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Abstract

A large body of research into semantic tex-
tual similarity has focused on constructing
state-of-the-art embeddings using sophisti-
cated modelling, careful choice of learning
signals and many clever tricks. By contrast,
little attention has been devoted to similar-
ity measures between these embeddings, with
cosine similarity being used unquestionably
in the majority of cases. In this work, we
illustrate that for all common word vectors,
cosine similarity is essentially equivalent to
the Pearson correlation coefficient, which pro-
vides some justification for its use. We thor-
oughly characterise cases where Pearson cor-
relation (and thus cosine similarity) is unfit as
similarity measure. Importantly, we show that
Pearson correlation is appropriate for some
word vectors but not others. When it is not
appropriate, we illustrate how common non-
parametric rank correlation coefficients can be
used instead to significantly improve perfor-
mance. We support our analysis with a se-
ries of evaluations on word-level and sentence-
level semantic textual similarity benchmarks.
On the latter, we show that even the simplest
averaged word vectors compared by rank cor-
relation easily rival the strongest deep repre-
sentations compared by cosine similarity.

1 Introduction

Textual embeddings are immensely popular be-
cause they help us reason about the abstract and
fuzzy notion of semantic similarity in purely geo-
metric terms. Distributed representations of words
in particular (Bengio et al., 2003; Mikolov et al.,
2013a; Pennington et al., 2014; Bojanowski et al.,
2017; Joulin et al., 2017) have had a massive im-
pact on machine learning (ML), natural language
processing (NLP), and information retrieval (IR).
Recently, much effort has also been directed to-
wards learning representations for larger pieces of

text, with methods ranging from clever composi-
tions of word embeddings (Mitchell and Lapata,
2008; De Boom et al., 2016; Arora et al., 2017;
Wieting et al., 2016; Wieting and Gimpel, 2018;
Zhelezniak et al., 2019) to sophisticated neural ar-
chitectures (Le and Mikolov, 2014; Kiros et al.,
2015; Hill et al., 2016; Conneau et al., 2017; Gan
et al., 2017; Tang et al., 2017; Zhelezniak et al.,
2018; Subramanian et al., 2018; Pagliardini et al.,
2018; Cer et al., 2018).

Comparatively, there is little research into sim-
ilarity measures for textual embeddings. Despite
some investigations into alternatives (Camacho-
Collados et al., 2015; De Boom et al., 2015; Santus
et al., 2018; Zhelezniak et al., 2019), cosine simi-
larity has persistently remained the default and un-
questioned choice across the field. This is partly
because cosine similarity is very convenient and
easy to understand. Sometimes, however, we have
to resist what is convenient and instead use what is
appropriate. The core idea behind our work is to
treat each word or sentence embedding as a sample
of (e.g. 300) observations from some scalar ran-
dom variable. Hence, no matter how mysterious
word vectors appear to be, just like any samples,
they become subject to the full power of traditional
statistical analysis. We first show that in practice,
the widely used cosine similarity is nothing but the
Pearson correlation coefficient computed from the
paired sample. However, Pearson’s r is extremely
sensitive to even slight departures from normal-
ity, where a single outlier can conceal the under-
lying association. For example, we find that Pear-
son’s r (and thus cosine similarity) is acceptable
for word2vec and fastText but not for GloVe em-
beddings. Perhaps surprisingly, when we average
word vectors to represent sentences, cosine sim-
ilarity remains acceptable for word2vec, but not
for fastText any longer. We show that this seem-
ingly counterintuitive behaviour can be predicted
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by elementary univariate statistics, something that
is already well known to researchers and practi-
tioners alike. Furthermore, when there are clear
indications against cosine similarity, we propose
to repurpose rank-based correlation coefficients,
such as Spearman’s p and Kendall’s 7, as simi-
larity measures between textual embeddings. We
support this proposition by a series of experiments
on word- and sentence-level semantic textual sim-
ilarity (STS) tasks. Our results confirm that rank-
based correlation coefficients are much more ef-
fective when the majority of vectors break the as-
sumptions of normality. Moreover, we show how
even the simplest sentence embeddings (such as
averaged word vectors) compared by rank correla-
tion easily rival recent deep representations com-
pared by cosine similarity.

