
Proceedings of NAACL-HLT 2019, pages 1142–1150
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

1142

Knowledge-Augmented Language Model and Its Application to
Unsupervised Named-Entity Recognition

Angli Liu
Facebook AI

anglil@cs.washington.edu

Jingfei Du
Facebook AI

jingfeidu@fb.com

Veselin Stoyanov
Facebook AI
ves@fb.com

Abstract

Traditional language models are unable to ef-
ficiently model entity names observed in text.
All but the most popular named entities appear
infrequently in text providing insufficient con-
text. Recent efforts have recognized that con-
text can be generalized between entity names
that share the same type (e.g., person or loca-
tion) and have equipped language models with
access to an external knowledge base (KB).
Our Knowledge-Augmented Language Model
(KALM) continues this line of work by aug-
menting a traditional model with a KB. Un-
like previous methods, however, we train with
an end-to-end predictive objective optimizing
the perplexity of text. We do not require
any additional information such as named en-
tity tags. In addition to improving language
modeling performance, KALM learns to rec-
ognize named entities in an entirely unsuper-
vised way by using entity type information la-
tent in the model. On a Named Entity Recog-
nition (NER) task, KALM achieves perfor-
mance comparable with state-of-the-art super-
vised models. Our work demonstrates that
named entities (and possibly other types of
world knowledge) can be modeled success-
fully using predictive learning and training on
large corpora of text without any additional in-
formation.

1 Introduction

Language modeling is a form of unsupervised
learning that allows language properties to be
learned from large amounts of unlabeled text. As
components, language models are useful for many
Natural Language Processing (NLP) tasks such as
generation (Parvez et al., 2018) and machine trans-
lation (Bahdanau et al., 2014). Additionally, the
form of predictive learning that language model-
ing uses is useful to acquire text representations
that can be used successfully to improve a number

of downstream NLP tasks (Peters et al., 2018; De-
vlin et al., 2018). In fact, models pre-trained with
a predictive objective have provided a new state-
of-the-art by a large margin.

Current language models are unable to encode
and decode factual knowledge such as the infor-
mation about entities and their relations. Names
of entities are an open class. While classes of
named entities (e.g., person or location) occur fre-
quently, each individual name (e.g, Atherton or
Zhouzhuang) may be observed infrequently even
in a very large corpus of text. As a result, language
models learn to represent accurately only the most
popular named entities. In the presence of external
knowledge about named entities, language models
should be able to learn to generalize across entity
classes. For example, knowing that Alice is a name
used to refer to a person should give ample infor-
mation about the context in which the word may
occur (e.g., Bob visited Alice).

In this work, we propose Knowledge Aug-
mented Language Model (KALM), a language
model with access to information available in a
KB. Unlike previous work, we make no assump-
tions about the availability of additional compo-
nents (such as Named Entity Taggers) or annota-
tions. Instead, we enhance a traditional LM with a
gating mechanism that controls whether a particu-
lar word is modeled as a general word or as a ref-
erence to an entity. We train the model end-to-end
with only the traditional predictive language mod-
eling perplexity objective. As a result, our system
can model named entities in text more accurately
as demonstrated by reduced perplexities compared
to traditional LM baselines. In addition, KALM
learns to recognize named entities completely un-
supervised by interpreting the predictions of the
gating mechanism at test time. In fact, KALM
learns an unsupervised named entity tagger that ri-
vals in accuracy supervised counterparts.

1143

KALM works by providing a language model
with the option to generate words from a set of
entities from a database. An individual word can
either come from a general word dictionary as in
traditional language model or be generated as a
name of an entity from a database. Entities in the
database are partitioned by type. The decision of
whether the word is a general term or a named en-
tity from a given type is controlled by a gating
mechanism conditioned on the context observed
so far. Thus, KALM learns to predict whether the
context observed is indicative of a named entity of
a given type and what tokens are likely to be enti-
ties of a given type.

