
Proceedings of NAACL-HLT 2019, pages 839–850
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

839

Improved Lexically Constrained Decoding
for Translation and Monolingual Rewriting

J. Edward Hu Huda Khayrallah Ryan Culkin Patrick Xia
Tongfei Chen Matt Post Benjamin Van Durme

Johns Hopkins University
{edward.hu,huda,rculkin,paxia,tongfei}@jhu.edu; {post,vandurme}@cs.jhu.edu

Abstract

Lexically-constrained sequence decoding al-
lows for explicit positive or negative phrase-
based constraints to be placed on target out-
put strings in generation tasks such as machine
translation or monolingual text rewriting. We
describe vectorized dynamic beam allocation,
which extends work in lexically-constrained
decoding to work with batching, leading to
a five-fold improvement in throughput when
working with positive constraints. Faster de-
coding enables faster exploration of constraint
strategies: we illustrate this via data augmenta-
tion experiments with a monolingual rewriter
applied to the tasks of natural language infer-
ence, question answering and machine transla-
tion, showing improvements in all three.

1 Introduction

For many natural language generation tasks, we
often know word(s) that should (or should not)
be in the output sentence. Examples include ter-
minology databases in Machine Translation (MT)
(Hokamp and Liu, 2017), names (and generic re-
sponses) in dialogue generation (Li et al., 2016;
Gu et al., 2016), objects in image captioning (An-
derson et al., 2017), and facts in abstractive sum-
marization (See et al., 2017). One approach to en-
force hard lexical constraints in the output is to
modify the inference procedure to enforce their
presence directly (Hokamp and Liu, 2017). These
constraints could be either positive (a word must
appear in the output) or negative (a word must
be avoided). While negative constraints could
be easily enforced by preventing hypotheses with
prohibited tokens from entering the beam, plac-
ing positive constraints in natural and meaningful
ways is less straightforward. We improve upon
previous work by vectorizing the dynamic beam
allocation (DBA) algorithm from Post and Vi-
lar (2018) and by incorporating multi-state tries,

which track a subset of nodes at each decoding
timestep. These improvements lead to a five-fold
speedup in decoding with positive constraints and
in some cases better constraint placements (with
respect to BLEU).

Post and Vilar (2018) motivated the util-
ity of lexically-constrained decoding in MT for
scenarios such as interactive translation and do-
main adaptation. Translation applications han-
dling large amounts of data will clearly benefit
from improvements in speed: the same is true
for large-scale data augmentation via rewriting.
In this case, a practitioner will ideally explore
various task-specific rewriting strategies that may
lead to improvements as observed during devel-
opment, and then incorporate the best strategy
into a test-final model. Recently, sentential para-
phrasing gained the ability to enforce lexical con-
straints (Hu et al., 2019), but constrained decoding
was still too inefficient to be practical (Hokamp
and Liu, 2017) at a large scale. Even with the
approach described by Post and Vilar, exploring
the space of possible rewriting strategies on a task-
specific basis may be overly time consuming: our
performance improvements to their algorithm low-
ers the barrier of entry, where one may more prac-
tically experiment with various strategies during
development. To illustrate our point, we build an
improved monolingual sentential rewriter that can
be conditioned on arbitrary positive and negative
lexical constraints and use this to augment data for
three external NLP tasks with different strategies:
Natural Language Inference (NLI), Question An-
swering (QA) and MT.

Our main contributions are:

• A more efficient and robust approach to
lexically-constrained decoding with vector-
ized DBA and trie representations;

• A trained and freely available lexically-

840

constrained monolingual rewriter1 with im-
provements in both human-judged semantic
similarity and fluency over the initial PARA-
BANK rewriter (Hu et al., 2019);

• Monolingual rewriting constraint heuristics
for automatic data augmentation leading to
improvements on NLI / QA / MT.

2 Background

Constrained decoding Prior work explored
methods to apply lexical constraints to a Neu-
ral Machine Translation (NMT) decoder (Hokamp
and Liu, 2017; Anderson et al., 2017). However,
most of these methods are slow and impractical
as they change beam sizes at different time steps,
which breaks the optimized computation graph.
Post and Vilar (2018) proposed a means of dy-
namically allocating the slots in a fixed-size beam
to ensure that even progress was made in meet-
ing an arbitrary number of constraints provided
with the input sentence. However, despite it being
their motivation, their approach did not scale to
batching, instead they sequentially processed con-
straints for sentences within the batch.

Paraphrases and Rewriting Many works
sought to create paraphrases or paraphrastic ex-
pressions through existing corpora. For example,
DIRT (Lin and Pantel, 2001) extracts paraphrastic
expressions from paths in dependency trees.
Weisman et al. (2012) explored learning infer-
ence relations between verbs in broader scopes
(document or corpus level). PPDB (Ganitkevitch
et al., 2013) constructs paraphrase pairs by linking
words or phrases that share the same translation
in another language. PARANMT (Wieting and
Gimpel, 2018) and PARABANK (Hu et al., 2019)
used back-translation to build a large paraphrase
collection from bilingual corpora.

