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Abstract
Current state-of-the-art NMT systems use
large neural networks that are not only slow
to train, but also often require many heuristics
and optimization tricks, such as specialized
learning rate schedules and large batch sizes.
This is undesirable as it requires extensive hy-
perparameter tuning. In this paper, we propose
a curriculum learning framework for NMT that
reduces training time, reduces the need for spe-
cialized heuristics or large batch sizes, and re-
sults in overall better performance. Our frame-
work consists of a principled way of deciding
which training samples are shown to the model
at different times during training, based on the
estimated difficulty of a sample and the cur-
rent competence of the model. Filtering train-
ing samples in this manner prevents the model
from getting stuck in bad local optima, mak-
ing it converge faster and reach a better solu-
tion than the common approach of uniformly
sampling training examples. Furthermore, the
proposed method can be easily applied to ex-
isting NMT models by simply modifying their
input data pipelines. We show that our frame-
work can help improve the training time and
the performance of both recurrent neural net-
work models and Transformers, achieving up
to a 70% decrease in training time, while at the
same time obtaining accuracy improvements
of up to 2.2 BLEU.

1 Introduction

Neural Machine Translation (NMT; Kalchbrenner
and Blunsom (2013); Bahdanau et al. (2015)) now
represents the state-of-the-art adapted in most ma-
chine translation systems (Wu et al., 2016; Crego
et al., 2016; Bojar et al., 2017a), largely due to
its ability to benefit from end-to-end training on
massive amounts of data. In particular, recently-
introduced self-attentional Transformer architec-
tures (Vaswani et al., 2017) are rapidly becoming
the de-facto standard in NMT, having demonstrated
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Figure 1: Overview of the proposed curriculum learn-
ing framework. During training, difficulty of each train-
ing sample is estimated and a decision whether to use it
is made based on the current competence of the model.

both superior performance and training speed com-
pared to previous architectures using recurrent neu-
ral networks (RNNs; (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014)). However, large scale
NMT systems are often hard to train, requiring
complicated heuristics which can be both time-
consuming and expensive to tune. This is espe-
cially true for Transformers which, when carefully
tuned, have been shown to consistently outperform
RNNs (Popel and Bojar, 2018), but on the other
hand, also rely on a number of heuristics such as
specialized learning rates and large-batch training.

In this paper, we attempt to tackle this problem
by proposing a curriculum learning framework
for training NMT systems that reduces training
time, reduces the need for specialized heuristics
or large batch sizes, and results in overall better
performance. It allows us to train both RNNs and,
perhaps more importantly, Transformers, with rel-
ative ease. Our proposed method is based on the
idea of teaching algorithms in a similar manner
as humans, from easy concepts to more difficult
ones. This idea can be traced back to the work
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of Elman (1993) and Krueger and Dayan (2009).
The main motivation is that training algorithms
can perform better if training data is presented in
a specific order, starting from easy examples and
moving on to more difficult ones, as the learner
becomes more competent. In the case of machine
learning, it can also be thought of as a means to
avoid getting stuck in bad local optima early on in
training. An overview of the proposed framework
is shown in Figure 1.

Notably, we are not the first to examine cur-
riculum learning for NMT, although other related
works have met with mixed success. Kocmi and
Bojar (2017) explore impact of several curriculum
heuristics on training a translation system for a sin-
gle epoch, presenting the training examples in an
easy-to-hard order based on sentence length and
vocabulary frequency. However, their strategy in-
troduces all training samples during the first epoch,
and how this affects learning in following epochs
is not clear, with official evaluation results (Bo-
jar et al., 2017b) indicating that final performance
may indeed be hurt with this strategy. Contempo-
raneously to our work, Zhang et al. (2018) further
propose to split the training samples into a prede-
fined number of bins (5, in their case), based on
various difficulty metrics. A manually designed
curriculum schedule then specifies the bins from
which the model samples training examples. Ex-
periments demonstrate that benefits of curriculum
learning are highly sensitive to several hyperparam-
eters (e.g., learning rate, number of iterations spent
in each phase, etc.), and largely provide benefits
in convergence speed as opposed to final model
accuracy.