The gating mechanism at the core of KALM
is similar to attention in Neural Machine Trans-
lation (Bahdanau et al., 2014). As in translation,
the gating mechanism allows the LM to represent
additional latent information that is useful for the
end task of modeling language. The gating mech-
anism (in our case entity type prediction) is la-
tent and learned in an end-to-end manner to max-
imize the probability of observed text. Experi-
ments with named entity recognition show that the
latent mechanism learns the information that we
expect while LM experiments show that it is ben-
eficial for the overall language modeling task.

This paper makes the following contributions:

• Our model, KALM, achieves a new state-
of-the art for Language Modeling on several
benchmarks as measured by perplexity.

• We learn a named entity recognizer without
any explicit supervision by using only plain
text. Our unsupervised named entity recog-
nizer achieves a performance on par with the
state-of-the supervised methods.

• We demonstrate that predictive learning com-
bined with a gating mechanism can be uti-
lized efficiently for generative training of
deep learning systems beyond representation
pre-training.

2 Related Work

Our work draws inspiration from Ahn et al.
(2016), who propose to predict whether the word
to generate has an underlying fact or not. Their
model can generate knowledge-related words by
copying from the description of the predicted fact.
While theoretically interesting, their model func-

tions only in a very constrained setting as it re-
quires extra information: a shortlist of candidate
entities that are mentioned in the text.

Several efforts successfully extend LMs with
entities from a knowledge base and their types,
but require that entity models are trained sepa-
rately from supervised entity labels. Parvez et al.
(2018) and Xin et al. (2018) explicitly model the
type of the next word in addition to the word itself.
In particular, Parvez et al. (2018) use two LSTM-
based language models, an entity type model and
an entity composite (entity type) model. Xin
et al. (2018) use a similarly purposed entity typ-
ing module and a LM-enhancement module. In-
stead of entity type generation, Gu et al. (2018)
propose to explicitly decompose word genera-
tion into sememe (a semantic language unit of
meaning) generation and sense generation, but re-
quires sememe labels.Yang et al. (2016) propose
a pointer-network LM that can point to a 1-D or
2-D database record during inference. At each
time step, the model decides whether to point to
the database or the general vocabulary.

Unsupervised predictive learning has been
proven effective in improving text understanding.
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2018) used different unsupervised objectives
to pre-train text models which have advanced the
state-of-the-art for many NLP tasks. Similar to
these approaches KALM is trained end-to-end us-
ing a predictive objective on large corpus of text.

Most unsupervised NER models are rule-based
(Collins and Singer, 1999; Etzioni et al., 2005;
Nadeau et al., 2006) and require feature engi-
neering or parallel corpora (Munro and Manning,
2012). Yang and Mitchell (2017) incorporate a KB
to the CRF-biLSTM model (Lample et al., 2016)
by embedding triples from a KB obtained using
TransE (Bordes et al., 2013). Peters et al. (2017)
add pre-trained language model embeddings as
knowledge to the input of a CRF-biLSTM model,
while still requiring labels in training.

To the best of our knowledge, KALM is the first
unsupervised neural NER approach. As we dis-
cuss in Section 5.4, KALM achieves results com-
parable to supervised CRF-biLSTM models.

3 Knowledge-Augmented Language
Model

KALM extends a traditional, RNN-based neural
LM. As in traditional LM, KALM predicts prob-

1144

abilities of words from a vocabulary Vg, but it
can also generate words that are names of entities
of a specific type. Each entity type has a sepa-
rate vocabulary {V1, ..., VK} collected from a KB.
KALM learns to predict from context whether to
expect an entity from a given type and generalizes
over entity types.

3.1 RNN language model

At its core, a language model predicts a distribu-
tion for a word yt+1 given previously observed
words ct := [y1, ..., yt−1, yt]. Models are trained
by maximizing the likelihood of the observed next
word. In an LSTM LM, the probability of a word,
P (yt+1|ct), is modeled from the hidden state of an
LSTM (Hochreiter and Schmidhuber, 1997):

P (yt+1 = i|ct) =
exp(W p

i,: · ht)

|Vg |∑
w=1

exp(W p
w,: · ht)

(1)

ht,γt = lstm(ht−1,γt−1,yt) (2)

where lstm refers to the LSTM step function and
hi, γi and yi are the hidden, memory and input
vectors, respectively. W p is a projection layer that
converts LSTM hidden states into logits that have
the size of the vocabulary |Vg|.

