
Proceedings of NAACL-HLT 2019, pages 988–997
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

988

Graph Pattern Entity Ranking Model
for Knowledge Graph Completion

Takuma Ebisu1,2 and Ryutaro Ichise2,1,3

1SOKENDAI, Chiyoda-ku, Tokyo, Japan
2National Institute of Informatics, Chiyoda-ku, Tokyo, Japan

3National Institute of Advamced Industrial Science and Technology, Koto-ku, Tokyo, Japan

{takuma,ichise}@nii.ac.jp

Abstract

Knowledge graphs have evolved rapidly in

recent years and their usefulness has been

demonstrated in many artificial intelligence

tasks. However, knowledge graphs often have

lots of missing facts. To solve this prob-

lem, many knowledge graph embedding mod-

els have been developed to populate knowl-

edge graphs and these have shown outstand-

ing performance. However, knowledge graph

embedding models are so-called black boxes,

and the user does not know how the informa-

tion in a knowledge graph is processed and the

models can be difficult to interpret. In this pa-

per, we utilize graph patterns in a knowledge

graph to overcome such problems. Our pro-

posed model, the graph pattern entity ranking

model (GRank), constructs an entity ranking

system for each graph pattern and evaluates

them using a ranking measure. By doing so,

we can find graph patterns which are useful

for predicting facts. Then, we perform link

prediction tasks on standard datasets to eval-

uate our GRank method. We show that our ap-

proach outperforms other state-of-the-art ap-

proaches such as ComplEx and TorusE for

standard metrics such as HITS@n and MRR.

Moreover, our model is easily interpretable be-

cause the output facts are described by graph

patterns.

1 Introduction

Knowledge graphs can be used to describe real-

world relations as facts in a form that a computer

can easily process and has been used for many ar-

tificial intelligence tasks (Hakimov et al., 2012;

Daiber et al., 2013; Bordes et al., 2014). In a

knowledge graph, a fact is represented by a la-

beled and directed edge, called a triple (h, r, t),

where h and t are entity nodes and r is a rela-

tion label of an edge from h to t. Knowledge

graphs such as YAGO (Suchanek et al., 2007),

DBpedia (Auer et al., 2007), and Freebase (Bol-

lacker et al., 2008) have developed rapidly in re-

cent years and are used for many artificial intel-

ligence tasks such as question answering, content

tagging, fact-checking, and knowledge inference.

Although some knowledge graphs already contain

millions of entities and billions of facts, they might

still be incomplete and some facts may be missing.

Hence, we need to develop a system that can pre-

dict missing facts to complete knowledge graphs

automatically.

Many kinds of models for link prediction

have been developed to estimate unknown facts.

Knowledge graph embedding models, which are

the most widely used approach in this field, map

entities and relations in a knowledge graph onto a

vector space and obtain the latent underlying fea-

tures. However, these models are generally diffi-

cult to interpret, as we do not know how informa-

tion is processed in the models and the predicted

facts are output without explanation.

In this paper, we construct statistical models

based on graph pattern matching. These models

are not only easy to interpret compared to knowl-

edge graph embedding models but also outperform

state-of-the-art models for link prediction.

Our main contributions in this paper are as fol-

lows:

• Defining graph pattern association rules

(GPARs) for a knowledge graph.

• Introducing a graph pattern probability

model (GPro) and discussing its flaws.

• Proposing a novel model, the graph pattern

entity ranking model (GRank), which uses

graph patterns to rank entities.

• Proposing distributed rankings to address the

problem arising from having the same score

for multiple entities.

989

• Evaluating the proposed models through link

prediction tasks for standard datasets: It

is shown that our model outperforms most

state-of-the-art knowledge graph embedding

models for the HITS@n and MRR metrics.

The remainder of this paper is organized as fol-

lows. In Section 2, we discuss related work on

link prediction. In Section 3, we define the terms

and notation used in this paper. In Section 4, we

define standard confidences for GPARs and dis-

cuss their problems. In Section 5, we propose the

GRank model to deal with these problems. In Sec-

tion 6, we present an experimental study in which

we compare our models with baseline results for

benchmark datasets. In Section 7, we conclude

this paper.

2 Related Work

We categorize related work for link prediction into

two groups: work on knowledge graph embedding

models (which are latent feature models) and work

on observed feature models.

2.1 Knowledge Graph Embedding Models

Recently, knowledge graph embedding models

have yielded great results in link prediction

tasks. Knowledge graph embeddings models em-

bed entities and relations on a continuous space

and can be roughly classified into three types:

translation-based models, bilinear models, and

neural network-based models.

The first translation-based model was the

TransE (Bordes et al., 2013) model, which gained

attention because of its effectiveness and simplic-

ity. TransE employs the principle h+ r = t, where

h, r and t are the embeddings of h, r and t, re-

spectively. While this principle efficiently cap-

tures first-order rules, the TransE approach still

has some problems. The conflict between princi-

ple and regularization is one of these problems and

the TorusE (Ebisu and Ichise, 2018) model was re-

cently proposed to solve this problem by embed-

ding entities and relations on a torus manifold.