In contrast to these previous approaches, we de-
fine a continuous curriculum learning method (in-
stead of a discretized regime) with only one tunable
hyperparameter (the duration of curriculum learn-
ing). Furthermore, as opposed to previous work
which only focuses on RNNs, we also experiment
with Transformers, which are notoriously hard to
train (Popel and Bojar, 2018). Finally, unlike any
of the work described above, we show that our
curriculum approach helps not only in terms of
convergence speed, but also in terms of the learned
model performance. In summary, our method has
the following desirable features:

1. Abstract: It is a novel, generic, and extensible
formulation of curriculum learning. A number
of previous heuristic-based approaches, such as

that of Kocmi and Bojar (2017), can be formu-
lated as special cases of our framework.

2. Simple: It can be applied to existing NMT sys-
tems with only a small modification to their
training data pipelines.

3. Automatic: It does not require any tuning other
than picking the value of a single parameter,
which is the length of the curriculum (i.e., for
how many steps to use curriculum learning, be-
fore easing into normal training).

4. Efficient: It reduces training time by up to 70%,
whereas contemporaneous work of Zhang et al.
(2018) reports reductions of up to 46%.

5. Improved Performance: It improves the per-
formance of the learned models by up to 2.2
BLEU points, where the best setting reported
by Zhang et al. (2018) achieves gains of up 1.55
BLEU after careful tuning.

In the next section, we introduce our proposed cur-
riculum learning framework.

2 Proposed Method

We propose competence-based curriculum learn-
ing, a training framework based on the idea that
training algorithms can perform better if training
data is presented in a way that picks examples ap-
propriate for the model’s current competence. More
specifically, we define the following two concepts
that are central to our framework:

Difficulty: A value that represents the difficulty
of a training sample and that may depend on the
current state of the learner. For example, sentence
length is an intuitive difficulty metric for natural
language processing tasks. The only constraint is
that difficulty scores are comparable across differ-
ent training samples (i.e., the training samples can
be ranked according to their difficulty).

Competence: A value between 0 and 1 that rep-
resents the progress of a learner during its training.
It is defined as a function of the learner’s state.
More specifically, we define the competence, c(t)
at time t (measured in terms of training steps), of
a learner as the proportion of training data it is al-
lowed to use at that time. The training examples are
ranked according to their difficulty and the learner
is only allowed to use the top c(t) portion of them
at time t.
Using these two concepts, we propose Algorithm 1
(a high-level overview is shown in Figure 1, an ex-
ample visualization of the first two steps is shown
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Thank you very much! 4
Barack Obama loves ... 13
My name is ... 6
What did she say ... 123

Sentence Length

Thank you very much! 0.01
Barack Obama loves ... 0.15
My name is ... 0.03
What did she say ... 0.95

Sentence Difficulty

Figure 2: Example visualization of the preprocessing sequence used in the proposed algorithm. The histogram
shown is that of sentence lengths from the WMT-16 En)De dataset used in our experiments. Here sentence lengths
represent an example difficulty scoring function, d. “CDF” stands for the empirical “cumulative density function”
obtained from the histogram on the left plot.

Difficulty
Step 1000

Competence

Competence at current stepSample uniformly from
blue region

Step 10000

Figure 3: Example illustration of the training data
“filtering” performed by our curriculum learning algo-
rithm. At each training step: (i) the current competence
of the model is computed, and (ii) a batch of training
examples is sampled uniformly from all training ex-
amples whose difficulty is lower than that competence.
In this example, we are using the sentence length dif-
ficulty heuristic shown in Equation 1, along with the
square root competence model shown in Equation 7.

in Figure 2, and an example of the interaction be-
tween difficulty and competence is shown in Fig-
ure 3).

Note that, at each training step, we are not chang-
ing the relative probability of each training sample
under the input data distribution, but we are rather
constraining the domain of that distribution, based
on the current competence of the learner. Even-
tually, once the competence becomes 1, the train-
ing process becomes equivalent to that without us-
ing a curriculum, with the main difference that the
learner should now be more capable to learn from
the more difficult examples. Given the dependence
of this algorithm on the specific choices of the dif-
ficulty scoring function, d, and the competence
function, c, we now describe our instantiations for
training NMT models.