2 Related Work

At the heart of our work is a simple statistical anal-
ysis of pre-trained word embeddings and explo-
ration of various correlation coefficients as prox-
ies for semantic textual similarity. Hence, any re-
search that combines word embeddings with tools
from probability and statistics is relevant. Of
course, word embeddings themselves are typically
obtained as the learned parameters of statistical
machine learning models. These models can be
trained on large corpora of text to predict a word
from its context or vice versa (Mikolov et al.,
2013a). Alternatively, there are also supervised
approaches (Wieting et al., 2015, 2016; Wieting
and Gimpel, 2017, 2018).

A different line of research tries to move away
from learning word embeddings as point estimates
and instead model words as parametric densities
(Vilnis and McCallum, 2014; Barkan, 2017; Athi-
waratkun and Wilson, 2017). These approaches
are quite appealing because they incorporate se-
mantic uncertainty directly into the representa-
tions. Of course, such representations need to be
learned explicitly. In some cases one could esti-
mate the densities even for off-the-shelf embed-
dings, but this still requires access to the training
data and the usefulness of such post-factum den-
sities is limited (Vilnis and McCallum, 2014). In
other words, these approaches are not very helpful
to practitioners who are accustomed to using high-
quality pre-trained word embeddings directly.

Arguably, statistical analysis of pre-trained
word embeddings is not as principled as apply-
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ing a probabilistic treatment end-to-end. Any such
analysis, however, is very valuable as it provides
insights and justifications for methods that are al-
ready in widespread use. For example, removing
the common mean vector and a few top principal
components makes embeddings even stronger and
is now a common practice (Mu and Viswanath,
2018; Arora et al., 2016, 2017; Ethayarajh, 2018).
These works view word embeddings as observa-
tions from some D-dimensional distribution; such
treatment is naturally suitable for studying the
overall geometry of the embedding space. We, on
the other hand, are interested in studying the sim-
ilarities between individual word vectors and re-
quire a completely different perspective. To this
end, we see each word embedding itself as a sam-
ple of D observations from a scalar random vari-
able. It is precisely this shift in perspective that
allows us to reason about semantic similarity in
terms of correlations between random variables
and make the connection to the widely used co-
sine similarity.

Finally, we propose using rank-based correla-
tion coefficients when cosine similarity is not ap-
propriate. Recently, Santus et al. (2018) intro-
duced a rank-based similarity measure for word
embeddings, called APSynP, and demonstrated its
efficacy on outlier detection tasks. However, the
results on the word-level similarity benchmarks
were mixed, which, interestingly enough, could
have been predicted in advance by our analysis.

3 Correlation Coefficients and Semantic
Similarity

Suppose we have a vocabulary of N words V =
{wy,wa,...,wy} and the word embeddings ma-
trix W € RVXDP where each row w() fori =
1,..., N is a D-dimensional word vector. Popular
pre-trained embeddings in practice typically have
dimension D = 300, while the vocabulary size N
can range from thousands to millions of words.
We now consider the following: what kinds
of statistical analyses can we apply to W
in order to model semantic similarity between
words? One option is to view all word em-
beddings w) w®  wV) asa sample of N
observations from some D-variate distribution
P(Ey,...Ep). For example, we can fit a Gaus-
sian and study how all 300 dimensions correlate
with each other. Perhaps we can fit a mixture
model and see how the embeddings cluster. We



GloVe
100

a0
80
70
60
50
40
30
20
10

0 -

—0.10 -0.05 0.00 0.05 0.10 —0.10 -0.05

fastText

0.00 0.05 0.10

word2vec

—0.10 —-0.05 0.00 0.05 0.10

Figure 1: Normalised histograms of the mean distribution for three commonly used word embedding models:
GloVe (Pennington et al., 2014), fastText (Bojanowski et al., 2017), and word2vec (Mikolov et al., 2013b,c).

could also normalise them and study their distri-
bution on the unit sphere. It is clear by now that
P(Ey,..., Ep) is suitable for describing the over-
all geometry of the embedding space but is not
very useful for our goals.

