByecAoAqK7
www.cs.cmu.edu/~mshediva/code/
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Figure 4: BLEU on the dev set for Agree and the baselines
trained on smaller subsets of the Europarl corpus.

6.4 Analysis of IWSLT17 zero-shot tasks

Table 4 presents results on the original IWSLT17
task. We note that because of the large amount
of data overlap and presence of many supervised
translation pairs (16) the vanilla training method
(Johnson et al., 2016) achieves very high zero shot
performance, even outperforming Pivot. While
our approach gives small gains over these baselines,
we believe the dataset’s pecularities make it not
reliable for evaluating zero-shot generalization.

On the other hand, on our proposed preprocessed
IWSLT17? that eliminates the overlap and reduces
the number of supervised directions (8), there is a
considerable gap between the supervised and zero-
shot performance of Basic. Agree performs bet-
ter than Basic and is slightly worse than Pivot.

6.5 Small data regime

To better understand the dynamics of different
methods in the small data regime, we also trained
all our methods on subsets of the Europarl for 200K
steps and evaluated on the dev set. The training
set size varied from 50 to 450K parallel sentences.
From Figure 4, Basic tends to perform extremely
poorly while Agree is the most robust (also in
terms of variance across zero-shot directions). We
see that Agree generally upper-bounds Pivot,
except for the (Es,Fr) pair, perhaps due to fewer
cascading errors along these directions.

7 Conclusion

In this work, we studied zero-shot generalization in
the context of multilingual neural machine transla-
tion. First, we introduced the concept of zero-shot

consistency that implies generalization. Next, we
proposed a provably consistent agreement-based
learning approach for zero-shot translation. Empiri-
cal results on three datasets showed that agreement-
based learning results in up to +3 BLEU zero-shot
improvement over the Johnson et al. (2016) base-
line, compares favorably to other approaches in
the literature (Cheng et al., 2017; Sestorain et al.,
2018), is competitive with pivoting, and does not
lose in performance on supervised directions.

We believe that the theory and methodology be-
hind agreement-based learning could be useful be-
yond translation, especially in multi-modal settings.
For instance, it could be applied to tasks such as
cross-lingual natural language inference (Conneau
et al., 2018), style-transfer (Shen et al., 2017; Fu
et al., 2017; Prabhumoye et al., 2018), or multi-
lingual image or video captioning. Another in-
teresting future direction would be to explore dif-
ferent hand-engineered or learned data representa-
tions, which one could use to encourage models
to agree on during training (e.g., make translation
models agree on latent semantic parses, summaries,
or potentially other data representations available
at training time).
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A Appendices

A.1 Complete likelihood
Given a set of conditional models, {Pθ (xj | xi)},
we can write out the full likelihood over equivalent
translations, (x1, . . . ,xk), as follows:

Pθ (x1, . . . ,xk) :=
1

Z

∏
i,j∈E

Pθ (xj | xi) (11)

where Z :=
∑

x1,...,xk

∏
i,j∈E Pθ (xj | xi) is the

normalizing constant and E denotes all edges in the
graph (Figure 5). Given only bilingual parallel cor-
pora, Cij for i, j ∈ Es, we can observe only certain
pairs of variables. Therefore, the log-likelihood of
the data can be written as:

L(θ) :=∑
i,j∈Es

∑
xi,xj∈Cij

log
∑
z

Pθ (x1, . . . ,xk)

(12)

Here, the outer sum iterates over available corpora.
The middle sum iterates over parallel sentences in
a corpus. The most inner sum marginalizes out
unobservable sequences, denoted z := {xl}l 6=i,j ,
which are sentences equivalent under this model to
xi and xj in languages other than Li and Lj . Note
that due to the inner-most summation, computing
the log-likelihood is intractable.

We claim the following.

Claim 4 Maximizing the full log-likelihood yields
zero-shot consistent models (Definition 1).

Proof. To better understand why this is the case,
let us consider example in Figure 5 and compute
the log-likelihood of (x1,x2):

logPθ (x1,x2)

= log
∑

x3,x4

Pθ (x1,x2,x3,x4)

∝ logPθ (x1 | x2) + logPθ (x2 | x1)+

log
∑

x3,x4

Pθ (x1 | x3)Pθ (x3 | x1)×

Pθ (x2 | x3)Pθ (x3 | x2)×
Pθ (x1 | x4)Pθ (x4 | x1)×
Pθ (x2 | x4)Pθ (x4 | x2)×
Pθ (x3 | x4)Pθ (x4 | x3)

Note that the terms that encourage agreement on
the translation into L3 are colored in green (simi-
larly, terms that encourage agreement on the trans-
lation into L4 are colored in blue). Since all other
terms are probabilities and bounded by 1, we have:

L1

L2 L3

L4

C12 C13

C 1
4

Figure 5: Probabilistic graphical model for a multilingual
system with four languages (L1, L2, L3, L4). Variables can
only be observed only in pairs (shaded in the graph).

logPθ (x1,x2) + logZ

≤ logPθ (x1 | x2) + logPθ (x2 | x1)+

log
∑

x3,x4

Pθ (x3 | x1)Pθ (x3 | x2)×

Pθ (x4 | x1)Pθ (x4 | x2)

≡Lagree(θ)
In other words, the full log likelihood lower-
bounds the agreement objective (up to a constant
logZ). Since optimizing for agreement leads to
consistency (Theorem 2), and maximizing the
full likelihood would necessarily improve the
agreement, the claim follows.

Remark 5 Note that the other terms in the full
likelihood also have a non-trivial purpose: (a)
the terms Pθ (x1 | x3), Pθ (x1 | x4), Pθ (x2 | x3),
Pθ (x2 | x4), encourage the model to correctly re-
construct x1 and x2 when back-translating from
unobserved languages, L3 and L4, and (b) terms
Pθ (x3 | x4), Pθ (x4 | x3) enforce consistency be-
tween the latent representations. In other words,
full likelihood accounts for a combination of agree-
ment, back-translation, and latent consistency.

A.2 Proof of agreement consistency
The statement of Theorem 2 mentions an assump-
tion on the true distribution of the equivalent trans-
lations. The assumption is as follows.

Assumption 6 Let P (xi | xj ,xk) be the ground
truth conditional distribution that specifies the
probability of xi to be a translation of xj and xk
into language Li, given that (xj ,xk) are correct
translations of each other in languages Lj and Lk,
respectively. We assume:

0 ≤ δ ≤ Exk|xi,xj [P (xi | xj ,xk)] ≤ ξ ≤ 1
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This assumption means that, even though there
might be multiple equivalent translations, there
must be not too many of them (implied by the
δ lower bound) and none of them must be much
more preferable than the rest (implied by the ξ up-
per bound). Given this assumption, we can prove
the following simple lemma.

Lemma 7 Let Li → Lj be one of the supervised
directions, Exi,xj [− logPθ (xj | xi)] ≤ ε. Then
the following holds:

Exi|xj ,xk

[
Pθ (xj | xi)

P (xj | xi,xk)

]
≥ log

1

ξ
− εδ

Proof. First, using Jensen’s inequality, we have:

logExi|xj ,xk

[
Pθ (xj | xi)

P (xj | xi,xk)

]
≥

Exi|xj ,xk [logPθ (xj | xi)− logP (xj | xi,xk)]

The bound on the supervised direction implies that

Exi|xj ,xk [− logPθ (xj | xi)] ≥ −εδ

To bound the second term, we use Assumption 6:

Exi|xj ,xk [− logP (xj | xi,xk)] ≥ log
1

ξ

Putting these together yields the bound.

Now, using Lemma 7, we can prove Theorem 2.

Proof. By assumption, the agreement-based loss
is bounded by ε. Therefore, expected cross-entropy
on all supervised terms, L1 ↔ L2, is bounded by
ε. Moreover, the agreement term (which is part of
the objective) is also bounded:

−Exi,xj

[∑
xk

Pθ (xk | xj) logPθ (xk | xi)
]
≤ ε

Expanding this expectation, we have:∑
xi,xj

P (xi,xj)
∑
xk

Pθ (xk | xj) logPθ (xk | xi)]

=
∑

xi,xj ,xk

P (xi,xj ,xk)×

Pθ (xk | xj)
P (xk | xi,xj)

logPθ (xk | xi)

=
∑
xi,xk

Exj |xi,xk

[
Pθ (xk | xj)
P (xk | xi,xj)

]
×

P (xi,xk) logPθ (xk | xi)

Combining that with Lemma 7, we have:

Exi,xk [− logPθ (xk | xi)] ≤
ε

log 1
ξ − δε

≡ κ(ε)

Since by Assumption 6, δ and ξ are some constants,
κ(ε)→ 0 as ε→ 0.

A.3 Consistency of distillation and pivoting
As we mentioned in the main text of the paper,
distillation (Chen et al., 2017) and pivoting yield
zero-shot consistent models. Let us understand
why this is the case.

In our notation, given L1 → L2 and L2 → L3 as
supervised directions, distillation optimizes a KL-
divergence between Pθ (x3 | x2) and Pθ (x3 | x1),
where the latter is a zero-shot model and the former
is supervised. Noting that KL-divergence lower-
bounds cross-entropy, it is a loser bound on the
agreeement loss. Hence, by ensuring that KL is low,
we also ensure that the models agree, which implies
consistency (a more formal proof would exactly
follow the same steps as the proof of Theorem 2).

