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Abstract

Distant supervision (DS) is an important
paradigm for automatically extracting rela-
tions. It utilizes existing knowledge base to
collect examples for the relation we intend to
extract, and then uses these examples to au-
tomatically generate the training data. How-
ever, the examples collected can be very noisy,
and pose significant challenge for obtaining
high quality labels. Previous work has made
remarkable progress in predicting the rela-
tion from distant supervision, but typically ig-
nores the temporal relations among those su-
pervising instances. This paper formulates
the problem of relation extraction with tem-
poral reasoning and proposes a solution to
predict whether two given entities participate
in a relation at a given time spot. For this
purpose, we construct a dataset called WIKI-
TIME1 which additionally includes the valid
period of a certain relation of two entities in
the knowledge base. We propose a novel neu-
ral model to incorporate both the temporal in-
formation encoding and sequential reasoning.
The experimental results show that, compared
with the best of existing models, our model
achieves better performance in both WIKI-
TIME dataset and the well-studied NYT-10
dataset.

1 Introduction

As an important technique to automatically com-
plete the knowledge base and reduce labeling ef-
forts, distant supervision (DS) for relation ex-
traction has drawn much attention. In DS, we
align the entity pair (head, tail) from a triple
〈head, rel, tail〉 extracted from a huge knowledge
base (e.g., Freebase, Wikidata) with sentences
from free texts (e.g., Wikipedia, New York Times)

∗Jian Li is the corresponding author.
1https://github.com/ElliottYan/DS_

Temporal

to obtain the training examples, and the label of
such an example is the corresponding relation rel.
Therefore, DS can automatically create a set of
training data for each entity pair.

However, the noisy training data problem
(Riedel et al., 2010) significantly affects the per-
formance of DS. Therefore, most of the recent
approaches (Riedel et al., 2010; Hoffmann et al.,
2011; Zeng et al., 2015; Lin et al., 2016) follow
a common assumption called the at-least-once as-
sumption, which treats all aligned sentences of
each entity pair as one training sample. We re-
fer to a sentence as an instance and all sentences
aligned to one entity pair as a mention set in the
following, respectively.

The models in previous work (Zeng et al., 2015;
Lin et al., 2016; Luo et al., 2017) generally include
two parts, encoding and fusion. The former en-
codes each instance into a low-dimensional repre-
sentation. The latter combines representation of
each instance. Then, their combination is used to
predict the relation.

Although the approaches mentioned above
seem promising, they have the following limita-
tions:

1. They all use a separate but identical encod-
ing module among instances and introduce
no difference temporally.

2. They only adopt single step of fusion and in-
troduce no sentence-level reasoning.

We remark that the aforementioned approaches
may be enough for the standard NYT-10 dataset
(Riedel et al., 2010), because the dataset only ex-
tracts instances from New York Times corpus from
the year 2005 to 2007 and consists of few men-
tion sets with long time span. However, as one
can easily imagine, ignoring temporal informa-
tion may cause inaccurate predictions, especially
when a mention set has a long time span and some

https://github.com/ElliottYan/DS_Temporal
https://github.com/ElliottYan/DS_Temporal
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instances express different relations. For exam-
ple, suppose we want to predict the relation be-
tween Angelina Jolie and Brad Pitt (using Wiki-
data). The knowledge base contains a factual rela-
tion of spouse between them with the valid period
from August 2014 to September 2016. However,
the extracted mention set contains instances about
their marriage in 2014, as well as their divorce
in 2016. Because existing models do not encode
temporal information, the relation they extract is
likely to be the one with highest confidence. In
this example, their models may predict the rela-
tion of marriage since the instances may suggest a
higher confidence for the relation of marriage. But
the correct prediction should be divorce. As shown
in the above example, we can see it is necessary to
include temporal information in DS.

On the other hand, in fusion module, most ex-
isting work focused on denoising using methods
such as attention or reinforcement learning. We
want to argue that a sentence-level reasoning can
also be useful since there are instances which are
not direct positive examples for the given relation,
but can provide supporting evidence. We call them
remote instances. Consider the Jolie-Pitt exam-
ple again. Suppose we are to predict their rela-
tion after their divorce. The instances about their
marriage also indirectly help to infer their divorce
since marriage is the premise of divorce. Hence,
we need an algorithm that can incorporate tempo-
ral information and perform reasoning over remote
instances.