If we are to reason about similarities be-
tween individual word vectors, we should in-
stead be looking at the transpose of W. Putting
it differently, we see W7’ as a sample of
D observations from an N-variate distribution
P(W1, Wy, ..., Wy), where W; is a scalar ran-
dom variable corresponding to the word w;. This
distribution is exactly what we need because the
associations between W; captured by P will be-
come a proxy for semantic similarity. Often we
are only interested in pairwise similarities between
two given words w; and wj; thus the main object
of our study is the bivariate marginal P(W;, W;).
To lighten up the notation slightly, we denote the
two words as w, and w,, and the correspond-
ing random variables as X and Y. We also re-
fer to P(X,Y) as the joint and P(X), P(Y)
as the marginals. In practice, of course, the ac-
tual P(X,Y) is unknown but we can make in-
ferences about it based on our sample (x,y) =
{(z1,91), (¥2,92), .. (zD,yp)}.

First, we might want to study the degree of lin-
ear association between X and Y, so we compute
the sample Pearson correlation coefficient
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Let’s view x and y as word embeddings momen-
tarily and compute cosine similarity between them
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We see now that Equation (1) and Equation (3)
look very similar; when the sample means z, i are
zero, cosine similarity and Pearson’s 7 are equal.
The real question here is whether or not they co-
incide in practice. Putting it differently, if we take
any single word vector w and compute the mean
(across the D dimensions), is this mean close to
zero? It turns out that it is, and we can show this
by plotting the distribution of the means across the
whole vocabulary for various popular word em-
beddings (see Figure 1). We find that the means
are indeed highly concentrated around zero; quan-
titatively, only 0.03% of them are above 0.05 in
magnitude. It follows that in practice when we
compute cosine similarity between word vectors,
we are actually computing Pearson correlation be-
tween them.

3

cos(x,y)

However, is this always the right thing to
do? When the joint P(X,Y) is bivariate nor-
mal, Pearson correlation indeed provides a com-
plete summary of association between X and
Y, simply because the covariance is given by
cov(X,Y) = rxyoxoy. However, Pearson cor-
relation is extremely sensitive to even the slightest
departures from normality — a single outlier can
easily conceal the underlying association (Pernet
et al., 2013). When the normality of P(X,Y) is
in doubt, it is preferable to use robust correlation
coefficients such as Spearman’s j or Kendall’s 7.

Spearman’s p is just a Pearson’s 7 between
ranked variables
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Figure 2: Scatter plots of paired word vectors, along with histograms (100 bins) of individual word vectors. Rows
from top to bottom correspond to one of three common models: GloVe (Pennington et al., 2014), fastText (Bo-
janowski et al., 2017), and word2vec (Mikolov et al., 2013b,c). Columns from left to right correspond to increasing
degrees of semantic similarity between the words, and accordingly increasingly pronounced linear correlation be-
tween the word vectors. Both the scatter plots and the histograms exhibit the presence of heavy outliers for GloVe
vectors, which damage the efficacy of Pearson correlation in reliably capturing statistical associations. The outliers
are relatively less pronounced for fastText vectors and much less pronounced for word2vec vectors.

where r[z;| denotes the integer rank of x; in a vec-

tor x (similarly r[y;]), while r[x] and r[y] denote
the means of the ranks. Kendall’s 7 is given by

7A_

= D(l)2—1) Z sgn(x; —x;)sgn(y;—y;) (5)
1<)
and can be interpreted as a normalised difference
between the number of concordant pairs and the
number of discordant pairs. These rank correla-
tion coefficients are more robust to outliers than
Pearson’s 7 because they limit the effect of out-
liers to their ranks: no matter how far the outlier
is, its rank cannot exceed D or fall below 1 in our

954

case. There are also straightforward extensions to
account for the ties in the ranks.