For arbitrary sentence rewriting, Napoles et al.
(2016) used statistical machine translation in tan-
dem with PPDB as a black box monolingual sen-
tential rewriter. Mallinson et al. (2017) used
a series of NMT model pairs to perform back-
translations for monolingual paraphrasing. A sim-
ilar approach was adopted by PARANMT to cre-
ate a large paraphrase collection, which is used to
train a monolingual sentence rewriter for canoni-
calization. PARABANK (Hu et al., 2019) extends

1http://nlp.jhu.edu/parabank

PARANMT’s approach and produced a NMT-
based rewriter with the ability to apply lexical con-
straints to produce multiple paraphrases.

However, Hu et al. (2019) did not: evalu-
ate the rewriter’s performance on in-the-wild sen-
tences; explore more sophisticated versions of the
rewriter; nor demonstrate its utility on NLP tasks.

Data augmentation Data augmentation has
been used to improve performance and robustness
in deep neural models. In NMT, the most com-
mon approach is back-translation, where mono-
lingual text in the target language is translated to
create synthetic source sentences (Sennrich et al.,
2016). Variants of back-translation target spe-
cific words with high prediction loss (Fadaee and
Monz, 2018), employed sampling to increase di-
versity (Edunov et al., 2018), replace rare words
(Fadaee et al., 2017), or replace at random (Wang
et al., 2018).

Automatic data generation has also been suc-
cessfully used for community question answering
(Chen and Bunescu, 2017), semantic parsing (Jia
and Liang, 2016), and task-oriented dialogue (Hou
et al., 2018) by generating new data from the train-
ing dataset. In contrast, our model is trained on a
much larger external corpus and is fixed, indepen-
dent of the task. Kobayashi (2018) utilized a pre-
trained language model for automated data aug-
mentation, though they only consider word-level
rewrites and encourage label-preservation, while
we paraphrase whole sentences with lexical con-
straints, independent of a gold label.

Most similar to our experiments, Iyyer et al.
(2018) explored syntactic paraphrasing for aug-
mentation in sentiment and NLI tasks, extending
prior work on PARANMT.

3 Improved Constrained Decoding

Lexically-constrained decoding is a modification
to beam search that yields decoder outputs hon-
oring user-supplied constraints. These constraints
can be provided in the form of: positive con-
straints, which specify that certain tokens or to-
ken sequences must be present in the output; or
negative constraints, which specify token or token
sequences that must not be generated. Take posi-
tive constraints for example, in translating the sen-
tence Das stimmt einfach nicht to English, the user
can specify the constraint “not the case” to (pre-
sumably) get the output That’s just not the case
instead of model-preferred output That’s just not

841

a sm
al
l

b
ir
d

sm
al
l

ca
t

c
3

c
4

a h
o
rs
e

a co
w

met:

constraints:

c
1 c

2

?
(a) (b)

Figure 1: Two corner cases that arise when using an
array implementation to track constraints. The gray
boxes denote constraints that have been generated by
the currently-tracked hypothesis. In (a), the decoder
has to guess which constraint it is generating since they
share a prefix. In (b), the decoder may start tracking
constraint c3 only to generate c4 without realizing it.

true. While there is no guarantee that the decoder
will use the constraints in a sensible way, con-
straints are often well-placed empirically.

The implementation of positively constrained
decoding comprises two key pieces: tracking
which of the supplied constraints each hypothe-
sis has already generated, and ensuring progress
through the constraints by dynamically allocating
the beam to hypotheses that have generated differ-
ent numbers of them. We describe an improve-
ment to each of these over Post and Vilar (2018),
which includes: (1) a vectorized approach to beam
allocation that works with batch decoding; and (2)
the use of tries for recording constraint state, and
thereby offsetting certain corner cases.

These contributions allow the decoder to find
much better placement of constraints (as evi-
denced by an almost 2 point BLEU score increase)
and to increase throughput for batch decoding.

Here, we assume the reader is familiar with
beam decoding for NMT, the details of which are
provided by Post and Vilar (2018).

3.1 Tracking constraints with tries

The implementation by Post and Vilar used a flat
one-dimension array listing the word indexes of all
positive constraints (duplicates allowed). A par-
allel array was used to mark which words in this
list were non-final words in a sequence, so that
progress could be tracked through sequences of to-
kens. Progress through the constraints was tracked
by maintaining, for each slot in the beam, a third
array, which marked which of the constraints had
already been generated by that hypothesis.