RESCAL (Nickel et al., 2011) was the first bi-

linear model, where each relation is represented by

a square matrix and the score of the triple (h, r, t) is

calculated by a bilinear map which corresponds to

the matrix of the relation r and whose arguments

are h and t. Hence, RESCAL represents the most

general form of a bilinear model. Extensions of

RESCAL have been proposed by restricting bilin-

ear functions, for example, DistMult (Yang et al.,

2015) and ComplEx (Trouillon et al., 2016) re-

strict the matrices representing the relations to di-

agonal matrices.

Neural network-based models have layers and

an activation function like a neural network. The

Neural Tensor Network (NTN) (Socher et al.,

2013) has a standard linear neural network struc-

ture and a bilinear tensor structure, and can be

considered as a generalization of RESCAL, where

the weight of the network is trained for each re-

lation. Graph Convolutional Networks (GCNs)

(Duvenaud et al., 2015; Defferrard et al., 2016;

Kipf and Welling, 2017) exploit the convolution

operator to capture local information for a graph,

however these models are for undirected graphs.

Relational GCNs (Schlichtkrull et al., 2017) and

ConvE (Dettmers et al., 2018) are generalizations

of GCNs for knowledge graphs.

Knowledge graph embedding is the standard ap-

proach for link prediction. However, it suffers

from low interpretability, resulting in triples which

are predicted without any clear reason.

2.2 Observed Feature Models

The main advantage of observed feature mod-

els over knowledge graph embedding models is

their interpretability. Additionally, Toutanova et

al. (2015) proposed a relatively simple logistic re-

gression model, the Node+LinkFeat model, which

utilizes only one-hop information in a knowledge

graph and demonstrated that it performs far bet-

ter for link prediction on standard datasets than

most existing knowledge graph embedding mod-

els. However, it has also been shown that the

Node+LinkFeat model cannot deal with a low-

redundancy dataset because the model uses infor-

mation which is too local. On the other hand, it has

shown that a logistic regression model, the PRA

model (Lao and Cohen, 2010; Lao et al., 2011),

which utilizes multi-hop information do not have

sufficient accuracy (Liu et al., 2016). This sug-

gests logistic regression does not have enough

power to deal with deep information. These stud-

ies have motivated research toward developing a

more efficient model utilizing deeper information.

We begin by discussing GPARs, which were

proposed recently by Fan et al. (2015), and have

shown their usefulness for social network graphs

990

Team A

U.K.

located_in

p1 p2 p3 p4 p5

member_of

pm

manager_of

U.K. France

nationality

Team B

Germany

located_in

p'1 p'2 p'3 p'4 p'5

member_of

p'm
manager_of

U.K. Germany

nationality

Italy

Team C

p''1 p''2 p''3 p''4 p''5

member_of

p''m
manager_of

GermanyItaly France

nationality

Figure 1: Graph Gex of sports teams.

located_in

x y

located_inሺ௫,௬ሻ

manager_of
x z y

nationality

��ଶ,ሺ௫,௬ሻ
member_of

x z y
nationality

��ଵ,ሺ௫,௬ሻ
Figure 2: Graph patterns on Gex.

because graph patterns can capture deeper infor-

mation lying in a knowledge graph and a GPAR

explicitly describe the process of prediction. How-

ever, the definition of GPARs by Fan et al. cannot

be applied to a knowledge graph because Fan et al.

assumes a different structure for a social network

graph than a knowledge graph. In the following

section, we define GPARs for a knowledge graph.

3 Preliminaries

In this section, we introduce the definitions and

notation required to discuss GPAR-based models.

3.1 Graph Pattern Association Rules on

Knowledge Graphs

We modify GPARs for application to a knowl-

edge graph following the definitions of Fan et al.

(2015).

Knowledge Graph: A graph is defined as G =

{(h, r, t)} ⊂ E × R × E, where E denotes a set of

entities and R denotes a set of relations. An ele-

ment (h, r, t) of G is called a triple and represents

the directed relation r between h and t.

An example graph Gex is shown in Figure 1,

where pi represents a person, Teams “A”, “B”, and

“C” represent sports teams, and countries are enti-

ties in Eex with labeled arrows between two enti-

ties representing directed relations in Rex.

Graph Pattern: A graph pattern on G is a

graph GP(x,y) = {(zi, r, z j)} ⊂ VGP×R×VGP, where

VGP denotes a set of variables, x and y are two des-

ignated variables, and R is the set of relations of

G. We suppose VGP has no redundancy, in other

words, ∀z ∈ VGP,∃(zi, r, z j) ∈ GP(x,y), z = zi ∨ z =

z j.