3.2 Knowledge-Augmented Language Model

KALM builds upon the LSTM LM by adding
type-specific entity vocabularies V1, V2, ..., VK in
addition to the general vocabulary Vg. Type vocab-
ularies are extracted from the entities of specific
type in a KB. For a given word, KALM computes
a probability that the word represents an entity of
that type by using a type-specific projection matrix
{W p,j |j = 0, ...,K}. The model also computes
the probability that the next word represents dif-
ferent entity types given the context observed so
far. The overall probability of a word is given by
the weighted sum of the type probabilities and the
probability of the word under the give type.

More precisely, let τi be a latent variable denot-
ing the type of word i. We decompose the proba-
bility in Equation 1 using the type τt+1:

P (yt+1|ct) =
K∑
j=0

P (yt+1, τt+1 = j|ct)

=

K∑
j=0

P (yt+1|τt+1 = j, ct)

·P (τt+1 = j|ct) (3)

Where P (yt+1|τt+1, ct) is a distribution of en-
tity words of type τt+1. As in a general LM,
it is computed by projecting the hidden state of
the LSTM and normalizing through softmax (eq.
4). The type-specific projection matrix W p,j is
learned during training.

We maintain a type embedding matrix W e and
use it in a similar manner to compute the probabil-
ity that the next word has a given type P (τt+1|ct)
(eq. 5). The only difference is that we use an ex-
tra projection matrix,W h to project ht into lower
dimensions. Figure 1a illustrates visually the ar-
chitecture of KALM.

P (yt+1 = i|τt+1 = j, ct) =
exp(W p,j

i,: · ht)

|Vj |∑
w=1

exp(W p,j
w,: · ht)

(4)

P (τt+1 = j|ct) =
exp(W e

j,: · (W h · ht))

K∑
k=0

exp(W e
k,: · (W h · ht))

(5)

3.3 Type representation as input
In the base KALM model the input for word yt
consists of its embedding vector yt. We enhance
the base model by adding as inputs the embedding
of the type of the previous word. As type informa-
tion is latent, we represent it as the weighted sum
of the type embeddings weighted by the predicted
probabilities:

νt+1 =

K∑
j=0

P (τt+1 = j|ct) ·W e
j,: (6)

ỹt+1 = [yt+1;νt+1] (7)

P (τt+1 = j|ct) is computed using Equation 5 and
ej is the type embedding vector.

1145

!"#$

%&'&"()

*+,-./0

!"

!"
1234

*+,-./0

56&7(

1234

89:

1234

< < >

!"#>

89: %&'&"()

*+,-./0 *+,-./0

?(ABC)

?(?EB)

?(1AC)

? FGHIJ 1AK) ? FGHIJ ?EB) ? FGHIJ ABC)

…

L(

LM

(a) Basic model architecture of KALM.

!"#$

%&'&"()

*+,-./0

!"

!"
1234

*+,-./0

56&7(

56&7(

12341234

89:

1234

< < >

!"#>

89: %&'&"()

*+,-./0 *+,-./0

?(ABC)

?(?EB)

?(1AC)

< \< >

? GHIJK 1AL) ? GHIJK ?EB) ? GHIJK ABC)

…

M(

MN

(b) Adding type representation as input to KALM.

Figure 1: KALM’s architectures

Adding type information as input serves two
purposes: in the forward direction, it allows
KALM to model context more precisely based on
predicted entity types. During back propagation,
it allows us to learn latent types more accurately
based on subsequent context. The model enhanced
with type input is illustrated in Figure 1b.

4 Unsupervised NER

The type distribution that KALM learns is latent,
but we can output it at test time and use it to pre-
dict whether a given word refers to an entity or a
general word. We compute P (τt+1|ct) using eq. 5
and use the most likely entity type as the named
entity tag for the corresponding word yt+1.