In this paper, we address both limitations and
extend the task to predict the relation of a par-
ticular entity pair at any specific time spot. The
problem can be formulated as a sequence labeling
problem (See § 2). We propose a novel relation
extraction architecture that can address both afore-
mentioned limitations. Our model follows the
popular encoding-fusion architecture, but makes
two crucial modifications. Firstly, we introduce
temporal encoding to model the temporal infor-
mation among the instances in the encoding. Sec-
ondly, we use the Memory Network (Sukhbaatar
et al., 2015; Miller et al., 2016) to iteratively rea-
son over temporally augmented encodings in the
fusion part.

Moreover, we evaluate our model on the widely
studied NYT-10 dataset (Riedel et al., 2010) and
a new WIKI-TIME dataset. The construction
of WIKI-TIME is similar to that of the NYT-10

dataset except for two important differences. One
is that we only consider triples 〈head, rel, tail〉
with the valid period (T1, T2). For example,
the triple 〈Jolie,married, P itt〉 has a valid pe-
riod of (2014.08, 2016.09). The other is that we
extract contextual temporal information for each
aligned instance. We use Wikidata (Vrandečić and
Krötzsch, 2014) as knowledge base and Wikipedia
as free corpus. Both automatic and manual eval-
uation are applied in the experiments. The ex-
perimental results show that, compared with ex-
isting models, our model can achieve compara-
ble/better performance in both WIKI-TIME and
standard NYT-10 datasets.

Our main contributions can be summarized as
follows:

• We introduce a new task aiming to solve the
problem of relation extraction with temporal
information.
• We propose a novel relation extraction archi-

tecture, which encodes both the temporal and
semantic information and includes remote in-
stances for temporal reasoning.
• We construct a new WIKI-TIME dataset by

aligning Wikidata to Wikipedia, which is spe-
cially designed for the task of relation extrac-
tion with temporal information.
• The experiment results show that, com-

pared with the best of existing models,
our model achieves comparable/better perfor-
mance both in WIKI-TIME dataset and stan-
dart NYT-10 dataset.

2 Formulation

2.1 Traditional Distant Supervision (DS)
The traditional distant supervision (DS) task can
be defined as:

Given two entities 〈head, tail〉 and their cor-
responding mention set S = {s1, s2, · · · , sT },
where si denotes the ith instance, the task aims
to predict the probability for specific relation r of
〈head, tail〉:

P (r|S = {s1, s2, · · · , sT }). (1)

The task can be seen as a multi-label multi-
instance classification problem.

2.2 Distant Supervision with Temporal
Reasoning

In distant supervision with temporal reasoning,
our goal is to predict the relation between two en-
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tities at any specific time spot. Because modeling
over any specific time spot is non-trivial, we relax
the goal to predict the relation between two given
entities at any mentioned time spots. Note that
we can infer the relations at other time spots using
prediction at mentioned ones. Formally, the rela-
tion rt at t ∈ (t1, t2] can be infered by rt1 . There-
fore, we can model the problem as a sequence la-
beling problem with noisy inputs.

Given two entities, we collect the chronologi-
cally sorted list of its mention instances and the
time spot associated with each instance . We
denote the list by S = {(s1, t1), · · · , (sT , tT )},
where (si, ti) is the ith instance and the associated
time spot. Our goal is to predict the probability of
relation r at time spot ti:

P (rti |S = {(s1, t1), · · · , (sT , tT )}, ti). (2)

3 Methodology

3.1 Overview of TempMEM
Note that RNN-like models are not suitable for this
sequence labeling problem, because the input se-
quence contains noisy sentences and lacks direct
dependency between time steps. We propose a
neural model called TempMEM which models the
sequence labeling problem by creating query se-
quence based on each mentioned time spot.

TempMEM also follows the encoding-fusion
framework (Zeng et al., 2015; Lin et al., 2016; Luo
et al., 2017). However, we make two crucial mod-
ifications to the original framework. First, for the
encoding part, we use time-aware encoding mod-
ules for instances instead of identical ones. Sec-
ond, we use the memory network to iteratively rea-
son over instances, which makes use of remote in-
stances.