Some examples of graph patterns

on Gex are shown in Figure 2, where

GP1,(x,y) = {(z,member of, x), (z, nationality, y)},

GP2,(x,y) = {(z,manager of, x), (z, nationality, y)},

and located in(x,y) = {(x, located in, y)}. Our

focus in this paper is on finding useful graph

patterns for link prediction.

Graph Pattern Matching Function: A match-

ing function of GP(x,y) on (h, t) ∈ E × E is an in-

jective function m : VGP → E that satisfies the

following conditions: m(x) = h, m(y) = t, and

for all (zi, r, z j) ∈ GP(x,y), (m(zi), r,m(z j)) ∈ G.

M(GP(x,y), (h, t)) denotes the set of all matching

functions of GP(x,y) on (h, t). We say GP(x,y)

matches (h, t) if there is at least one matching func-

tion of GP(x,y) on (h, t) (i.e. M(GP(x,y), (h, t)) , ∅).

For example, m : VGP1,(x,y)
→ Eex (m(x) =

Team A,m(z) = p1,m(y) = U.K.) is a matching

function of GP1,(x,y) on (Team A,U.K.).

GPAR: A graph pattern association rule

(GPAR) AR is defined as GP(x,y) ⇒ r(x,y), where

GP(x,y) and r(x,y) are graph patterns and r(x,y) =

{(x, r, y)}.

For example, a GPAR AR1 = P1,(x,y) ⇒

located in(x,y) would indicate that if there is a

991

matching function of GP1,(x,y) on (h, t), then it is

likely that there is also a matching function of

located in(x,y) on (h, t), i.e. (h, located in, t) is a

fact.

3.2 Reconstruction of Knowledge Graph to

Queries

Our task is the link prediction of a knowledge

graph, i.e. to predict the missing entity of a query,

which is formally defined as follows:

Query: A query is a triple which is missing an

entity: (h, r, ?) or (?, r, t).

We divide a knowledge graph G into queries and

answers to use as training data for our model. Let

Qr,head (Qr,tail) denote the set of training queries

missing a head (tail) entity for a relation r obtained

from G; then Qr,head (Qr,tail) is defined as follows:

Qr,head = {(?, r, t) | (h, r, t) ∈ G},

Qr,tail = {(h, r, ?) | (h, r, t) ∈ G}

In this case, the answers of training queries are de-

fined as follows:

a(?,r,t) = {h | (h, r, t) ∈ G},

a(h,r,?) = {t | (h, r, t) ∈ G}

A knowledge graph usually contains only positive

triples. Hence, we adopt the partial completeness

assumption (PCA) (Galárraga et al., 2013, 2015)

to generate negative answers.

Partial Completeness Assumption: if (h, r, t)

is in G, then

∀t′ ∈ E, ((h, r, t′) < G ⇒ (h, r, t′) is negative) (1)

∀h′ ∈ E, ((h′, r, t) < G ⇒ (h′, r, t) is negative) (2)

The standard PCA definition consists only of

Equation (1), but we add Equation (2) because we

also need to allow negative answers for Qr,head.

Under PCA, negative answers for each question

are defined as follows:

n(?,r,t) = E \ a(?,r,t), n(h,r,?) = E \ a(h,r,?)

4 Standard Confidence and Problems

4.1 AMIE with GPARs

An association rule is essentially a binary clas-

sifier, i.e. the antecedent of an association rule

matches or does not match, and an association rule

is thus evaluated. Following this idea, we suggest

the most straightforward way to define the confi-

dence, which indicates the reliability of an asso-

ciation rule, is the conditional probability, which

is the probability of the consequent given the an-

tecedent for a GPAR. The conditional probability

Prtail(r(x,y) | GP(x,y)) of a GPAR GP(x,y) ⇒ r(x,y) to

predict a tail is defined as follows:

conf tail(GP(x,y) ⇒ r(x,y)) = Prtail(r(x,y) | GP(x,y)) =∑
(h,r,?)∈Qr,tail

|{t ∈ a(h,r,?) | M(GP(x,y), (h, t)) , ∅}|∑
(h,r,?)∈Qr,tail

|{t′ ∈ E | M(GP(x,y), (h, t′)) , ∅}|

For each query, the candidate entities found by

the graph pattern are counted for the denomina-

tor while only correct entities are counted for the

numerator. This confidence is used to evaluate

GPARs only to answer queries with a missing tail

because Qrtail
and its answers are used to define it.

Interestingly, GPARs with this confidence are

equivalent to AMIE (Galárraga et al., 2013, 2015),

which was proposed to find horn clauses for a

knowledge graph, although AMIE was proposed

before the appearance of GPARs. However, AMIE

originally has only one confidence value for a

GPAR because AMIE is not designed for link pre-

diction. Hence, we introduce the following alter-

native definition for the confidence value to an-

swer a query missing a head entity.