This straightforward approach, however, pre-
dicts the type based solely on the left context of the
tag being predicted. In the following two subsec-
tions, we discuss extensions to KALM that allow
it to utilize the right context and the word being
predicted itself.

4.1 Bidirectional LM
While we cannot use a bidirectional LSTM for
generation, we can use one for NER, since the en-
tire sentence is known.

For each word, KALM generates the hidden
vectors hl,t and hr,t representing context coming

from left and right directions, as shown in Equa-
tions 8 and 9.

hl,t,γl,t = lstml(hl,t−1,γl,t−1, [yl,t;νl,t]) (8)

hr,t,γr,t = lstmr(hr,t+1,γr,t+1, [yr,t;νr,t])

(9)

We concatenate the hidden vectors from the two
directions to form an overall context vectorht, and
generate the final type distribution using Equation
5.

Training the bidirectional model requires that
we initialize the hidden and cell states from both
ends of a sentence. Suppose the length of a sen-
tence is n. The the cross entropy loss is computed
for only the n−2 symbols in the middle. Similarly,
we compute only the types of the n − 2 symbols
in the middle during inference.

4.2 Current word information

Even bidirectional context is insufficient to predict
the word type by itself. Consider the following
example: Our computer models indicate Edouard
is going to 1 The missing word can be either
a location (e.g., London), or a general word (e.g.,
quit). In an NER task we observe the underlined
words: Our computer models indicate Edouard is
going to London. In order to learn predictively, we
cannot base the type prediction on the current to-
ken. Instead, we can use a prior type information
P (τt|yt), pre-computed from entity popularity in-
formation available in many KBs. We incorpo-
rate the prior information P (τt|yt) in two different
ways described in the two following subsections.

4.2.1 Decoding with type prior
We incorporate the type prior P (τt|yt) directly by
combining it linearly with the predicted type:

P (τt|cl, cr, yt) =
P (yt|τt, cl, cr)
2P (yt|cl, cr)

· P (τt|cl, cr)

+
P (cl, cr|τt, yt)
2P (cl, cr|yt)

· P (τt|yt)

=α · P (τt|cl, cr)
+ β · P (τt|yt) (10)

The coefficients α and β are free parameters and
are tuned on a small amount of withheld data.

1All the examples are selected from the CoNLL 2003
training set.

1146

4.2.2 Training with type priors
An alternative for incorporating the pre-computed
P (τt|yt) is to use it during training to regularize
the type distribution. We use the following op-
timization criterion to compute the loss for each
word:

L =H(P (yi|cl, cr), P (ŷi|cl, cr))
+ λ · ||KL(P (τi|cl, cr), P (τi|yi))||2 (11)

where ŷi is the actual word, H(.) is the cross en-
tropy function, and KL(.) measures the KL di-
vergence between two distributions. A hyper-
parameter λ (tuned on validation data) controls
the relative contribution of the two loss terms.
The new loss forces the learned type distribu-
tion, P (τi|cl, cr), to be close to the expected dis-
tribution P (τi|yi) given the information in the
database. This loss is specifically tailored to help
with unsupervised NER.

5 Experiments

We evaluate KALM on two tasks: language mod-
eling and NER. We use two datasets: Recipe used
only for LM evaluation and CoNLL 2003 used for
both the LM and NER evaluations.

5.1 Data

Recipe The recipe dataset2 is composed of
95, 786 recipes, We follow the same preprocess-
ing steps as in Parvez et al. (2018) and divide the
crawled dataset into training, validation and test-
ing. A typical sentence after preprocessing looks
like the following: “in a large mixing bowl com-
bine the butter sugar and the egg yolks”. The en-
tities in the recipe KB are recipe ingredients. The
8 supported entity types are dairy, drinks, fruits,
grains, proteins, seasonings, sides, and vegeta-
bles. In the sample sentence above, the entity
names are butter, sugar, egg and yolks, typed as
dairy, seasonings, proteins and proteins, respec-
tively.