In the following sections, we introduce how to
encode the temporal and semantic information and
include remote instances for temporal reasoning.

3.2 Encoding
3.2.1 Sentence Encoding
For sentence encoding, here we apply the Con-
volutional Neural Network (CNN) and the Piece-
wise Convolutional Neural Network (PCNN)
(Zeng et al., 2015). Note that, since TempMEM
has no preferance over specific sentence encoding,
other encoding modules like word memory (Feng
et al., 2017) or self-attention can also be used here.

The inputs of convolution layers are word em-
beddings concatenated with position features. For

a detailed description of the inputs, we refer the
readers to (Zeng et al., 2015).

First, the convolution layer extracts local fea-
tures with sliding window ŵ over the input rep-
resentation. Formally, the convolution operates
on the concatenation of the input representations
Xk:k+ŵ of instance j with the shared parameters
Wc ∈ RD∗ŵ and bc ∈ R1:

oc,k = Wc ·Xk:k+ŵ + bc, (3)

where oc,k is the kth output of channel c.
Then, we use the piece-wise max-pooling layer.

It divides the outputs of filters into three parts
{oc,0:h,oc,h:t,oc,t:N} and performs max-pooling
over each part:

oc = [ max
0≤k<h

(oc,k), max
h≤k<t

(oc,k), max
t≤k<N

(oc,k)],

(4)
where h and t denote the indices of the head and
tail entities, respectively. The concatenation of the
output of all channels c is considered as the con-
volutional representation of instance j:

Oj = [o1,o2, · · · ,oC ], (5)

where C denotes the number of filters.

3.2.2 Temporal Encoding
In order to introduce temporal priorities among in-
stances, it is necessary to inject temporal informa-
tion into the encoding part. We want the temporal
encoding to have the following characteristics:

• The temporal encodings should comply with
the chronological order of instances.
• The difference between two time spots de-

termines the similarity between two temporal
encodings.

Since directly encoding the time spot value
leads to huge difference among mention sets of the
dataset, we propose an approximate approach with
PE encoding (Vaswani et al., 2017) based on the
rank (i.e. position of an instance in a mention set
with chronological order):

PE(j)=

{
sin(j/10000d/dm) if d%2 = 0

cos(j/10000(d−1)/dm) if d%2 = 1
,

(6)
where j is the rank of instance s, d is the dimen-
sion, and dm is the dimension of temporal encod-
ing. Obviously, the PE encoding complies with
the chronological order and the similarity between
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Figure 1: Overall TempMEM architecture

two PE encodings (by dot product) is determined
by their rank difference.

Then, we concatenate the corresponding tempo-
ral encoding with the convolutional features of in-
stance j to form the final representation of each
instance with a learnable scale factor λ:

mj = [Oj ;λ · PE(j)]. (7)

3.3 Fusion
In the fusion part, we use the Memory Network
to perform temporal reasoning among different in-
stances. Each encoded instance is considered to be
a memory slot. Then, we construct a time specific
query and iteratively compute the weighted atten-
tion over all instances. We detail the process in the
following sections.

3.3.1 Query Construction
We construct each query with the guidance of the
following intuition.

• Relation extraction within instances is equal
to the query “what is the relation between
head and tail at time spot ti?”.

So, we construct our queries based on four key
variables, (relation, head, tail, ti).

Specifically, we combine the embeddings (pre-
trained by TransE (Bordes et al., 2013)) of head
and tail and project the combination through an
affine matrix Φq ∈ RDe∗Dr , where De and Dr de-
note the dimension of relation and entity embed-
ding, respectively. After the projection, we add
the randomly initialized relation embedding. The
formal definition of a query is given below:

qr = Rr + (Ehead +Etail) ∗Φq, (8)

where Rr ∈ RDr is the embedding of specific re-
lation r and E∗ ∈ RDe is the entity embedding.
Finally, we also concatenate the query with the
same temporal encoding defined in § 3.2.2 to ob-
tain the ith query:

qr,i = [qr;λ · PE(i)]. (9)

3.3.2 Iterative Reasoning
In this part, we introduce how to use the queries to
perform temporal reasoning. Two operations are
involved, memory addressing and reading.