The main point here is the following. It is
tempting to chose cosine similarity as the default
and apply it everywhere regardless of the embed-
ding type. Sometimes, however, we should resist
using what is convenient and instead use what is
appropriate. For example, if the samples corre-
sponding to the marginals P(X) and P(Y) al-
ready look non-normal, then we conclude the joint
P(X,Y) cannot be a bivariate normal and the ap-
propriateness of cosine similarity should be seri-
ously questioned. In some of these cases, using a
rank-based coefficient as a similarity measure be-
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Figure 3: Q-Q plots comparing the theoretical quantiles of a standard normal distribution (horizontal axis) against
the sample quantiles of standardised (Mean 0, SD 1) word vectors from three commonly used models: GloVe (Pen-
nington et al., 2014), fastText (Bojanowski et al., 2017), and word2vec (Mikolov et al., 2013b,c). Perfect fit to the
45-degree reference line would indicate perfect normality. Note the pronounced discrepancy between the normal
distribution and GloVe vectors due to the presence of heavy outliers. The discrepancy is relatively less pronounced
for fastText vectors and much less pronounced for word2vec vectors. Figure 2 provides an alternative visualisation

of the same phenomena.

tween word embeddings would be a much better
alternative. It will capture the association better,
which could in turn lead to large improvements
in performance on the downstream tasks. In gen-
eral, of course, even normal marginals do not im-
ply a normal joint and care should be exercised
either way; however we found the normality of
marginals to be a good indication for cosine simi-
larity within the scope of the present work. In the
next section we illustrate how the ideas discussed
here can be applied in practice.

4 Statistical Analysis of Word
Embeddings: A Practical Example

No matter how mysterious word vectors appear to
be, just like any samples, they are subject to the
full power of traditional statistical analysis. As
a concrete example, let’s say we decided to use
GloVe vectors (Pennington et al., 2014). We treat
each vector w; as if it was a sample of 300 obser-
vations from some scalar random variable WW;. We
take a few hundred of these vectors, run a normal-
ity test such as Shapiro-Wilk (Shapiro and Wilk,
1965) and find that the majority of them look non-
normal (p < 0.05). As there is a considerable
evidence against normality, we flag these vectors
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as ‘suspicious’ and look at them closer. We pick
a few vectors and examine their histograms and
Q-Q plots, seen in Figure 2 and Figure 3 respec-
tively; the latter in particular is a statistical tool
used to compare empirical and theoretical data dis-
tributions, and is explained further in the caption
of Figure 3. In both cases we observe that while
the bulk of the distribution looks bell-shaped, we
always get a couple of very prominent outliers.

Next, we can also visualise our word vectors in
a way more directly relevant to the task at hand.
We take some pairs of words that are very similar
(e.g. ‘vanish’ and ‘disappear’), moderately simi-
lar (‘hard’ and ‘dense’), and completely dissimilar
(‘mouse’ and ‘management’) and make the scatter
plots for the corresponding pairs of word vectors.
These are also presented in Figure 2. We see that
for similar pairs the relationship is almost linear;
it becomes less linear as the similarity decreases,
until we see a spherical blob (no relationship) for
the most dissimilar pair. However, we again face
the presence of bivariate outliers that are too far
away from the main bulk of points.

Given this evidence, which course of action
shall we take? Based on the presence of heavy
outliers, we reject the normality of GloVe vectors



and rule out the use of Pearson’s r and cosine sim-
ilarity. Instead we can use rank correlation coef-
ficients, such as Spearman’s p or Kendall’s 7, as
they offer more robustness to outliers. Note that
in this particular case, it may also be acceptable
to winsorize (clip) the vectors and only then pro-
ceed with the standard Pearson’s r. We evalu-
ate the proposed solution on word-level similar-
ity tasks and observe good improvement in perfor-
mance over cosine similarity, as seen in Table 1.

Of course this exploration is in no way specific
to GloVe vectors. Note that from Figure 2 and Fig-
ure 3, we also see that word2vec vectors in par-
ticular tend to be much more normally distributed,
meaning that we don’t find strong evidence against
using Pearson correlation; this is again backed up
by Table 1.

This example helps illustrate that proper sta-
tistical analysis applied to existing textual em-
beddings is extremely powerful and compara-
tively less time-consuming than inventing new ap-
proaches. Of course, this analysis can be made as
fine-grained as desired. Quite coarsely, we could
have rejected the use of cosine similarity right af-
ter the Shapiro-Wilk test; on the other hand, we
could have used even more different tests and vi-
sualisations. The decision here rests with the prac-
titioner and depends on the task and the domain.