CoNLL 2003 Introduced in Tjong Kim Sang
and De Meulder (2003), the CoNLL 2003 dataset
is composed of news articles. It contains text and
named entity labels in English, Spanish, German
and Dutch. We experiment only with the English
version. We follow the CoNLL labels and sep-
arate the KB into four entity types: LOC (loca-

2Crawled from http://www.ffts.com/recipes.
htm

tion), MISC (miscellaneous), ORG (organization),
and PER (person).

Statistics about the recipe and the CoNLL 2003
dataset are presented in Table 1.

train valid test
#sent 61302 15326 19158
#tok 7223474 1814810 2267797

train valid test
#sent 14986 3465 3683
#tok 204566 51577 46665

Table 1: Statistics of recipe and CoNLL 2003 datasets

The information about the entities in each of
the KBs is shown in Table 2. The recipe KB is
provided along with the recipe dataset3 as a con-
glomeration of typed ingredients. The KB used by
CoNLL 2003 is extracted from WikiText-2. We
filtered the entities which are not belonging to the
4 types of CoNLL 2003 task.

type dairy drinks fruits grains
#entities 80 84 110 158

type proteins seasonings sides vegetables
#entities 316 180 140 156

type LOC MISC ORG PER
#entity words 1503 1211 3005 5404

Table 2: Statistics of recipe and CoNLL 2003 KBs

5.2 Implementation details
We implement KALM by extending the AWD-
LSTM4 language model in the following ways:

Vocabulary We use the entity words in Ta-
ble 2 to form V1, ..., VK We extract 51, 677 gen-
eral words in the recipe dataset, and 17, 907 gen-
eral words in CoNLL 2003 to form V0. Identical
words that fall under different entity types, such
as Washington in George Washington and Wash-
ington D.C., share the same input embeddings.

Model The model has an embedding layer
of 400 dimensions, LSTM cell and hidden states
of 1, 150 dimensions, and 3 stacked LSTM layers.
We scale the final LSTM’s hidden and cell states
to 400 dimensions, and share weights between
the projection layer W p and the word embedding
layer. Each entity type in the knowledge base is
represented by a trainable 100-dimensional em-
bedding vector. When concatenating the weighted

3The KB can be found in https://github.com/
uclanlp/NamedEntityLanguageModel

4https://github.com/salesforce/
awd-lstm-lm

http://www.ffts.com/recipes.htm
http://www.ffts.com/recipes.htm
https://github.com/uclanlp/NamedEntityLanguageModel
https://github.com/uclanlp/NamedEntityLanguageModel
https://github.com/salesforce/awd-lstm-lm
https://github.com/salesforce/awd-lstm-lm

1147

average of the type embeddings to the input, we
expand the input dimension of the first LSTM
layer to 500. All trainable parameters are initial-
ized uniformly randomly between −0.1 and 0.1,
except for the bias terms in the decoder linear
layer, which are initialized to 0.

For regularization, we adopt the techniques in
AWD-LSTM, and use an LSTM weight dropout
rate of 0, an LSTM first-layers locked dropout
rate of 0.3, an LSTM last-layer locked dropout
rate of 0.4, an embedding Bernoulli dropout rate
of 0.1, and an embedding locked dropout rate of
0.65. Also, we impose L2 penalty on LSTM pre-
dropout weights with coefficient 1, and L2 penalty
on LSTM dropout weights with coefficient 2, both
added to the cross entropy loss.

Optimization We use the same loss penalty,
dropout schemes, and averaged SGD (ASGD) as
in Merity et al. (2017). The initial ASGD learn-
ing rate is 10, weight decay rate is 1.2 × 10−6,
non-monotone trigger for ASGD is set to 5, and
gradient clipping happens at 0.25. The models are
trained until the validation set performance starts
to decrease.

5.3 Language modeling

First, we test how good KALM is as a language
model compared to two baselines.