One of our key motivations is to consider the
remote instances. So, instead of using single step
attention computation as in previous work (Lin
et al., 2016; Luo et al., 2017; Ji et al., 2017), we
perform an overall H steps of memory addressing
and reading to obtain the final prediction. Within
each step (also called hop), we update the query
value by adding the output of the previous step,
which provides a gradual shift in attention. Next,
we introduce the whole process in detail.

Memory Addressing In addressing, we com-
pute the similarity between the query vector qi,r
and each candidate memory slot key Kj . Note that
the encoding output mj is not in the same contin-
uous space as the query vector. So, we adopt linear
projections to both memory keys:

Kj = AT
h ·mj , (10)

where Ah ∈ RDm∗Dr . Then, we compute the sim-
ilarity score and importance probability using the
bilinear form,

si,j = qTi,r ·Wa ·Kj , (11)

pi,j =
exp(si,j)∑M
ĵ=1

exp(si,ĵ)
, (12)
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where Wa ∈ RDr∗Dm is the model parameter to
be learned and i, j are the indices of queries and
memory slots.

As for the addressing step, it worths noting that
the query and memory slots are both concatenated
with temporal encodings. If we define the embed-
ding layer A as the identity matrix, each similarity
score of a query-memory pair can be divided into
two parts,

si,j = qTi · oj + λ2 · PE(i)T · PE(j). (13)

Each query can automatically attend to in-
stances with either close encoding representations
or close temporal encodings. This tradeoff also
accords with our intuition, since the confidence of
a relational factual statement decreases when the
time span increases.

Memory reading The value of each memory
slot, which is also projected by an affine matrix
B ∈ RDm∗Dr , is read by computing the weighted
sum over all memory slots with the importance
probability derived in the addressing step:

q̂i =
∑
j

pi,jVj , (14)

where Vj = BT
h ·mj .

Iterative computation Here, we combine the
above two operations as a single step for reason-
ing. We use h ∈ [1, H] to denote a particular
step, where H is the total step number. To achieve
a step-by-step reasoning, we update the next step
query qh+1 with the summation of the current step
output q̂h and the current query qh:

qh+1 = qh + q̂h. (15)

During training, we add dropout with probability
pb at the final query step. By combining the pre-
vious hop query and the output in this way, Temp-
MEM can gain information from the last read out-
put and shift addressing attention to remote in-
stances.

3.3.3 Output
In the output module, we define the conditional
probability P (r|S, θ) through a softmax layer as
follows:

P (r|S, θ) = exp(RT
r · qHr )∑Nr

r̂=1 exp(R
T
r̂ · qHr )

, (16)

where Nr is the total amount of pre-defined re-
lations. Also, since we construct and predict re-
lations using the same relation embedding in the

query construction part, we remove the original
query from the last hop query qH to keep the pre-
diction unbiased.

3.4 Optimization
Here we introduce the learning and optimiza-
tion details of TempMEM. We use query-level
CrossEntropy loss as our objective function:

J(θ) =

Ns∑
s=1

T∑
i=1

yt · log p(ŷt|Ss, θ, ti), (17)

where Ns is the number of sets and T is the length
of query sequence.

We use stochastic gradient descent (SGD) to
minimize our objective function. For the explo-
ration of optimization, we add small white noise
to the gradients (Neelakantan et al., 2015). We
also anneal the learning rate l by 0 < ρ < 1 (i.e.,
l← ρ · l) for every τ epochs.

4 Experiment

4.1 Dataset
We evaluate our model on two datasets, the
widely used NYT-10 dataset which is developed
by (Riedel et al., 2010) and the WIKI-TIME
dataset we created.

4.1.1 NYT-10
This dataset is generated by aligning Freebase en-
tities to New York Times corpus (NYT) of years
from 2005 to 2007. There are 53 pre-defined re-
lations including a particular relation NA which
indicates no relation between head and tail. The
training data contains 522,611 sentences, 281,270
entity pairs, and 18,252 of them are relational
facts. The testing data contains 172,448 sentences,
96,678 entity pairs, and 1,950 of them are rela-
tional facts.

4.1.2 WIKI-TIME
Similar to NYT-10, the WIKI-TIME dataset is also
generated by aligning knowledge base entities to
free corpus, except that we choose Wikidata and
Wikipedia instead of Freebase and NYT news.