Algorithm 1: Competence-based curricu-
lum learning algorithm.

Input: Dataset, D = {si}Mi=1, consisting of M
samples, model trainer, T , that takes as input
batches of training data to use at each step,
difficulty scoring function, d, and competence
function, c.

1 Compute the difficulty, d(si), for each si ∈ D.
2 Compute the cumulative density function (CDF) of

the difficulty scores. This results in one difficulty
CDF score per sample, d̄(si) ∈ [0, 1]. Illustrated in
Figure 2.

3 for training step t = 1, . . . do
4 Compute the model competence, c(t).
5 Sample a data batch, Bt, uniformly from all

si ∈ D, such that d̄(si) ≤ c(t). Illustrated in
Figure 3.

6 Invoke the trainer, T , using Bt as input.
Output: Trained model.

2.1 Difficulty Metrics

There are many possible ways of defining the dif-
ficulty of translating a sentence. We consider two
heuristics inspired by what we, as humans, may
consider difficult when translating, and by fac-
tors which can negatively impact the optimiza-
tion algorithms used when training NMT mod-
els. In the rest of this section we denote our
training corpus as a collection of M sentences,
{si}Mi=1, where each sentence is a sequence of
words. si = {wi

0, . . . , w
i
Ni
}.

Sentence Length: We argue that it is harder to
translate longer sentences, as longer sentences re-
quire being able to translate their component parts,
which often consist of short sentences. Further-
more, longer sentences are intuitively harder to
translate due to the propagation of errors made
early on when generating the target language sen-
tence. Therefore, a simple way to define the dif-
ficulty of a sentence si = {wi

0, . . . , w
i
Ni
} is as

follows:

dlength(si) , Ni. (1)
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Note that we can compute this difficulty metric on
either the source language sentence or the target
language sentence. We only consider the source
sentence in this paper 1.

Word Rarity: Another aspect of language that
can affect the difficulty of translation is the fre-
quency with which words appear. For example, hu-
mans may find rare words hard to translate because
we rarely ever see them and it may be hard to recall
their meaning. The same can be true for NMT mod-
els where: (i) the statistical strength of the training
examples containing rare words is low and thus the
model needs to keep revisiting such words in order
to learn robust representations for them, and (ii)
the gradients of the rare word embeddings tend to
have high variance; they are overestimates of the
true gradients in the few occasions where they are
non-zero, and underestimates otherwise. This sug-
gests that using word frequencies may be a helpful
difficulty heuristic. Given a corpus of sentences,
{si}Mi=1, we define relative word frequencies as:

p̂(wj) ,
1

Ntotal

M∑
i=1

Ni∑
k=1

1wi
k=wj

, (2)

where j = 1, . . . , #{unique words in corpus} and
1condition is the indicator function which is equal
to 1 if its condition is satisfied and 0 otherwise.
Next we need to decide how to aggregate the rel-
ative word frequencies of all words in a sentence
to obtain a single difficulty score for that sentence.
Previous research has proposed various pooling op-
erations, such as minimum, maximum, and average
(Zhang et al., 2018), but they show that they do not
work well in practice. We propose a different ap-
proach. Ultimately, what might be most important
is the overall likelihood of a sentence as that con-
tains information about both word frequency and,
implicitly, sentence length. An approximation to
this likelihood is the product of the unigram prob-
abilities, which is related to previous work in the
area of active learning (Settles and Craven, 2008).
This product can be thought of as an approximate
language model (assuming words are sampled in-
dependently) and also implicitly incorporates in-

1NMT models typically first pick up information about
producing sentences of correct length. It can be argued that
presenting only short sentences first may lead to learning a
strong bias for the sentence lengths. In our experiments, we
did not observe this to be an issue as the models kept im-
proving and predicting sentences of correct length, throughout
training.

formation about the sentence length that was pro-
posed earlier (longer sentence scores are products
over more terms in [0, 1] and are thus likely to be
smaller). We thus propose the following difficulty
heuristic:

drarity(si) , −
Ni∑
k=1

log p̂(wi
k), (3)

where we use logarithms of word probabilities to
prevent numerical errors. Note that negation is
used because we define less likely (i.e., more rare)
sentences as more difficult.