5.3.1 Baselines
• AWD-LSTM (Merity et al., 2017) is the

state-of-the-art word-level language model as
measured on WikiText-2 and Penn Treebank.
It uses ASGD optimization, a new dropout
scheme and novel penalty terms in the loss
function to improve over vanilla LSTM LMs.

• Named-entity LM (NE-LM) (Parvez
et al., 2018) consists of a type model
that outputs P (τi+1|τi, τi−1, ...) and
an entity composite model that outputs
P (yi+1|{yi, τi}, {yi−1, τi−1}, ...). The type
model is trained on corpora with entity type
labels, whereas the entity composite model
has an input for words and another input for
the corresponding types, and so needs to be
trained on both the labeled corpus and the
unlabeled version of the same corpus. At
inference time, a joint inference heuristic
aggregates type model and entity composite
model predictions into a word prediction.
Since both models require type labels as

input, each generation step of NE-LM
requires not only the previously generated
words [yi, yi−1, ...], but also the type labels
for these words [τi, τi−1, ...].

5.3.2 Results
For language modeling we report word prediction
perplexity on the recipe dataset and CoNLL 2003.
Perplexity is defined as the following.

PP = e
−

N∑
t=1

1
N

logP (yt)

= N

√√√√ N∏
t=1

1

P (yt)
(12)

We use publicly available implementations to pro-
duce the two baseline results. We also compare
the language models in the bidirectional setting,
which the reference implementations do not sup-
port. In that setting, we transform both models in
NE-LM to be bidirectional.

Discussion Table 3 shows that KALM out-
performs the two baselines in both unidirectional
and bidirectional settings on both datasets. The
improvement relative to NE-LM is larger in the
unidirectional setting compared to the bidirec-
tional setting. We conjecture that this is because in
that setting NE-LM trains a bidirectional NER in a
supervised way. The improvement relative to NE-
LM is larger on CoNLL 2003 than on the recipe
dataset. We believe that the inference heuristic
used by NE-LM is tuned specifically to recipes
and is less suitable to the CoNLL setting.

We also find that training KALM on more unla-
beled data further reduces the perplexity (see Table
4), and study how the quality of the KB affects the
perplexity. We discuss both these results in Sec-
tion 5.4.

5.4 NER
In this section, we evaluate KALM in NER against
two supervised baselines.

5.4.1 Baselines
We train two supervised models for NER on the
CoNLL 2003 dataset: a biLSTM and a CRF-
biLSTM. We replicate the hyperparameters used
by Lample et al. (2016), who demonstrate the
state-of-the-art performance on this dataset. We
use a word-level model, and 100 dimensional
pretrained GloVe embeddings (Pennington et al.,
2014) for initialization. We train for 50 epochs, at
which point the models converge.

1148

model
unidirectional bidirectional

validation test validation test

Recipe
AWD-LSTM 3.14 2.99 1.98 2

NE-LM 2.96 2.24 1.85 1.73
KALM 2.75 2.20 1.85 1.71

CoNLL 2003
AWD-LSTM 5.48 5.94 4.85 5.3

NE-LM 5.67 5.77 4.68 4.94
KALM 5.36 5.43 4.64 4.74

Table 3: Language modeling results on the recipe and CoNLL 2003 datasets

5.4.2 Results
We evaluate the unsupervised KALM model under
the following configurations:

• Basic: bidirectional model with aggregated
type embeddings fed to the input at the next
time step;

• With type priors: using P (τt|yt) in the two
ways described in Section 4.2;

• Extra data: Since KALM is unsupervised,
we can train it on extra data. We use the
WikiText-2 corpus in addition to the original
CoNLL training data.