5 Experiments

To empirically validate the utility of the statisti-
cal framework presented in Section 3, we run a
set of evaluations on word- and sentence-level STS
tasks. In all experiments we rely on the following
publicly available word embeddings: GloVe (Pen-
nington et al., 2014) trained on Common Crawl
(840B tokens), fastText (Bojanowski et al., 2017)
trained on Common Crawl (600B tokens), and
word2vec (Mikolov et al., 2013b,c) trained on
Google News. All the source code for our exper-
iments is available on GitHub'; in the case of the
sentence-level tasks we rely also on the SentEval
toolkit (Conneau and Kiela, 2018).

First we consider a group of word-level simi-
larity datasets that are commonly used as bench-
marks in previous research: WS-353-SIM (Finkel-
stein et al., 2001), YP-130 (Yang and Powers,
2005), SIMLEX-999 (Hill et al., 2015), SimVerb-
3500 (Gerz et al., 2016), RW-STANFORD (Luong

'nttps://github.com/Babylonpartners/
corrsim
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task N V COS PRS SPR KEN
YP-130 01 = 57.1 570 60.2 59.9
MTURK-287 A3 = 693 693 70.8 70.9
SIMLEX-999 .04 R 40.8 409 46.0 46.0
o MC-30 d0 = 78.6 792 77.0 774
E SIMVERB-3500 .04 R 283 28.3 343 343
© RG-65 d4 = 762 759 71.0 71.1
ws-353-sim .06 = 80.3 80.2 80.1 80.1
VERB-143 00 = 341 339 378 374
RW-STANFORD .16 R 46.2 46.2 52.8 529
YP-130 J3 = 625 62.6 653 650
MTURK-287 88 = 72,6 727 734 733
SIMLEX-999 .76 = 50.3 50.2 504 50.2
2 MCc-30 90 = 852 852 84.6 845
% SIMVERB-3500 .68 = 42.6 42.6 42.6 425
€ RG-65 90 N 859 858 839 84.1
ws-353-sim .84 N 84.0 83.8 824 822
VERB-143 21 = 447 449 438 443
RW-STANFORD .80 = 59.5 59.4 59.0 58.9
YP-130 95 = 559 56.1 55.0 54.7
MTURK-287 94 = 684 683 67.1 67.2
SIMLEX-999 94 = 442 442 439 440
§ MC-30 92 = 788 779 769 76.9
% SIMVERB-3500 .96 = 364 364 36.0 36.0
£ RG-65 94 = 750 743 739 742
ws-353-siMm = 92 N 772 769 75.8 758
VERB-143 98 = 49.7 50.1 489 49.0
RW-STANFORD .95 N 534 535 525 525

Table 1: Spearman’s p on word similarity tasks for
combinations of word vectors and the following sim-
ilarity metrics: cosine similarity (COS), Pearson’s r
(PRS), Spearman’s p (SPR), and Kendall 7 (KEN). N
indicates the proportion of sentence vectors in a task for
which the null hypothesis of normality in a Shapiro-
Wilk test was not rejected at « = 0.05. The V col-
umn indicates the type of the best performing method:
a rank-based correlation coefficient (R), a non-rank-
based correlation or measure (N), or a tie (=). The win-
ners in V were determined by comparing the top rank-
based method for that vector/task combination with the
top non-rank-based method. Winners were assigned
only when the difference was statistically significant as
determined by 95% BCa confidence intervals.

etal.,2013), Verb-143 (Baker et al., 2014), MTurk-
287 (Radinsky et al., 2011), MC-30 (Miller and
Charles, 1991). These datasets contain pairs of
words and a human-annotated similarity score for
each pair. The success metric for the experiments
is the Spearman correlation between the human-



annotated similarity scores and the scores gener-
ated by the algorithm. To avoid any confusion
whatsoever, note that here Spearman correlation
serves as an evaluation criterion; this is completely
unrelated to using Spearman correlation as a sim-
ilarity measure between word embeddings as pro-
posed in Section 3. Bias-corrected and acceler-
ated bootstrap (Efron, 1987) 95% confidence in-
tervals were used to determine statistical signifi-
cance. We report the results for different combi-
nations of word vectors and similarity measures in
Table 1. The main takeaways from these experi-
ments are the following:

* There is no significant difference between
the results obtained with cosine similarity
and Pearson correlation. This is because
empirically, the means across dimensions of
these word vectors are approximately zero, in
which case cosine similarity and Pearson cor-
relation are approximately the same.