4.2 Standard Link Prediction Model and

Problems

We define another confidence to deal with a query

with a missing head entity as follows:

conf head(GP(x,y) ⇒ r(x,y)) = Prhead(r(x,y) | GP(x,y)) =∑
(?,r,t)∈Qr,head

|{h ∈ a(?,r,t) | M(GP(x,y), (h, t)) , ∅}|∑
(?,r,t)∈Qr,head

|{h′ ∈ E | M(GP(x,y), (h′, t)) , ∅}|

Additionally, we restrict matching functions to in-

jective functions as defined in Section 3.1, which

is different from AMIE, because the restriction

avoids redundant matching functions which map

multiple variables to the same entity and gives a

good bias for real-world knowledge. For exam-

ple, an GPAR GP3,(x,y) ⇒ sibling of(x,y), where

GP3,(x,y) = {(z, parent of, x), (y, child of, z)}, is

helpful to predict siblings. However, let p rep-

resent a person, GP3,(x,y) matches (p, p) although

p is not a sibling of p. The above restriction

omits such concerns. For another example, a

GPAR {(z1,manager of, x), (z1,manager of, z2),

(z2, located in, y)} ⇒ located in(x,y) on the graph

992

Gex in Figure 1 should not be considered help-

ful because m(x) = m(z2) holds for a matching

function m of the antecedent pattern and as a re-

sult, the GPAR is almost tautological. We consider

two confidence values for GPARs, con ftail and

con fhead, referred to as the graph pattern proba-

bility model (GPro).

However, GPro cannot deal with queries where

counting the number of matching functions is cru-

cial. An example where the number of match-

ing functions is important is shown in Figure 1.

In Gex, the country that Team C is located in is

missing. One might guess that Team C is lo-

cated in Italy because most of the Team C play-

ers have Italian nationality and the nationality of

a player often matches the country that the team

is located in. However, GPro underestimates the

GPAR AR1,(x,y) = GP1,(x,y) ⇒ located in(x,y),

which is equivalent to one’s guessing process:

conf tail(AR1,(x,y)) = 2/5, while conf tail(AR2,(x,y)) =

1/2, where AR2,(x,y) = GP2,(x,y) ⇒ located in(x,y).

Hence, GPro judges AR2,(x,y) is more useful than

AR1,(x,y), and as a result, GPro predicts Team C is

located in Germany rather than Italy.

This problem is caused by considering a GPAR

as a binary classifier, i.e. the matching num-

ber is not taken into account. For example, if

we apply AR1,(x,y) = P1,(x,y) ⇒ located in(x,y) to

a query (Team A, located in, ?) in the traditional

way (as a binary classifier), the output will contain

two entities with equal weighting, the U.K. and

France, because P1,(x,y) matches (Team A,U.K.)

and (Team A,France). Then, one of the output en-

tities is correct and the other is incorrect. This is

the reason why AR1,(x,y) is underestimated.

To deal with this problem, in this paper, we

consider a GPAR as an entity ranking system by

counting the number of matching functions of the

antecedent graph pattern rather than considering

as a binary classifier.

5 GPAR as Entity Ranking System and

Evaluation Metrics

As well as considering a GPAR as a binary clas-

sifier, we consider it as an entity ranking system.

Entities are ranked according to a score, based on

their number of matching functions.

Moreover, we introduce the distributed rank-

ings for entities, which are proposed to deal with

situations where multiple entities have the same

score. Then, we define the evaluation metrics for

the distributed rankings to evaluate GPARs for link

prediction.

These approaches overcome the problems

shown in Section 4.2.

5.1 GPAR as Entity Ranking System

We consider a GPAR as a ranking system in this

section to rank queries for which counting the

number of matching functions of the antecedent

is helpful, as shown in Section 4.2.

First, we define a scoring function whose argu-

ments are a graph pattern GP(x,y) and a pair of enti-

ties (h, t). The scoring function returns the number

of matching functions of a pattern on a pair, which

is formally defined as follows:

score(GP(x,y), (h, t)) = |M(GP(x,y), (h, t))|

Given a pattern GP(x,y) and a query (h, r, ?), we

can obtain the score(GP(x,y), (h, t
′)) for each can-

didate tail entity t′. Then we obtain the rank-

ings of the tail entities in descending order of

the scores. The head entity rankings for a query

(?, r, t) are also obtained in this way. This rank-

ing method gives us new perspective when we ap-

ply GPARs to answer a query. For example, if

we apply AR1,(x,y) = P1,(x,y) ⇒ located in(x,y) to

a query (Team A, located in, ?) the U.K. will be

ranked first and France second. In this situation,

we can say that AR1,(x,y) works because the cor-

rect entity ranks higher than the wrong entity. We

can basically evaluate a GPAR as an entity ranking

system by evaluating output rankings by an eval-

uation metric for an ranking system such as the

mean average precision. However, often multiple

entities have the same score and traditional met-

rics cannot deal with the situation. To deal with

this problem, we propose a new concept, called

distributed rankings, and the corresponding met-

rics in the following sections.

5.2 Distributed Rankings

We propose distributed rankings where each entity

can distribute over multiple ranks and each rank

can have multiple entities, to deal with situations

where multiple entities have the same score.