The motivation of creating WIKI-TIME is to
generate a time aligned dataset that can support
temporal reasoning. Hence, we filter knowledge
base entities that participate in relations with infor-
mative temporal features, such as start time, end
time. Besides, we tag the aligned sentences with
their time expressions in contexts. Then, we align
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the contextual time expressions with the valid pe-
riod of each relation to achieve labeling. For ex-
ample, sentence like:

“On September 19, 2016, Jolie filed for divorce
from Pitt, citing irreconcilable differences.”
is labeled with no relation (NA).

The dataset contains 57 relations. The training
set contains 97,616 sentences and 20,085 entity
pairs. The test set contains 39,990 sentences and
8,641 entity pairs. 2

4.2 Experiment Details

Hyper-Parameter Settings For WIKI-TIME ex-
periments, we construct query over each appeared
time spot in the mention set. On the other hand,
for NYT-10 experiments, we adopt a single query
without temporal encoding to compare results
with other baseline methods since the dataset only
contains one label for each mention set.

Among all experiments, we use 230 convolu-
tion kernels with windows size 3. The dropout
probability pd is set to 0.5. We try various max
hops values H (from 1 to 5) to test how reason-
ing works in our model. We train the models with
20 epochs and 50 epochs for NYT-10 dataset and
WIKI-TIME dataset and report the best perfor-
mance.

As for optimization step, we adopt SGD with
gradient plus Gaussian noise with standard devi-
ation of 0.01, which helps to better generalize.
Also, we apply gradient decay of rate (ρ = 0.5)
over every τ = 10 epochs. The learning rates for
NYT-10 and WIKI-TIME experiments are set to
0.001 and 0.01, respectively.

4.2.1 Input Vectors
With regard to inputs, we use 50-d Glove (Pen-

nington et al., 2014) word embeddings pretri-
aned on Wikipedia and Gigaword and 5-d pos-
tion embedding. The temporal encodings are ei-
ther initialized with random 50-d vectors, which
are learned during training, or set directly with PE.
For entity embeddings, we use the TransE (Bordes
et al., 2013) entity vectors pretrained on Wikidata
released by the OpenKE platform.

4.2.2 Evaluation Metric
The performance of comparative experiment is

reported by precision-recall (PR) curve. Specifi-
cally, we sort the prediction scores of the model in

2The details of construction of WIKI-TIME can be found
in Appendix A.

Symbol Remarks

CNN ONE (Zeng et al., 2015).
CNN ATT (Lin et al., 2016).
CNN AVE (Lin et al., 2016).
TempMEM Our model without temporal

encoding.
TempMEM+R Our model with random

intialized temporal encoding.
TempMEM+P Our model with PE encoding.

Table 1: Notations.

descending order (without NA relation) and com-
pute the precision with threshold for each recall
value. Also, we report the P@N values which in-
dicate the precision over N predictions with the
highest confidence scores.

Figure 2: Precison-Recall curve of bag-level
experiment on WIKI-TIME. Best viewed in color.

4.3 Performance of iterative reasoning

To test the effect of iterative reasoning over in-
stances, we implement the neural models pro-
posed in previous work (Zeng et al., 2015; Lin
et al., 2016), from the source code released by au-
thors. Since the previous models perform predic-
tion in bag-level, the label is given by the latest
relation appeared in KB. As for our models, we
fix the number of hops H = 2 and set the encod-
ing to CNN. 3 The notations of the experiments are
shown in Table 1.

As shown in Figure 2 and Table 2, we have the
following observations: (1) All TempMEM mod-
els achieve better performance compared with the
previous neural models (CNN ONE, CNN ATT).

3The PCNN encoding is not used in WIKI-TIME dataset.
The detailed explanation is given in Appendix A.
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Method P@N 100 P@N 200 P@N 300
CNN ATT 67.33 67.66 66.45
CNN ONE 70.3 68.66 65.78
TempMEM 81.18 82.09 78.41

TempMEM+R 79.21 78.61 75.42
TempMEM+P 81.19 79.1 77.41

Table 2: Comparison with previous models.
P@N 100/200/300 refers to the precision for the

highest 100, 200 and 300 predictions in WIKI-TIME.