These are just two examples of difficulty metrics,
and it is easy to conceive of other metrics such as
the occurrence of homographs (Liu et al., 2018) or
context-sensitive words (Bawden et al., 2018), the
examination of which we leave for future work.

2.2 Competence Functions

For this paper, we propose two simple functional
forms for c(t) and justify them with some intuition.
More sophisticated strategies that depend on the
loss function, the loss gradient, or on the learner’s
performance on held-out data, are possible, but we
do not consider them in this paper.

Linear: This is a simple way to define c(t).
Given an initial value c0 , c(0) ≥ 0 and a slope
parameter r, we define:

c(t) , min (1, tr + c0) . (4)

In this case, new training examples are constantly
being introduced during the training process, with a
constant rate r (as a proportion of the total number
of available training examples). Note that we can
also define r = (1− c0)/T , where T denotes the
time after which the learner is fully competent,
which results in:

clinear(t) , min

(
1, t

1− c0
T

+ c0

)
. (5)

Root: In the case of the linear form, the same
number of new and more difficult, examples are
added to the training set, at all times t. However,
as the training data grows in size, it gets less likely
that any single data example will be sampled in a
training batch. Thus, given that the newly added
examples are less likely to be sampled, we propose
to reduce the number of new training examples per
unit time as training progresses to give the learner
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sufficient time to assimilate their information con-
tent. More specifically, we define the rate in which
new examples are added as inversely proportional
to the current training data size:

dc(t)

dt
=

P

c(t)
, (6)

for some constant P ≥ 0. Solving this simple
differential equation, we obtain:∫

c(t)dc(t) =

∫
Pdt⇒ c(t) =

√
2Pt+D,

for some constants P and D. Then, we consider
the following constraint: c0 , c(0) =

√
D ⇒

D = c20. Finally, we also have that c(T ) = 1 ⇒
P = (1− c20)/2T , where T denotes the time after
which the learner is fully competent. This, along
with the constraint that c(t) ∈ [0, 1] for all t ≥ 0,
results in the following definition:

csqrt(t) , min

(
1,

√
t
1− c20
T

+ c20

)
. (7)

In our experiments, we refer to this specific for-
mulation as the “square root” competence model.
If we want to make the curve sharper, meaning
that even more time is spent per sample added later
on in training, then we can consider the following
more general form, for p ≥ 1:

croot-p(t) , min

(
1,

p

√
t
1− cp0
T

+ cp0

)
. (8)

We observed that best performance is obtained
when p = 2 and then, as we increase p, perfor-
mance converges to that obtained when training
without a curriculum. Plots of the competence
functions we presented are shown in Figure 4.

2.3 Scalability
Our method can be easily used in large-scale NMT
systems. This is because it mainly consists of a
preprocessing step of the training data that com-
putes the difficulty scores. The implementation we
are releasing with this paper computes these scores
in an efficient manner by building a graph describ-
ing their dependencies, as well as whether they
are sentence-level scores (e.g., sentence length),
or corpus-level (e.g., CDF), and using that graph
to optimize their execution. Using only 8GB of
memory, we can process up to 20k sentences per
second when computing sentence rarity scores, and
up to 150k sentences per second when computing
sentence length scores.
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Figure 4: Plots of various competence functions with
c0 = 0.01 (initial competence value) and T = 1, 000
(total duration of the curriculum learning phase).

3 Experiments

For our experiments, we use three of the most com-
monly used datasets in NMT, that range from a
small benchmark dataset to a large-scale dataset
with millions of sentences. Statistics about the
datasets are shown in Table 1. We perform experi-
ments using both RNNs and Transformers. For the
RNN experiments we use a bidirectional LSTM
for the encoder, and an LSTM with the attention
model of Bahdanau et al. (2015) for the decoder.
The number of layers of the encoder and the de-
coder are equal. We use a 2-layer encoder and
a 2-layer decoder for all experiments on IWSLT
datasets, and a 4-layer encoder and a 4-layer de-
coder for all experiments on the WMT dataset, due
to the dataset’s significantly larger size. For the
Transformer experiments we use the BASE model
proposed by Vaswani et al. (2017). It consists of
a 6-layer encoder and decoder, using 8 attention
heads, and 2,048 units for the feed-forward layers.
The multi-head attention keys and values depth is
set to the word embedding size. The word embed-
ding size is 512 for all experiments. Furthermore,
for the Transformer experiments on the two smaller
datasets we do not use any learning rate schedule,
and for the experiments on the largest dataset we
use the default Transformer schedule. A detailed
discussion on learning rate schedules for Trans-
formers is provided near the end of this section.
All of our experiments were conducted on a ma-
chine with a single Nvidia V100 GPU, and 24 GBs
of system memory.