Traditional rankings of entities are represented

by a matrix Rank = (ranki, j) ∈ {0, 1}
n×n, where n

is the number of entities, and for each column and

row there is one 1 element. In this matrix, columns

represent entities and rows represent ranks. For

example, ranki, j = 1 means that the entity j has

993

rank i. On the other hand, distributed rankings

of entities are represented by a matrix dRank =

(dranki, j) ∈ [0, 1]n×n, where the summation of a

column or a row is equal to 1. Different from tra-

ditional rankings, the value of each element is con-

tinuous and multiple elements can be greater than

0 in a column or a row. For example, ranki, j = 0.5

means that half of the entity j has rank i. Note that

a traditional ranking matrix is a distributed ranking

matrix.

Given a pattern GP(x,y) and a query (h, r, ?),

We obtain distributed rankings of entities,

dRANK(GP(x,y), (h, r, ?)), according to their

scores as follows. Let a be the number of en-

tities whose scores are greater than the entity

represented by j and let b be the number of

entities whose scores are the same as the entity

represented by j. Then, dranki, j, an element of

dRANK(GP(x,y), (h, r, ?)), is determined to be 1/b

for a + 1 ≦ i ≦ a + b and 0 otherwise. Distributed

rankings of head entities for a query (?, r, t) are

obtained in the same way, and we refer to them as

dRANK(GP(x,y), (?, r, t)). Unlike traditional rank-

ings, distributed rankings are uniquely determined

from the scores of entities.

Traditional rankings can be evaluated by met-

rics such as the average precision or the cumula-

tive gain. However, distributed rankings cannot

be evaluated by these metrics. Hence, we require

a different evaluation metric for distributed rank-

ings.

5.3 Evaluation of GPARs as Entity Ranking

System

We use a GPAR to obtain distributed entity rank-

ings as shown in Section 5.1. In this section, we

define a metric to evaluate distributed rankings of

entities by generalizing the average precision to

evaluate a GPAR.

For a pattern GP(x,y) and a training query

(h, r, ?), the distributed precision at k, dPrek, of

dRANK(GP(x,y), (h, r, ?)) is defined as follows:

dPrek(GP(x,y), (h, r, ?))

=

∑k
i=1

∑
t j∈a(h,r,?)

dranki, j

k

where t j is an entity represented by j and dranki, j

is an element of dRANK(GP(x,y), (h, r, ?)). The el-

ements related with correct entities ranked higher

or equal to k are summed up as the traditional pre-

cision at k.

Dataset # Entities # Relations # Training # Validation # Test

WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134

FB15k 14,951 1,345 483,142 50,000 59,071

FB15k-237 14,541 237 272,115 17,535 20,466

Table 1: Statistics of benchmark datasets. The numbers

of entities, relations, training triples, validation triples,

and test triples are shown.

Then, the distributed average precision, dAP, is

defined for a pattern GP(x,y) and a training query

(h, r, ?) as follows:

dAP(GP(x,y), (h, r, ?))

=

∑
t j∈a(h,r,?)

∑n
k=1 dPrek(GP(x,y), (h, r, ?))) × drankk, j

|a(h,r,?)|

where t j is an entity represented by j, dranki, j

is an element of dRANK(GP(x,y), (h, r, ?)), and n

is the number of entities. The numerator of the

average precision for traditional rankings is the

summation of the precision at k for relevant en-

tities. However, a relevant entity represented by

j is distributed over multiple ranks in dRANK so

that the precision at k multiplied by drankk, j is

summed over k where a relevant entity j is dis-

tributed. dAP(GP(x,y), (?, r, t)) for a training query

with a missing head can be defined in the same

way. The distributed mean average precision for a

GPAR GP(x,y) ⇒ r(x,y) is defined as follows:

dMAPhead(GP(x,y) ⇒ r(x,y))

=

∑

(?,r,t)∈Qr,head

dAP(GP(x,y), (?, r, t))

|Qr,head|

dMAPtail(GP(x,y) ⇒ r(x,y))

=

∑

(h,r,?)∈Qr,tail

dAP(GP(x,y), (h, r, ?))

|Qr,tail|

We also define dMAP with for the “filtered” (Bor-

des et al., 2013) rankings which are obtained from

original rankings by eliminating entities whose

corresponding triples (except the target triple)

were included in the training dataset. ”Filtered”

dMAP (fdMAP) is the mean of the dAP of ”fil-

tered” rankings for each answer of queries.

We refer to GPARs considered as entity rank-

ing systems with these dMAPs or fdMAPs as the

graph pattern entity ranking model (GRank).