» Rank correlation coefficients tend to perform
on par or better than cosine and Pearson on
tasks and word vectors where there is a high
proportion of non-normally distributed word
vectors (over 90%). This makes sense be-
cause it is precisely in the non-normal cases
where Pearson correlation fails.

* When word vectors seem mostly normal, our
analysis does not tell us definitively whether
cosine similarity or rank correlation should
perform better, and indeed we see that cosine
and Pearson perform on par or better than
Spearman and Kendall.

In the second set of experiments, we use the
datasets from the sentence-level Semantic Textual
Similarity shared task series 2012-2016 (Agirre
et al., 2012, 2013, 2014, 2015, 2016; Cer et al.,
2017). The success metric for these experiments
is the Pearson correlation between the human-
annotated sentence similarity scores and the scores
generated by the algorithm. Again, this use of
Pearson correlation as an evaluation criterion is
completely unrelated to its use as a similarity mea-
sure between sentence embeddings. Note that the
dataset for the STS13 SMT subtask is no longer
publicly available, so the mean Pearson correla-
tions reported in our experiments involving this
task have been re-calculated accordingly.

For these experiments we use averaged word
vectors as a sentence representation for various
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task N COS PRS SPR KEN APS

STS12 .01 52.1 52.0 53.4 52.6 53.8
STS13 .00 49.6 49.6 562 56.7 559
STS14 .00 54.6 545 63.2 63.0 63.0
STS15 .00 56.1 56.0 645 653 642
STS16 .00 514 514 621 63.7 60.8

GloVe

STS12 .01 583 583 60.2 59.0 584
STS13 .01 579 58.0 65.1 653 61.8
STS14 .00 649 650 70.1 69.6 68.5
STS15 .00 67.6 67.6 744 74.6 72.7
STS16 .00 643 643 73.0 73.5 70.7

fastText

STS12 95 51.6 51.6 51.7 531 453
STS13 94 582 583 579 582 572
STS14 96 65.6 65.6 655 65.6 64.1
STS15 96 675 67.5 673 683 66.5
STS16 96 64.7 6477 64.6 65.6 639

word2vec

Table 2: Mean Pearson correlation on STS tasks for
methods using combinations of word vectors and sim-
ilarity metrics. All methods use averaged word vec-
tors to represent sentences. The similarity measures
are: cosine similarity (COS), Pearson’s r (PRS), Spear-
man’s p (SPR), Kendall 7 (KEN) and APSynP (APS).
N indicates the proportion of sentence vectors in a task
for which the null hypothesis of normality in a Shapiro-
Wilk test was not rejected at o« = 0.05

types of word vector, with similarity computed by
the different correlation coefficients as well as co-
sine similarity and APSynP (Santus et al., 2018).
We report these results in Table 2, and the full sig-
nificance analysis for each subtask in Table 4. We
also compare the top performing combination of
averaged word vectors and correlation coefficient
against several popular approaches from the liter-
ature that use cosine similarity: BoW with ELMo
embeddings (Peters et al., 2018), Skip-Thought
(Kiros et al., 2015), InferSent (Conneau et al.,
2017), Universal Sentence Encoder with DAN and
Transformer (Cer et al., 2018), and STN multitask
embeddings (Subramanian et al., 2018). These re-
sults are presented in Table 3. Our observations
for the sentence-level experiments are as follows:

* The conclusions from the word-level tasks
continue to hold and are even more pro-
nounced: in particular, cosine and Pearson
are essentially equivalent, and the increase in
performance of rank-based correlation coef-
ficients over cosine similarity on non-normal
sentence vectors is quite dramatic.