During training, we use a label smoothing factor
of 0.1 (Wu et al., 2016) and the AMSGrad opti-
mizer (Reddi et al., 2018) with its default parame-
ters in TensorFlow, and a batch size of 5,120 tokens
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Dataset # Train # Dev # Test
IWSLT-15 En)Vi 133k 768 1268
IWSLT-16 Fr)En 224k 1080 1133

WMT-16 En)De 4.5m 3003 2999

Table 1: Number of parallel sentences in each dataset.
“k” stands for “thousand” and “m” stands for “million”.

(due to GPU memory constraints). During infer-
ence, we employ beam search with a beam size of
10 and the length normalization scheme of Wu et al.
(2016).2

Curriculum Hyperparameters. We set the ini-
tial competence c0 to 0.01, in all experiments. This
means that all models start training using the 1%
easiest training examples. The curriculum length
T is effectively the only hyperparameter that we
need to set for our curriculum methods. In each
experiment, we set T in the following manner: we
train the baseline model without using any curricu-
lum and we compute the number of training steps
it takes to reach approximately 90% of its final
BLEU score. We then set T to this value. This
results in T being set to 5,000 for the RNN ex-
periments on the IWSLT datasets, and 20,000 for
the corresponding Transformer experiments. For
WMT, we set T to 20,000 and 50,000 for RNNs
and Transformers, respectively. Furthermore, we
use the following notation and abbreviations when
presenting our results:
– Plain: Trained without using any curriculum.
– SL: Curriculum with sentence length difficulty.
– SR: Curriculum with sentence rarity difficulty.
– Linear: Curriculum with the linear competence

shown in Equation 5.
– Sqrt: Curriculum with the square root compe-

tence shown in Equation 7.

Data Preprocessing. Our experiments are per-
formed using the machine translation library re-
leased by Platanios et al. (2018). We use the same
data preprocessing approach the authors used in
their experiments. While training, we consider sen-
tences up to length 200. Similar to them, for the
IWSLT-15 experiments we use a per-language vo-
cabulary which contains the 20,000 most frequently

2We emphasize that we did not run experiments with other
architectures or configurations, and thus our baseline archi-
tectures were not chosen because they were favorable to our
method, but rather because they were frequently mentioned in
existing literature.
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Figure 5: Plots illustrating the performance of various
models on the test set, as training progresses. Blue
lines represent the baseline methods when no curricu-
lum is used, and red lines represent the same mod-
els when different versions of our curriculum learning
framework are used to train them. The vertical lines
represent the step in which the models attain the BLEU
score that the baseline models attain at convergence.

occurring words, while ignoring words that appear
less than 5 times in the whole corpus. For the
IWSLT-16 and WMT-16 experiments we use a byte-
pair encoding (BPE) vocabulary (Sennrich et al.,
2016) trained using 32,000 merge operations, simi-
lar to the original Transformer paper by Vaswani
et al. (2017).