By using a graph pattern to rank entities,

GRank is able to properly estimate GPARs

where the number of matches is important as

994

WN18 FB15k WN18RR FB15k-237

MRR HITS@ MRR HITS@ MRR HITS@ MRR HITS@

Model 1 3 10 1 3 10 1 3 10 1 3 10

TransE 0.397 0.040 0.745 0.923 0.414 0.247 0.534 0.688 0.182 0.027 0.295 0.444 0.257 0.174 0.284 0.420

TorusE 0.947 0.943 0.950 0.954 0.733 0.674 0.771 0.832 – – – – – – – –

RESCAL 0.890 0.842 0.904 0.928 0.354 0.235 0.409 0.587 – – – – – – – –

DistMult 0.822 0.728 0.914 0.936 0.654 0.546 0.733 0.824 0.43 0.39 0.44 0.49 0.241 0.155 0.263 0.419

ComplEx 0.941 0.936 0.945 0.947 0.692 0.599 0.759 0.840 0.44 0.41 0.46 0.51 0.240 0.152 0.263 0.419

R-GCN 0.814 0.686 0.928 0.955 0.651 0.541 0.736 0.825 – – – – 0.248 0.153 0.258 0.417

ConvE 0.942 0.935 0.947 0.955 0.745 0.670 0.801 0.873 0.46 0.39 0.43 0.48 0.316 0.239 0.350 0.491

PRA 0.458 0.422 – 0.481 0.336 0.303 – 0.392 – – – – – – – –

Node+LinkFeat 0.940 – – 0.943 0.822 – – 0.870 – – – – 0.272 – – 0.414

GPro 0.950 0.946 0.954 0.959 0.793 0.759 0.810 0.858 0.467 0.430 0.485 0.543 0.229 0.163 0.250 0.360

GRank (dMAP) 0.950 0.946 0.953 0.957 0.841 0.814 0.855 0.890 0.466 0.434 0.480 0.530 0.312 0.233 0.340 0.473

GRank(fdMAP) 0.950 0.946 0.954 0.958 0.842 0.816 0.856 0.891 0.470 0.437 0.482 0.539 0.322 0.239 0.352 0.489

Table 2: Mean Reciprocal Rank (MRR) and HITS@n scores obtained for the link prediction tasks on the WN18,

FB15k, WN18RR, and FB15k-237 datasets. The highest result for each column is shown in bold. The results of

TransE and TorusE were reported by Ebisu and Ichise (2018), the results of RESCAL were reported by Nickel

et al. (2016), the results of DistMult and ComplEx were reported by Trouillon et al. (2016), the results of R-GCN

and ConvE were reported by Dettmers et al. (2018), the results of PRA were reported by Liu et al. (2016), and the

results of Node+LinkFeat were reported by Toutanova and Chen (2015).

shown in Section 4.2, unlike GPro. For exam-

ple, dMAPtail(AR1,(x,y)) = 1, is the maximum

value, while dMAPtail(AR2,(x,y)) = 1/2 in Fig-

ure 1. Hence, GRank can answer the query

(Team C, located in, ?) by applying AR1,(x,y).

6 Experiments

Our proposed models, GPro (Section 4.2) and

GRank (Section 5), are evaluated through link pre-

diction tasks and compared with other state-of-

the-art link prediction models.

6.1 Datasets

Experiments were conducted on four benchmark

datasets: WN18, FB15k (Bordes et al., 2013),

WN18RR (Dettmers et al., 2018), and FB15k-

237 (Toutanova and Chen, 2015) (details of these

datasets are provided in Table 1). These datasets

have been widely used in previous studies for eval-

uating model performance in link prediction tasks.

WN18 and FB15k were extracted from the real

knowledge graphs WordNet (Miller, 1995) and

Freebase (Bollacker et al., 2008), respectively.

WordNet is a well-known human-curated lexical

database, and hence, WN18 is an easy benchmark

of link prediction because it is well constructed

and there are few missing or wrong facts. There-

fore, link prediction models should perform well

on WN18. Freebase is a huge knowledge graph

of general facts and there are many missing facts.

It is known that WN18 and FB15k have redun-

dancy in the form of reverse relations. For this rea-

son, when WN18RR and FB15k-237 are extracted

from WN18 and FB15k, the inverse relations of

other relations are removed.

6.2 Evaluation Protocol

We conducted the link prediction task follow-

ing the same approach reported in (Bordes et al.,

2013) to evaluate our models qualitatively and

quantitatively. For each test triple (ht, rt, tt) in a

dataset, two queries, (ht, rt, ?) and (?, rt, tt), were

constructed in the same way as in Section 3.2.

Then, we obtained the rankings of entities for each

query from each model as outlined in the follow-

ing paragraphs. The rankings were ”filtered” by

eliminating entities whose corresponding triples

(except the target test triple) were included in

the training, validation, or test dataset. The ob-

tained rankings were scored by their mean recip-

rocal rank (MRR) and HITS@n, where MRR is

the mean of the inverse of the ranks of correspond-

ing entities and HITS@n is the proportion of test

queries whose corresponding entities are ranked in

the top n of the obtained rankings.