Method Bag-level F1 Query-level F1
CNN ATT 39.66 -
CNN ONE 40.15 -
TempMEM 47.88 54.75

TempMEM+R 46.76 47.83
TempMEM+P 54.86 60.01

Table 3: Manual evaluation of Bag-level and
Query-level F1 scores in WIKI-TIME.

Recall that the hop number is set to 2. This can be
seen as an ablation experiment. The results sug-
gest that the remote instances can generally help
relation extraction task. (2) TempMEM + P clearly
outperforms TempMEM + R, which proves that
the properly chosen temporal encodings help the
performance.

Note that, in the columns “P@N 200” and
“P@N 300” of Table 2, we find that the pure
TempMEM outperforms TempMEM + P and
TempMEM + R. Based on the results in Table 3,
their drop of performance comes from the noisy
labeling problem of distant supervision.

Also, TempMEM can catch relation changes
through the timeline of two entities. We refer the
readers to the case study in Appendix B.

Figure 3: Number-of-hops experiment on WIKI-
TIME. Best viewed in color.

4.4 Manual Evaluation on WIKI-TIME

Since the WIKI-TIME is distantly collected, we
want to obtain a more precise view of how the
models perform. So, we apply the manual evalu-
ation to verify our experimental results. We ran-
domly pick 200 mention sets in the test set of
WIKI-TIME and ask two annotators to label the
relation for each instance. The annotation rule is
to label the instance with the relation that can be
inferred from the instance itself or previous in-
stances. As shown in Table 3, the manual eval-
uated F1 scores are basically consistent with the
PR curves in Figure 2, which indirectly proves
the WIKI-TIME’s quality. Also, we find that the
TempMEM + P achieves the best performance
and shows obvious advantages in both query-level
and bag-level F1 scores over the naive TempMEM
(i.e., with no temporal encodings). This proves the
effectiveness of our temporal encodings.

4.5 Effect of the Number of Hops

In this section, we discuss the effect of different
number of hops in TempMEM. We change the hop
value from 1 to 5 and evaluate the precision and
recall of our models in query-level. The hyper-
parameters are fixed. The temporal encoding is
set to PE and each model is trained for 30 epochs.

The results of the hop number experiment are
depicted in Figure 3. From the results, we can ob-
serve that models show better performance with
hop number 2 and 4. Most of the improvement of
the model with hop number 4 resides in the recall
range [0, 0.05], but the performance remains in the
similar trend with other models in the recall range
[0.05, 0.2]. In addition, we notice that the perfor-
mance of the models fluctuates with the increase
in the number of hops and the model with even
hop number generally perform better than its pre-
decessor, e.g. models with hop number 4 and 5.
We believe that the reason might lie in the distri-
bution of the hop distance between origin instance
and useful remote instance.

4.6 Performance on NYT-10 Dataset

In this section, we report our results on the well-
studied NYT-10 dataset. By evaluating our model
in the NYT-10 dataset, our objective is to prove the
power of reasoning among remote instances.

Note that, in the NYT-10 dataset, there is no
temporal information for each instance, so we only
use one query for each mention set and there’s no
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(a) Results with CNN encod-
ing.

(b) Results with PCNN en-
coding.

Figure 4: Precison-Recall curve on NYT-10. Best
viewed in color.

temporal encoding for each instance. Also, we do
not use the entity embedding for the NYT-10 ex-
periments.

The results are shown in Figure 4. For both
CNN and PCNN models, We can see that our mod-
els exceed the performance of all other models
(CNN ATT, CNN ONE, CNN AVE, PCNN ATT,
PCNN ONE, PCNN AVE) in the range of low re-
call values. In the high recall range, our models
also have results about the same as the best model
among others. This suggests that even without
the temporal encoding, reasoning over remote in-
stances is indeed useful in relation extraction task.

5 Related Work

5.1 Distant Supervision

Distant supervision for relation extraction is
an important, automatic method of completing
knowledge base.

(Riedel et al., 2010) made the at-least-once as-
sumption that led the distant supervision for rela-
tion extraction to multi-instance learning. (Hoff-
mann et al., 2011) and (Surdeanu et al., 2012) tried
to model the task with a multi-instance, multi-
label setting using the classical graph model.