Results. We present a summary of our results in
Table 2 and we also show complete learning curves
for all methods in Figure 5. The evaluation metrics
we use are the test set BLEU score and the time it
takes for the models using curriculum learning to
obtain the BLEU score that the baseline models at-
tain at convergence. We observe that Transformers
consistently benefit from our curriculum learning
approach, achieving gains of up to 2 BLEU, and
reductions in training time of up to 70%. RNNs
also benefit, but to a lesser extent. This is con-
sistent with our motivation for this paper, which
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RNN TRANSFORMER

Plain
SL Curriculum SR Curriculum

Plain Plain*
SL Curriculum SR Curriculum

clinear csqrt clinear csqrt clinear csqrt clinear csqrt

B
L

E
U

En)Vi 26.27 26.57 27.23 26.72 26.87 28.06 29.77 29.14 29.57 29.03 29.81
Fr)En 31.15 31.88 31.92 31.39 31.57 34.05 34.88 34.98 35.47 35.30 35.83
En)De 26.53 26.55 26.54 26.62 26.62 – 27.95 28.71 29.28 29.93 30.16

Ti
m

e

En)Vi 1.00 0.64 0.61 0.71 0.57 1.00 1.00 0.44 0.33 0.35 0.31
Fr)En 1.00 1.00 0.93 1.10 0.73 1.00 1.00 0.49 0.44 0.42 0.39
En)De 1.00 0.86 0.89 1.00 0.83 – 1.00 0.58 0.55 0.55 0.55

Table 2: Summary of experimental results. For each method and dataset, we present the test set BLEU score of
the best model based on validation set performance. We also show the relative time required to obtain the BLEU
score of the best performing baseline model. For example, if an RNN gets to 26.27 BLEU in 10, 000 steps and
the SL curriculum gets to the same BLEU in 3, 000 steps, then the plain model gets a score of 1.0 and the SL
curriculum receives a score of 3, 000/10, 000 = 0.3. “Plain” stands for the model trained without a curriculum
and, for Transformers, “Plain*” stands for the model trained using the learning rate schedule shown in Equation 9.

stems from the observation that training RNNs is
easier and more robust than training Transformers.
Furthermore, the square root competence model
consistently outperforms the linear model, which
fits well with our intuition and motivation for in-
troducing it. Regarding the difficulty heuristics,
sentence length and sentence rarity both result in
similar performance.

We also observe that, for the two small datasets,
RNNs converge faster than Transformers in terms
of both the number of training iterations and the
overall training time. This is contrary to other re-
sults in the machine translation community (e.g.,
Vaswani et al., 2017), but could be explained by the
fact that we are not using any learning rate sched-
ule for training Transformers. However, they never
manage to outperform Transformers in terms of
test BLEU score of the final model. Furthermore,
to the best of our knowledge, for IWSLT-15 we
achieve state-of-the-art performance. The highest
previously reported result was 29.03 BLEU (Pla-
tanios et al., 2018), in a multi-lingual setting. Using
our curriculum learning approach we are able to
achieve a BLEU score of 29.81 for this dataset.

Overall, we have shown that our curriculum
learning approach consistently outperforms mod-
els trained without any curriculum, in both limited
data settings and large-scale settings.

Learning Rate Schedule. In all of our IWSLT
experiments so far, we use the default AMSGrad
learning rate of 0.001 and intentionally avoid using
any learning rate schedules. However, Transform-
ers are not generally trained without a learning rate

schedule, due to their instability. Such schedules
typically use a warm-up phase, which means that
the learning rate starts at a very low value and keeps
increasing until the end of the warm-up period, af-
ter which a decay rate is typically used. In order
to show that our curriculum learning approach can
act as a principled alternative to such highly tuned
learning rate schedules, we now present the results
we obtain when training our Transformers using
the following learning rate schedule:

lr(t) , d−0.5embedding min
(
t−0.5, t · T−1.5warmup

)
, (9)

where t is the current training step, dembedding is the
word embeddings size, and Twarmup is the number
of warmup steps and is set to 10,000 in these exper-
iments. This schedule was proposed in the original
Transformer paper (Vaswani et al., 2017), and was
tuned for the WMT dataset.

The results obtained when using this learning
rate schedule are also shown in table 2, under
the name “Plain*”. In both cases, our curricu-
lum learning approach obtains a better model in
about 70% less training time. This is very impor-
tant, especially when applying Transformers in new
datasets, because such learning rate heuristics of-
ten require careful tuning. This tuning can be both
very expensive and time consuming, often resulting
in very complex mathematical expressions, with
no clear motivation or intuitive explanation (Chen
et al., 2018). Our curriculum learning approach
achieves better results, in significantly less time,
while only requiring one parameter (the length of
the curriculum).