Next, we describe how to obtain rankings from

models. We restricted antecedent graph patterns of

GPARs to connected and closed (Galárraga et al.,

2013, 2015) patterns whose size |GP(x,y)| was less

than or equal to L to restrict the search space. A

connected and closed patterns is a pattern connect-

ing x and y without branches, as shown in Figure

2. L was chosen for each model among {1, 2, 3} by

MRR from the validation triples of each dataset.

It took about four days to evaluate all candidate

GPARs for GRank with dMAPs in FB15k using

995

an Intel Xeon Gold 6154 (3.00 GHz, 18 cores).

We now explain how we obtained the rankings

for queries with missing heads. For each relation

r, we chose the top 1,000 GPARs in descending

order of the standard confidence, the dMAP, or

the fdMAP to predict the heads. Let GPi,(x,y) ⇒

r(x,y) be the obtained GPAR, where i denotes the

rank. We defined the ordering for two entities

for query (?, rt, tt) as follows: for entities e1 and

e2, we define e1 > e2 if there exists i′ for which

score(GPi,(x,y), (e1, tt)) = score(GPi,(x,y), (e2, tt))

for i > i′ and score(GPi′,(x,y), (e1, tt)) >

score(GPi′,(x,y), (e2, tt)). We obtained the entity

rankings with this ordering for each query. Rank-

ings for queries with missing tails were obtained

in the same way.

6.3 Results

The results of the link prediction tasks for our

proposed models, GPro, GRank with dMAP, and

GRank with fdMAP, are shown in Tables 2, where

the results reported in previous studies are in-

cluded for comparison.

In Table 2, the first seven models are knowl-

edge graph embedding models and the following

two models are observed feature models. Table

2 shows the effectiveness of the Node+LinkFeat

model (Toutanova and Chen, 2015), although this

model is very simple (high MRRs imply that the

model also has high HITS@1s or HITS@3s).

The Node+LinkFeat model performed well on

WN18 and FB15k because these datasets often

contain the reverse relations of other relations.

In other words, it shows that knowledge graph

embedding models failed to capture this redun-

dancy. On the other hand, our proposed mod-

els, GPro and GRank, generally yield better re-

sults than the knowledge graph embedding models

and results which are better than or comparable to

Node+LinkFeat, which means that our models can

also handle such redundancy. In particular, GRank

with dMAP and fdMAP yielded the best results on

FB15k. This indicates that taking the multiplicity

of matchings and deeper information into account

is important for knowledge graphs such as Free-

Base that contain miscellaneous relations and are

not well curated like WordNet. As a result, GRank

performed well.

Table 2 also shows GPro and GRank yield

better results for the WN18RR dataset than the

other models. For FB15k-237, the performance

of Node+LinkFeat is comparable with most of the

other more sophisticated knowledge graph mod-

els and GPro does not yield good results because

FB15k-237 has less redundancy. GRank also per-

forms better than the most other models for the

FB15k-237 dataset for the same reason as the

FB15k dataset. However, our models do not uti-

lize the information related to the co-occurrence

of entities and relations in triples (node fea-

tures (Toutanova and Chen, 2015)), while ConvE,

Node+LinkFeat, and other models do. We also

limited the size and the shapes of graph patterns

because of the calculation time; we will address

these and improve our models further in our future

work.

Quality of Obtained Paths The examples of

antecedent patterns ranked high by GRank with

dMAPtail for FB15k are shown in Figure 3. The

patterns shown for predicting the sibling relation

are all correct as the antecedents of GPARs; how-

ever, the MAP of GP′
2,(x,y)

and GP′
3,(x,y)

are low.

The reason for this is that GP′
2,(x,y)

works when an

individual has more than two siblings. The MAP

of GP′
3,(x,y)

is low because individual’s parents are

often missing in FB15k. However, they are still

ranked higher than other patterns.

The produces film relation is the inverse re-

lation of the exective produced by relation in

FB15k. Such patterns are very helpful when

performing link prediction tasks, and GRank is

able to find them. However, the MAP is not

as high because of missing facts. GRank is

able to use majority rules such as GP′
5,(x,y)

⇒

film produced by(x, y) instead in such cases. This

rule can be interpreted as stating that a particular

film was likely to have been produced by a person

who produced many films in the same production

company.

Output triples of GRank (and GPAR-based

models) are described by antecedent patterns

unlike knowledge graph embedding models as

shown here.