Approach STS 12 13 14 15 16
ELMo (BoW) 55 53 63 68 60
Skip-Thought 41 29 40 46 52
InferSent 61 56 68 71 71
USE (DAN) 59 59 68 72 70
USE (Transformer) 61 64 71 74 74
STN (multitask) 60.6 54.77 65.8 74.2 66.4
fastText - COS 58.3 579 64.9 67.6 64.3
fastText - SPR 60.2 65.1 70.1 74.4 73.0
fastText - KEN 59.0 65.3 69.6 74.6 73.5

Table 3: Mean Pearson correlation on STS tasks for
a variety of methods in the literature compared to av-
eraged fastText vectors with different similarity met-
rics: cosine similarity (COS), Spearman’s p (SPR), and
Kendall 7 (KEN). Values in bold indicate best results
per task. Previous results are taken from Perone et al.
(2018) (only two significant figures provided) and Sub-
ramanian et al. (2018). T indicates the only STS13 re-
sult (to our knowledge) that includes the SMT subtask.

* Averaged word vectors compared with rank
correlation easily rival modern deep repre-
sentations compared with cosine similarity.

Finally, the fraction of non-normal word vectors
used in sentence-level tasks is consistent with the
results reported for the word-level tasks in Table 1.
However, we observe the following curious phe-
nomenon for fastText. While there is no evidence
against normality for the majority of fastText vec-
tors, perhaps surprisingly, when we average them
to represent sentences, such sentence embeddings
are almost entirely non-normal (Table 2). Em-
pirically we observe that many high-frequency
words or stopwords have prominently non-normal
fastText vectors. Although stopwords constitute
only a small fraction of the entire vocabulary, they
are very likely to occur in any given sentence, thus
rendering most sentence embeddings non-normal
as well. While it’s tempting to invoke the Central
Limit Theorem (at least for longer sentences), un-
der our formalism, averaging word vectors corre-
sponds to averaging scalar random variables used
to represent words, which are neither independent
nor identically distributed. In other words, there
are no easy guarantees of normality for such sen-
tence vectors.
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6 Discussion

In this work, we investigate statistical correlation
coefficients as measures for semantic textual sim-
ilarity and make the following contributions:

* We show that in practice, for commonly used
word vectors, cosine similarity is equivalent
to the Pearson correlation coefficient, moti-
vating an alternative statistical view of word
vectors as opposed to the geometric view,
which is more prevalent in the literature.

We illustrate via a concrete example the
power and benefits of using elementary statis-
tics to analyse word vectors.

We characterise when Pearson correlation is
applied inappropriately and show that these
conditions hold for some word vectors but not
others, providing a basis for deciding whether
or not cosine similarity is a reasonable choice
for measuring semantic similarity.

We demonstrate that when Pearson correla-
tion is not appropriate, non-parametric rank
correlation coefficients, which are known to
be more robust to various departures from
normality, can be used as similarity mea-
sures to significantly improve performance
on word- and sentence-level STS tasks.

Finally, we show in particular that sentence
representations consisting of averaged word
vectors, when compared by rank correlation,
can easily rival much more complicated rep-
resentations compared by cosine similarity.

We hope that these contributions will inspire
others to carefully investigate and understand al-
ternative measures of similarity. This is partic-
ularly important in the realm of sentence rep-
resentations, where there are many more com-
plex ways of constructing sentence representations
from word embeddings besides the simple averag-
ing procedure tested here. It is worth exploring
whether a more subtle application of rank correla-
tion could help push these more complex sentence
representations to even better performance on STS
tasks.

A final and fascinating direction of future work
is to explain the non-normality of certain types of
word vectors (and in particular the presence of out-
liers) by analysing their training procedures. Pre-
liminary investigations suggest that unsupervised



GloVe

fastText

word2vec

SPR COS A95% BCa CI

SPR COS A95% BCa CI

SPR COS A95% BCa CI

MSRpar 35.90 42.55 [-10.74, -2.52]
« MSRvid 68.80 66.21 [1.31, 4.09]
% SMTeuroparl 48.73 48.36 [-5.26, 6.48]
e surprise.OnWN 66.66 57.03 [6.89, 12.76]

surprise.SMTnews

47.12 46.27 [-4.27,5.50]

39.66 40.39 [-3.22, 1.80]
81.02 73.77 [6.16, 8.53]
50.29 53.03 [-5.41,-0.17]
73.15 68.92 [2.19, 6.56]
56.67 55.20 [-2.50, 5.50]