Note that even without using any learning rate
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schedule, our curriculum methods were able to
achieve performance comparable to the “Plain*” in
about twice as many training steps. “Plain” was
not able to achieve a BLEU score above 2.00 even
after fives times as many training steps, at which
point we stopped these experiments.

Implementation and Reproducibility. We are
releasing an implementation of our proposed
method and experiments built on top of the ma-
chine translation library released by Platanios
et al. (2018), using TensorFlow Scala (Platanios,
2018), and is available at https://github.com/
eaplatanios/symphony-mt. Furthermore, all ex-
periments can be run on a machine with a single
Nvidia V100 GPU, and 24 GBs of system memory.
Our most expensive experiments — the ones using
Transformers on the WMT-16 dataset — take about
2 days to complete, which would cost about $125
on a cloud computing service such as Google Cloud
or Amazon Web Services, thus making our results
reproducible, even by independent researchers.

4 Related work

The idea of teaching algorithms in a similar man-
ner as humans, from easy concepts to more dif-
ficult ones, has existed for a long time (Elman,
1993; Krueger and Dayan, 2009). Machine learn-
ing models are typically trained using stochastic
gradient descent methods, by uniformly sampling
mini-batches from the pool of training examples,
and using them to compute updates for the model
parameters. Deep neural networks, such as RNNs
and Transformers, have highly non-convex loss
functions. This makes them prone to getting stuck
in saddle points or bad local minima during train-
ing, often resulting in long training times and bad
generalization performance. Bengio et al. (2009)
propose a curriculum learning approach that aims
to address these issues by changing the mini-batch
sampling strategy. They propose starting with a
distribution that puts more weight on easy samples,
and gradually increase the probability of more dif-
ficult samples as training progresses, eventually
converging to a uniform distribution. They demon-
strate empirically that such curriculum approaches
indeed help decrease training times and sometimes
even improve generalization.

Perhaps the earliest attempt to apply curriculum
learning in MT was made by Zou et al. (2013). The
authors employed a curriculum learning method
to learn Chinese-English bilingual word embed-

dings, which were subsequently used in the context
of phrase-based machine translation. They split
the word vocabulary in 5 separate groups based on
word frequency, and learned separate word embed-
dings for each of these groups in parallel. Then,
they merged the 5 different learned embeddings
and continued training using the full vocabulary.
While this approach makes use of some of the ideas
behind curriculum learning, it does not directly fol-
low the original definition introduced by Bengio
et al. (2009). Moreover, their model required 19
days to train. There have also been a couple of
attempts to apply curriculum learning in NMT that
were discussed in section 1.

There also exists some relevant work in areas
other than curriculum learning. Zhang et al. (2016)
propose training neural networks for NMT by fo-
cusing on hard examples, rather than easy ones.
They report improvements in BLEU score, while
only using the hardest 80% training examples in
their corpus. This approach is more similar to
boosting by Schapire (1999), rather than curricu-
lum learning, and it does not help speed up the
training process; it rather focuses on improving
the performance of the trained model. The fact
that hard examples are used instead of easy ones
is interesting because it is somewhat contradictory
to that of curriculum learning. Also, in contrast
to curriculum learning, no ordering of the training
examples is considered.

Perhaps another related area is that of active
learning, where the goal is to develop methods that
request for specific training examples. Haffari et al.
(2009), Bloodgood and Callison-Burch (2010), and
Ambati (2012) all propose methods to solicit train-
ing examples for MT systems, based on the occur-
rence frequency of n-grams in the training corpus.
The main idea is that if an n-gram is very rare in the
training corpus, then it is difficult to learn to trans-
late sentences in which it appears. This is related
to our sentence rarity difficulty metric and points
out an interesting connection between curriculum
learning and active learning.