To prove consistency of pivoting, we need an
additional assumption on the quality of the source-
pivot model.

Assumption 8 Let Pθ (xj | xi) be the source-
pivot model. We assume the following bound holds
for each pair of equivalent translations, (xj ,xk):

Exi|xj ,xk

[
Pθ (xj | xi)

P (xj | xi,xk)

]
≤ C

where C > 0 is some constant.

Theorem 9 (Pivoting consistency) Given the
conditions of Theorem 2 and Assumption 8,
pivoting is zero-shot consistent.

Proof. We can bound the expected error on piv-
oting as follows (using Jensen’s inequality and the
conditions from our assumptions):

Exi,xk

− log
∑
xj

Pθ (xj | xi)Pθ (xk | xj)


≤ Exi,xj ,xk [−Pθ (xj | xi) logPθ (xk | xj)]

≤
∑
xi,xk

Exj |xi,xk

[
Pθ (xk | xj)
P (xk | xi,xj)

]
×

P (xi,xk) logPθ (xk | xi)
≤ Cε
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A.4 Details on the models and training
Architecture. All our NMT models used the
GNMT (Wu et al., 2016) architecture with Luong
attention (Luong et al., 2015b), 2 bidirectional en-
coder, and 4-layer decoder with residual connec-
tions. All hidden layers (including embeddings)
had 512 units. Additionally, we used separate em-
beddings on the encoder and decoder sides as well
as tied weights of the softmax that produced log-
its with the decoder-side (i.e., target) embeddings.
Standard dropout of 0.2 was used on all hidden
layers. Most of the other hyperparameters we set
to default in the T2T (Vaswani et al., 2018) library
for the text2text type of problems.

Training and hyperparameters. We scaled
agreement terms in the loss by γ = 0.01. The
training was done using Adafactor (Shazeer and
Stern, 2018) optimizer with 10,000 burn-in steps at
0.01 learning rate and further standard square root
decay (with the default settings for the decay from
the T2T library). Additionally, implemented agree-
ment loss as a subgraph as a loss was not computed
if γ was set to 0. This allowed us to start train-
ing multilingual NMT models in the burn-in mode
using the composite likelihood objective and then
switch on agreement starting some point during
optimization (typically, after the first 100K itera-
tions; we also experimented with 0, 50K, 200K,
but did not notice any difference in terms of final
performance). Since the agreement subgraph was
not computed during the initial training phase, it
tended to accelerate training of agreement models.

A.5 Details on the datasets
Statistics of the IWSLT17 and IWSLT17? datasets
are summarized in Table 6. UNCorpus and and
Europarl datasets were exactly as described by Ses-
torain et al. (2018) and Chen et al. (2017); Cheng
et al. (2017), respectively.

Corpus Directions Train Dev (dev2010) Test (tst2010)

IWSLT17

De → En 206k 888 1568
De → It 205k 923 1567
De → Nl 0 1001 1567
De → Ro 201k 912 1677

En → De 206k 888 1568
En → It 231K 929 1566
En → Nl 237k 1003 1777
En → Ro 220k 914 1678

It → De 205k 923 1567
It → En 231k 929 1566
It → Nl 205k 1001 1669
It → Ro 0 914 1643

Nl → De 0 1001 1779
Nl → En 237k 1003 1777
Nl → It 233k 1001 1669
Nl → Ro 206k 913 1680

Ro → De 201k 912 1677
Ro → En 220k 914 1678
Ro → It 0 914 1643
Ro → Nl 206k 913 1680

IWSLT17?

De → En 124k 888 1568
De → It 0 923 1567
De → Nl 0 1001 1567
De → Ro 0 912 1677

En → De 124k 888 1568
En → It 139k 929 1566
En → Nl 155k 1003 1777
En → Ro 128k 914 1678

It → De 0 923 1567
It → En 139k 929 1566
It → Nl 0 1001 1669
It → Ro 0 914 1643

Nl → De 0 1001 1779
Nl → En 155k 1003 1777
Nl → It 0 1001 1669
Nl → Ro 0 913 1680

Ro → De 0 912 1677
Ro → En 128k 914 1678
Ro → It 0 914 1643
Ro → Nl 0 913 1680

Table 6: Data statistics for IWSLT17 and IWSLT17?. Note
that training data in IWSLT17? was restricted to only En↔
{De,It,Nl,Ro} directions and cleaned from complete piv-
ots through En, which also reduced the number of parallel
sentences in each supervised direction.