Recently, some work focused on applying deep
neural network to the DS task. (Zeng et al., 2014)
was the first trial to apply deep learning in rela-
tion extraction by solving a classification problem
with fully supervised approach. (Zeng et al., 2015)
moved a step further and introduced the multi-
instance learning paradigm by using only the most
important instance to predict relation. (Lin et al.,
2016; Liu et al., 2017; Ji et al., 2017) improved the
previous work by adding attention mechanism to
instances and automatically reducing the weights
of noisy instances. There are other approaches that
tried to reduce the impact of noise in DS by using
active learning (Sterckx et al., 2014) and reinforce-
ment learning (Feng et al., 2018).

However, previous work focused on denoising
but ignored the exploration of the remote instances
and introduced no temporal information to sup-
port relation extraction. In this paper, we intro-
duce temporal information into DS and combine
it with the memory network to perform reasoning
over instances.

(Feng et al., 2017) also used the memory net-
work in the context of distant supervision. Their
work performed word-level and relation-level rea-
soning to model the importance of words and de-
pendency between relations. Their motivation was
to gain better sentence encoding and relation mod-
eling, while in our model, we apply the sentence-
level memory network to understand the inference
process among instances.

5.2 Temporal Relation Extraction
Also, this work is related to temporal relation ex-
traction. (Dligach et al., 2017) was the first ap-
proach to use neural models for temporal relation
extraction. (Tourille et al., 2017) used a Bi-LSTM
to identify narrative containers between events and
time expressions. (Cheng and Miyao, 2017) in-
troduced dependency paths and used a ”common-
root” to solve the cross-sentence dependency.
(Meng and Rumshisky, 2018) leveraged the Neu-
ral Turing Machine to enhance context-awareness
of the temporal relation extraction model.

Previous work in temporal relation extraction
was dedicated to event timelining and focused
on dealing with relations between event and time
expression. In constrast, our model aims to
solve general entity to entity relation extraction
by instance-level temporal reasoning based on a
coarse-grained timelining.

5.3 Temporal Slot Filling
Another related research aspect is the temporal
slot filling (TSF) task introduced in knowledge
base population (Surdeanu, 2013; Ji et al., 2014).
Distant supervision approaches (Garrido et al.,
2013; Cucerzan and Sil, 2013; Sil and Cucerzan,
2014) (from Freebase and Wikipedia infoboxes)
are widely applied to address the lack of super-
vising data. (Reinanda and De Rijke, 2014) per-
formed the prior-sampling on distant supervision
data to correct the mismatch of distributions.

The TSF task is similar to the task defined in
this paper in the sense that TSF also asks the
model to identify the start and end date of one
knowledge triple 〈head, rel, tail〉. The difference
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is that the TSF task’s objective is to predict valid-
ity period given the head, rel and tail, while in our
setting, we predict rel between two entities in dif-
ferent periods.

6 Conclusion

In this paper, we formulate the task of distant
supervision with temporal relation reasoning by
modeling it as a sequence labeling problem. Fol-
lowing the DS paradigm, we created a new dataset
called WIKI-TIME which is designed for the tem-
poral relation extraction task. In addition, we
propose an encoding-fusion model, TempMEM,
which combines both encoding and reasoning
temporally. At each computation step, our model
can automatically attend information with either
close representation or close temporal encoding.
In experiments, we compare our model with the
existing methods in both the well-known NYT-10
dataset and our WIKI-TIME dataset. Both auto-
matic and manual evaluation are applied in the ex-
periments. The experimental results show that our
model not only realizes better performance in re-
lation extraction by introducing instance-level rea-
soning but also improves the reasoning by bring-
ing the temporal information in.

In the future, we plan to further explore the ef-
fect of different encoding modules like Bi-LSTM
or self-attention and try to model temporal infor-
mation with more sophisticated choices.
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A Appendix A : WIKI-TIME
Construction

Here we illustrate the construction process of
WIKI-TIME dataset in detail. The construction
of WIKI-TIME follows common distant supervi-
sion framework. In distant supervision, we align
the knowledge base to free corpus. The chosen
knowledge base and free corpus are Wikidata and
Wikipedia, respectively.

As depicted in Figure 5, the construction of
WIKI-TIME consists of the following procedures.