Regarding training Transformer networks,
Shazeer and Stern (2018) perform a thorough ex-
perimental evaluation of Transformers, when using
different optimization configurations. They show
that a significantly higher level of performance can
be reached by not using momentum during opti-
mization, as long as a carefully chosen learning
rate schedule is used. Such learning rate sched-

https://github.com/eaplatanios/symphony-mt
https://github.com/eaplatanios/symphony-mt
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ules are often hard to tune because of the multiple
seemingly arbitrary terms they often contain. Fur-
thermore, Popel and Bojar (2018) show that, when
using Transformers, increasing the batch size re-
sults in a better model at convergence. We believe
this is indicative of very noisy gradients when start-
ing to train Transformers and that higher batch sizes
help increase the signal-to-noise ratio. We show
that our proposed curriculum learning method of-
fers a more principled and robust way to tackle
this problem. Using our approach, we are able to
train Transformers to state-of-the-art performance,
using small batch sizes and without the need for pe-
culiar learning rate schedules, which are typically
necessary.

5 Conclusion and Future Work

We have presented a novel competence-based cur-
riculum learning approach for training neural ma-
chine translation models. Our resulting framework
is able to boost performance of existing NMT sys-
tems, while at the same time significantly reduc-
ing their training time. It differs from previous
approaches in that it does not depend on multi-
ple hyperparameters that can be hard to tune, and
it does not depend on a manually designed dis-
cretized training regime. We define the notions of
competence, for a learner, and difficulty, for the
training examples, and propose a way to filter train-
ing data based on these two quantities. Perhaps
most interestingly, we show that our method makes
training Transformers faster and more reliable, but
has a much smaller effect in training RNNs.

In the future, we are mainly interested in: (i) ex-
ploring more difficulty heuristics, such as measures
of alignment between the source and target sen-
tences (Kocmi and Bojar, 2017), sentence length
discrepancies, or even using a pre-trained language
model to score sentences, which would act as a
more robust replacement of our sentence rarity
heuristic, and (ii) exploring more sophisticated
competence metrics that may depend on the loss
function, the loss gradient, or on the learner’s per-
formance on held-out data. Furthermore, it would
be interesting to explore applications of curricu-
lum learning to multilingual machine translation
(e.g., it may be easier to start with high-resource
languages and move to low-resource ones later on).
We would also like to explore the usefulness of our
framework in more general machine learning tasks,
outside of NMT.
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4596–4604, Stockholmsmässan, Stockholm Sweden.
PMLR.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s Neural Ma-
chine Translation System: Bridging the Gap be-
tween Human and Machine Translation. CoRR,
abs/1609.08144.

Dakun Zhang, Jungi Kim, Josep Crego, and Jean Senel-
lart. 2016. Boosting neural machine translation.
arXiv preprint arXiv:1612.06138.

https://arxiv.org/abs/1610.05540
https://arxiv.org/abs/1610.05540
http://dl.acm.org/citation.cfm?id=1620754.1620815
http://dl.acm.org/citation.cfm?id=1620754.1620815
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.26615/978-954-452-049-6_050
http://www.aclweb.org/anthology/N18-1121
https://github.com/eaplatanios/tensorflow_scala
https://github.com/eaplatanios/tensorflow_scala
https://arxiv.org/abs/1808.08493
https://arxiv.org/abs/1808.08493
https://arxiv.org/abs/1808.08493
https://content.sciendo.com/view/journals/pralin/110/1/article-p43.xml
https://content.sciendo.com/view/journals/pralin/110/1/article-p43.xml
https://openreview.net/forum?id=ryQu7f-RZ
http://dl.acm.org/citation.cfm?id=1624312.1624417
http://dl.acm.org/citation.cfm?id=1624312.1624417
http://www.aclweb.org/anthology/P16-1162
http://www.aclweb.org/anthology/P16-1162
http://www.aclweb.org/anthology/D08-1112
http://www.aclweb.org/anthology/D08-1112
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144


1172

Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton
Murray, Jeremy Gwinnup, Marianna J Martindale,
Paul McNamee, Kevin Duh, and Marine Carpuat.
2018. An Empirical Exploration of Curriculum
Learning for Neural Machine Translation. CoRR,
abs/1811.00739.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual Word Embed-
dings for Phrase-Based Machine Translation. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages
1393–1398. Association for Computational Linguis-
tics.

https://arxiv.org/abs/1811.00739
https://arxiv.org/abs/1811.00739
http://aclweb.org/anthology/D13-1141
http://aclweb.org/anthology/D13-1141