WikiText-2 is a standard language modeling
dataset released with Merity et al. (2016). It con-
tains Wikipedia articles from a wide range of top-
ics. In contrast, the CoNLL 2003 corpus con-
sists of news articles. Table 4 show statistics
about the raw / characer level WikiText-2 and the
CoNLL 2003 corpora. Despite the domain mis-
match between the WikiText and CoNLL corpora,
the WikiText coverage of the entity words that ex-
ist in the CoNLL dataset is high. Specifically,
most of the person, location and organization en-
tity words that appear in CoNLL either have a
Wikipedia section, or are mentioned in a Wiki ar-
ticle. Therefore, we expect that the addition of
WikiText can guide the unsupervised NER model
to learn better entity type regularities. Indeed, the
result presented in the rightmost column of Table
4 shows that when adding WikiText-2 to CoNLL
2003, the perplexity for the KALM model for the
news text of CoNLL 2003 is decreased: from 4.69
down to 2.29.

We show NER results in Table 5. The table lists
the F1 score for each entity types, as well as the
overall F1 score.

Discussion Even the basic KALM model
learns context well – it achieves an overall F1

score of 0.72 for NER. This illustrates that KALM
has learned to model entity classes entirely from
surrounding context. Adding prior information as
to whether a word represents different entity types
helps to bring the F1 score to 0.76.

The strength of an unsupervised model is that
it can be trained on large corpora. Adding the
Wikitext-2 corpus improves the NER score of
KALM to 0.84.

To give a sense of how the unsupervised mod-
els compare with the supervised model with re-
spect to training data size, we trained biLSTM and
CRF-biLSTM on a randomly sampled subset of
the training data of successively decreasing sizes.
The resulting F1 scores are shown in Figure 2.

Our best model scores 0.86, same as a CRF-
biLSTM trained on around 40% of the training
data. It is less than 0.03 behind the best supervised
CRF-biLSTM. The best KALM model almost al-
ways scores higher than biLSTM without the CRF
loss.

Lastly, we perform an ablation experiment to
gauge how sensitive KALM is to the quality of
the knowledge base. Previous studies (Liu et al.,
2016; Zhang et al., 2012) have shown that the
amount of knowledge retrieved from KBs can im-
pact the performance of NLP models such as rela-
tion extraction systems substantially. In this ex-
periment, we deliberately corrupt the entity vo-
cabularies V0, ..., VK−1 by moving a certain per-
centage of randomly selected entity words from
Vi to the general vocabulary Vg. Figure 3 shows
language modeling perplexities on the validation
set, and NER F1 scores on the test set as a func-
tion of the corruption percentage. The language
modeling performance stops reacting to KB cor-
ruption beyond a certain extent, whereas the NER
performance keeps dropping as the number of en-
tities removed from V1, V2, ... increases. This re-
sult shows the importance of the quality of the KB

1149

entity unique entity size LM
ratio ratio ratio perplexity

92.80% 82.56% 2.62 2.29 : 4.69

Table 4: Characterization of WikiText-2 relative to CoNLL 2003 training set. Entities extracted from WikiText
cover 92.80% of the entities in CoNLL 2003 overall, and cover 82.56% of the unique entities. WikiText’s size is
2.62 times as large. And adding WikiText to CoNLL training reduces the perplexity from 4.69 to 2.29.

LOC MISC ORG PER overall

unsupervised

basic0 0.75 0.67 0.64 0.83 0.72
+P (τ |y) in dec1 0.81 0.67 0.65 0.88 0.76
+wiki-concat2 0.83 0.83 0.76 0.95 0.84

+wiki-concat+P (τ |y) in dec3 0.84 0.84 0.77 0.96 0.86

supervised
biLSTM 0.88 0.71 0.81 0.95 0.86

CRF-biLSTM 0.90 0.76 0.84 0.95 0.89

Table 5: Results of KALM (above the double line in the table) and supervised NER models (under the double
line). Superscript annotations: 0: The basic bidirectional KALM with type embedding features as described in
Section 4.1. 1: Adding P (τ |y) in decoding, as described in Section 4.2.1, where α and β are tuned to be 0.4 and
0.6. 2: The basic model trained on CoNLL 2003 concatenated with WikiText-2. 3: Adding (τ |y) in decoding, with
the model trained on CoNLL 2003 concatenated with WikiText-2.