1. We extract the relations with the valid period
(i.e., 〈ts, te〉) that appeared in WikiData.

2. Based on the extracted relation set, we fur-
ther extract entity pairs that participate in any
relation in the set. Here, each extracted triple
should have a valid period (i.e., 〈E1, rel, E2〉
: 〈ts, te〉).

3. We tag each sentence in Wikipedia cor-
pus using either time expression appeared in

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
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Figure 5: Preprocess of inputs

the sentence or last appeared time expres-
sion. We implement our own time expression
recognition on the basis of NLTK-contrib’s
timex tool 4 with some modification accord-
ing to our needs. Each tagged sentence is de-
noted by tuple 〈si, t̂i〉.

4. We align the extracted entity pairs to tagged
corpus to retrieve our final mention set. Note
that we additionally take sentences mention-
ing entity E2 in the wiki page of entity E1

as training sentences for (E1, E2) to obtain a
larger dataset. In this case, the position of E1

may not exist in our dataset. Because PCNN
splits sentences by positions of entities, it is
unclear how to apply it directly to our WIKI-
TIME dataset.

5. We order the extracted sentences
{〈s1, t̂1〉, · · · 〈sm, t̂m〉} into a timeline
and align them with the corresponding
knowledge triple for sentence-level relation
〈si, t̂i, reli〉.

The final dataset contains 57 relations. The
training set contains 97,616 sentences and 20,085
entity pairs. The test set contains 39,929 sentences
and 8,641 entity pairs. The train/test split is done
on entity pair level, so there is no overlap between
train and test set.

B Appendix B : Case Study

Table 4 shows an example of our tagged data. For
each sentence, we show the corresponding time
slot and its relation. Also, the mentions of the
entity are highlighted with the bold font and each

4https://github.com/nltk/nltk_contrib/
blob/master/nltk_contrib/timex.py

sentence is indexed by id for clearness.

(a) q3 over relation Spouse

(b) q0 over relation Spouse

Figure 6: Attention weights for queries with H = 4

For each query, we show its correspond-
ing heat map of attention values over
different hops. The case we choose is
〈Stelios Kazantzidis, spouse,Marinella〉.
In Figure 6 (a), the attention of q3 focuses on
sentences with id 2 and 3 which support the
relation spouse a lot. Then in the next hop, its
attention shifts to sentences with id 0 and 1, which
are the “remote” instances. Then in the third
hop, its attention shifts again toward another part

https://github.com/nltk/nltk_contrib/blob/master/nltk_contrib/timex.py
https://github.com/nltk/nltk_contrib/blob/master/nltk_contrib/timex.py
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id Relation Time Spot Sentence

0 NA 1957-01-01 Her early career was marked by
her collaboration with singer Stelios
Kazantzidis.

1 NA 1960-01-01 ... instances of Marinella in films of
Greek cinema, from the 1960 by 1966
with Stelios Kazantzidis ...

2 Spouse 1964-05-07 Marinella married Stelios
Kazantzidis on 7 May 1964 ...

3 Spouse 1964-05-07 Stelios Kazantzidis married
Marinella on 7 May 1964 ...

4 NA 1966-09-01 In September 1966 he divorced
Marinella...

5 NA 1968-01-01 Following Marinella’s departure Litsa
Diamandi ...

6 NA 1968-01-01 Marinella sang on some songs ...
7 NA 1968-01-01 Marinella had an ”answer back” to

that latter song ...

Table 4: Aligned sentences of 〈 Stelios Kazantzidis , Marinella 〉

of the sentence set (id 4 to 6), which contains
sentences related to divorce, departure and so on.
These findings prove the claim that our model
can achieve more accurate relation extraction by
exploitation of remote instances.

Also, we demonstrate that the model has differ-
ent attentions for queries at different time spots. In
Figure 6 (b), we still observe the case of 〈 Stelios
Kazantzidis, spouse, Marinella 〉. But, the atten-
tion of query q0 focuses on a different path com-
pared with query q3. It first focuses on the remote
instances with id 0 and 1. Then the model shifts
to the supporting sentences. After that, it highly
focuses on sentence 5, which supports two enti-
ties’ departure. All these findings show that the
temporal encodings significantly affect the result
of attention.

The differences between the attentions of quries
q0 and q3 show that the temporal encodings signif-
icantly affect the result of attention.