38.79 39.72 [-1.77,-0.16]
77.88 78.11 [-0.52, 0.06]
16.96 16.06 [0.21, 1.34]

70.75 71.06 [-0.73,0.09]
53.93 52.91 [-0.13, 2.09]

49.40 39.83 [2.74, 16.46]
71.53 70.83 [-0.17, 1.58]
74.33 63.03 [9.27, 13.50]

40.73 41.22 [-2.07, 1.07]
65.48 65.22 [-0.12, 0.66]
67.49 68.29 [-1.29, -0.33]

en FNWN 43.21 38.21 [-0.54, 10.24]
# headlines 67.59 63.39 [2.58, 5.89]
% OnWN 57.66 47.20 [8.10, 13.02]
deft-forum 39.03 30.02 [5.24, 13.52]
deft-news 68.99 64.95 [-0.39, 8.72]
% headlines 61.87 58.67 [1.15, 5.48]
& images 70.36 62.38 [6.30, 10.00]
OnWN 67.45 57.71 [7.89, 11.97]
tweet-news 71.23 53.87 [13.98, 21.67]

46.20 40.19 [2.88, 10.00]
73.08 71.15 [-0.36, 4.39]
66.33 66.03 [-0.68, 1.28]
80.51 71.45 [7.44,10.96]
79.37 70.47 [7.42,10.50]
74.89 70.18 [2.60, 7.21]

42.95 42.66 [-0.43, 1.03]
67.33 67.28 [-0.70, 0.91]
62.09 61.88 [-0.22, 0.66]
76.98 77.46 [-0.89, -0.09]
74.69 75.12 [-0.81, -0.08]
68.78 69.26 [-0.92, -0.01]

answers-forums

answers-students

50.25 36.66 [10.18, 17.55]
69.99 63.62 [4.25,9.59]

w)

E belief 58.77 44.78 [10.11, 19.05]

# headlines 69.61 66.21 [1.65, 5.29]
images 73.85 69.09 [3.45, 6.29]

68.28 56.91 [7.99, 15.23]
73.95 71.81 [0.69, 3.56]
73.71 60.62 [9.64, 19.50]
72.93 72.53 [-0.40, 1.20]
83.18 76.12 [5.76, 8.58]

53.74 53.95 [-1.28, 0.86]
72.45 72.78 [-0.70, 0.04]
61.73 61.89 [-0.84, 0.46]
68.58 68.72 [-0.48, 0.23]
80.04 80.22 [-0.55,0.18]

answer-answer

43.99 40.12 [0.90, 7.36]

o headlines 67.05 61.38 [2.43, 9.44]
% plagiarism 72.25 54.61 [12.69, 23.74]
% postediting 69.03 53.88 [12.01, 19.06]

question-question

58.32 47.21 [7.02, 18.18]

54.51 45.13 [5.14, 15.93]
71.00 70.37 [-0.93,2.13]
84.45 74.49 [6.38, 14.81]
82.73 68.76 [7.55, 22.96]
72.29 62.62 [6.35, 13.64]

43.41 43.14 [-1.03, 1.43]
66.55 66.64 [-0.66,0.51]
75.21 76.46 [-2.31,-0.37]
73.87 73.35 [-0.08, 1.21]
63.94 63.74 [-1.03, 1.38]

Table 4: Pearson correlations between human sentence similarity score and a generated score. Generated scores
were produced via measuring Spearman correlation (SPR), as explained in Section 3, and cosine similarity (COS)
between averaged word vectors. Values in bold represent the best result for a subtask given a set of word vectors,
based on a 95% BCa confidence interval (Efron, 1987) on the differences between the two correlations. In cases

of no significant difference, both values are in bold.

objectives based on the distributional hypothesis
are probably not to blame, as word vectors trained
without relying on the distributional hypothesis,
such as those of Wieting et al. (2015), still ex-
hibit non-normality to some degree. The actual
causes remain to be determined. We believe that
understanding the reasons for these empirically-
observed characteristics of textual embeddings
would be a significant step forwards in our over-
all understanding of these crucial building blocks
for data-driven natural language processing.
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