7 Conclusions

In this paper, we first defined GPARs for a knowl-

edge graph and the standard confidence measures

of GPARs for link prediction. Then, we pointed

out the problems with the standard confidence

measures and we introduced a new perspective

using GPARs to rank entities to overcome these

problems. We also proposed distributed rank-

996

sibling

x y

��′�, ௫,௬ ⇒ siblingሺ௫,௬ሻ
 ��′ଵ, ௫,௬ : Ͳ.ͺʹͺ

sibling

x z ��′ଶ, ௫,௬ : Ͳ.ͳʹͻ

y
sibling parents

x z ��′ଷ, ௫,௬ : Ͳ.ͳͳ͹

y
children

produces_film

x y

��′�, ௫,௬ ⇒ exective_produced_byሺ௫,௬ሻ

 ��′ସ, ௫,௬ : Ͳ.͹͹ͳ

production_company

x z1 ��′ହ, ௫,௬ : Ͳ.ʹͻͳ

z2 y
exective_produced_by production_company

Figure 3: Examples of antecedent patterns for dMAPtail which were given high ranks by GRank for the FB15k

dataset.

ings for situations where multiple entities have the

same scores and defined metrics for them. This

idea led us to propose the GRank model. GRank is

easy to interpret because outputs are described by

GPARs, unlike knowledge graph embedding mod-

els, and so efficient that it outperformed the state-

of-the-art knowledge graph embedding models in

link prediction tasks.

In future work, we will extend GRank to use

more complex patterns. We considered only an-

tecedent graph patterns whose sizes were less than

or equal to 3.If we allow antecedent graph patterns

to have larger sizes, then we may find more useful

GPARs. We also restricted graph patterns to con-

tain only variables and not constants. Hence, we

did not use all of the available information con-

tained in the knowledge graph. We believe that

using such complex graph patterns will improve

GRank further.

Acknowledgements

This work was partially supported by the New En-

ergy and Industrial Technology Development Or-

ganization (NEDO).

We would like to thank Patrik Schneider for

helpful writing advice.

References

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary G. Ives.
2007. DBpedia: A nucleus for a web of open data.
In The Semantic Web, 6th International Semantic
Web Conference, 2nd Asian Semantic Web Confer-
ence, pages 722–735.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM

SIGMOD International Conference on Management
of Data, pages 1247–1250.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014. Question answering with subgraph embed-
dings. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 615–620.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, pages 2787–2795.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N. Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Pro-
ceedings of the 9th International Conference on Se-
mantic Systems, pages 121–124.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks
on graphs with fast localized spectral filtering. In
Advances in Neural Information Processing Systems
29, pages 3844–3852.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelli-
gence.

David K Duvenaud, Dougal Maclaurin, Jorge Ipar-
raguirre, Rafael Bombarell, Timothy Hirzel, Alan
Aspuru-Guzik, and Ryan P Adams. 2015. Convolu-
tional networks on graphs for learning molecular fin-
gerprints. In Advances in Neural Information Pro-
cessing Systems 28, pages 2224–2232.

Takuma Ebisu and Ryutaro Ichise. 2018. Toruse:
Knowledge graph embedding on a lie group. In Pro-
ceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence.

Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu.
2015. Association rules with graph patterns. VLDB
J., 8(12):1502–1513.

997

Luis Galárraga, Christina Teflioudi, Katja Hose, and
Fabian M. Suchanek. 2015. Fast rule mining in on-
tological knowledge bases with AMIE+. VLDB J.,
24(6):707–730.

Luis Antonio Galárraga, Christina Teflioudi, Katja
Hose, and Fabian M. Suchanek. 2013. AMIE: as-
sociation rule mining under incomplete evidence in
ontological knowledge bases. In 22nd International
World Wide Web Conference, pages 413–422.

Sherzod Hakimov, Salih Atilay Oto, and Erdogan
Dogdu. 2012. Named entity recognition and disam-
biguation using linked data and graph-based central-
ity scoring. In Proceedings of the 4th International
Workshop on Semantic Web Information Manage-
ment, SWIM ’12, pages 1–7.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proceedings of the Fifth International
Conference on Learning Representations.

Ni Lao and William W. Cohen. 2010. Relational re-
trieval using a combination of path-constrained ran-
dom walks. Machine Learning, 81(1):53–67.

Ni Lao, Tom M. Mitchell, and William W. Cohen.
2011. Random walk inference and learning in A
large scale knowledge base. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 529–539.

Qiao Liu, Liuyi Jiang, Minghao Han, Yao Liu, and
Zhiguang Qin. 2016. Hierarchical random walk in-
ference in knowledge graphs. In Proceedings of the
39th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 445–454.

George A. Miller. 1995. Wordnet: A lexical database
for English. Commun. ACM, 38(11):39–41.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A.
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, pages 1955–
1961.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings
of the 28th International Conference on Machine
Learning, pages 809–816.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2017. Modeling relational data with graph
convolutional networks. CoRR, abs/1703.06103.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neu-
ral tensor networks for knowledge base completion.
In Advances in Neural Information Processing Sys-
tems, pages 926–934.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web, pages 697–706.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and Their Compo-
sitionality.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33rd International Conference on Ma-
chine Learning, pages 2071–2080.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In Proceedings of the Third International
Conference on Learning Representations.

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1007/s10994-010-5205-8
http://www.aclweb.org/anthology/D11-1049
http://www.aclweb.org/anthology/D11-1049
https://doi.org/10.1145/2911451.2911509
https://doi.org/10.1145/2911451.2911509
http://arxiv.org/abs/1703.06103
http://arxiv.org/abs/1703.06103