0.2 0.4 0.6 0.8 1.0
% of training

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

F1

F1 v.s. Percentage of labeled training

BiLSTM
CRF-biLSTM
KALM

Figure 2: Unsupervised v.s. supervised NER
trained on different portions of training data

0 5 10 15 20 25 30 35 40
% of corrupted entities

4.64

4.66

4.68

4.70

4.72

4.74

cr
os

s e
nt

ro
py

 lo
ss

LM
0.45

0.50

0.55

0.60

0.65

0.70

F1

NER and LM performances v.s. Percentage of corrupted entities

NER

Figure 3: NER and LM performances on different
portions of mislabeled entities

to KALM.

6 Conclusion

We propose Knowledge Augmented Language
Model (KALM), which extends a traditional RNN
LM with information from a Knowledge Base. We
show that real-world knowledge can be used suc-
cessfully for natural language understanding by
using a probabilistic extension. The latent type in-
formation is trained end-to-end using a predictive
objective without any supervision. We show that
the latent type information that the model learns
can be used for a high-accuracy NER system.
We believe that this modeling paradigm opens the
door for end-to-end deep learning systems that can
be enhanced with latent modeling capabilities and
trained in a predictive manner end-to-end. In ways
this is similar to the attention mechanism in ma-
chine translation where an alignment mechanism
is added and trained latently against the overall
translation perplexity objective. As with our NER
tags, machine translation alignments are empiri-
cally observed to be of high quality.

In future work, we look to model other types
of world knowledge beyond named entities using
predictive learning and training on large corpora of
text without additional information, and to make
KALM more robust against corrupted entities.

1150

References
Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and

Yoshua Bengio. 2016. A neural knowledge lan-
guage model. arXiv preprint arXiv:1608.00318.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Michael Collins and Yoram Singer. 1999. Unsuper-
vised models for named entity classification. In
1999 Joint SIGDAT Conference on Empirical Meth-
ods in Natural Language Processing and Very Large
Corpora.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S Weld, and Alexander Yates. 2005. Un-
supervised named-entity extraction from the web:
An experimental study. Artificial intelligence,
165(1):91–134.

Yihong Gu, Jun Yan, Hao Zhu, Zhiyuan Liu, Ruobing
Xie, Maosong Sun, Fen Lin, and Leyu Lin. 2018.
Language modeling with sparse product of sememe
experts. arXiv preprint arXiv:1810.12387.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Angli Liu, Stephen Soderland, Jonathan Bragg,
Christopher H Lin, Xiao Ling, and Daniel S Weld.
2016. Effective crowd annotation for relation ex-
traction. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 897–906.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843.

Robert Munro and Christopher D Manning. 2012. Ac-
curate unsupervised joint named-entity extraction
from unaligned parallel text. In Proceedings of the
4th Named Entity Workshop, pages 21–29. Associa-
tion for Computational Linguistics.

David Nadeau, Peter D Turney, and Stan Matwin. 2006.
Unsupervised named-entity recognition: Generating
gazetteers and resolving ambiguity. In Conference
of the Canadian Society for Computational Studies
of Intelligence, pages 266–277. Springer.

Md Rizwan Parvez, Saikat Chakraborty, Baishakhi
Ray, and Kai-Wei Chang. 2018. Building language
models for text with named entities. arXiv preprint
arXiv:1805.04836.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
arXiv preprint arXiv:1705.00108.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 142–147. Association for Computational Lin-
guistics.

Ji Xin, Hao Zhu, Xu Han, Zhiyuan Liu, and Maosong
Sun. 2018. Put it back: Entity typing with language
model enhancement. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 993–998.

Bishan Yang and Tom Mitchell. 2017. Leveraging
knowledge bases in lstms for improving machine
reading. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1436–
1446.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2016. Reference-aware language models.
arXiv preprint arXiv:1611.01628.

Ce Zhang, Feng Niu, Christopher Ré, and Jude Shav-
lik. 2012. Big data versus the crowd: Looking for
relationships in all the right places. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-Volume 1,
pages 825–834. Association for Computational Lin-
guistics.