However, this leads to corner cases when
two constraints c1 and c2 share a subsequence.

asmall

small

ROOT

a

ROOT

cow
1

horse
1

cat
1

bird
1

(a) (b)

Figure 2: The trie representation solves both problems
depicted in Figure 1. The constraint tracker no longer
has to predict the constraint to track (a), and it can track
multiple constraints by using multiple states (b). Coun-
ters are added to end nodes to denote how many times
each constraint must be generated.

The first case occurs when two constraints have
an identical prefix. Consider the constraints
in Fig. 1(a) when translating the French sentence
une vache et un cheval. The array-based imple-
mentation has to choose which constraint to gen-
erate when it has only generated the first word of
the English translation, a cow and a horse. Sup-
pose it chooses constraint c1, a horse. If the sub-
sequent step generates cow instead, the constraint
tracking for the phrase a horse will be marked as
incomplete and reset, and the decoder will not re-
alize that it has satisfied a different constraint.

A second corner case arises when a constraint
c4 is a non-prefix substring of a constraint c3. In
this situation, the decoder may begin generating
the longer constraint, only to generate the shorter
one, without realizing it. For example, consider a
target sentence that should be a small cat saw a
small bird, with constraints a small bird and small
cat (Figure 1b). When generating the first word,
a, the decoder begins tracking c3. It continues by
adding to this hypothesis the second word, small.
However, suppose it then extends this hypothesis
with cat. It will abort tracking of c3, and not real-
ize that it completed c4.

A more natural representation that addresses
these corner cases is to organize constraints that
haven’t yet been generated into a trie. Nodes
in the trie that represent the ends of constraints
are augmented with a counter that indicates how
many times that constraint must be generated.2

Each time a constraint is completed, the number is
decremented, and nodes of the trie can be trimmed
when they lead only to paths ending in zero counts.

2Because one constraint can be a subsequence of another,
some interior nodes will also have these counts.

842

Figure 3: The hypothesis matrix during vectorized dynamic beam allocation (VDBA). Each column denotes a can-
didate hypothesis, each of which contains sufficient information to identify it. Hypotheses are sorted by sentence
number, number of unmet constraints, and sequence scores. The “unmet” row indicates how many constraints each
hypothesis has not yet generated. After sorting by sentence ID and “unmet”, we assign monotonically increasing
numbers across columns that share (sentno, unmet) values (the “step” row). We can now sort by the “step” row to
ensure that the beam for a sentence contains hypotheses having met each number of constraints. We populate the
next beam by taking the first k hypotheses (in gray) after sorting the matrix by step. Here, k = 7.

Finally, in order to address the second corner case,
we track multiple states in each constraint trie.

In summary, we represent all the constraints as
a compact trie. Each hypothesis in the decoder
beam has its version of the trie. The set of active
states in each hypothesis’ trie tracks all suffixes of
the target words that match against the constraint
trie. When a constraint is generated, its counter is
decremented and zero paths are pruned.

3.2 Negative constraints

Negative constraints are used to denote words and
phrases that the decoder must not generate. Block-
ing single-word negative constraints can be done
by setting their costs to infinity before doing top-k
selection, at each time step. These negative con-
straints are also represented in a trie, although it
is slightly different, because it does not have a
counter and never needs to be pruned. Instead, it
records at each node the list of word IDs that end
phrases for which the current word is the penulti-
mate. We similarly track all suffixes of the current
hypothesis’ target word string that match the neg-
ative constraint trie. At each time-step, we block
the generation of active phrases by setting to in-
finity all word IDs marked in the current node (if
any). This includes the root node, which handles
single-word constraints. Each state is then ex-
tended by following outgoing arcs, if present, or
else resetting them to the root state.

3.3 Vectorized Dynamic Beam Allocation

Post and Vilar (2018) describe an algorithm that
divides the beam among hypotheses that have gen-
erated different numbers of positive constraints.
For a beam of size k and with C positive con-

straint tokens, the algorithm produces a set of can-
didate extensions of the k hypotheses from the
beam. They assemble these extensions from three
sources: (a) the top-k best-scoring tokens across
all hypotheses in the beam (without respect to con-
straints); (b) the set of tokens that advance the con-
straint trie for each hypothesis; and (c) the best-
scoring extension of each hypothesis.3 After con-
structing this candidate list, they whittle it down to
a list of size k and use it to construct the beam at
the next time step. This way, the algorithm ensures
that portions of the beam are devoted to candidates
having met different number of constraints, and
thereby that progress is made towards meeting all
the constraints as decoding proceeds.

However, their implementation used a proce-
dural approach which is incompatible with batch-
ing; that is, constraints for input segments within a
batch are processed sequentially, so increasing the
batch size does not produce any speed gains. We
replace the procedural approach with a vectorized
one, which uses GPU operations to quickly assem-
ble the list of candidates and allocate them to the
beam such that we do benefit from batching.

A sketch of our algorithm follows. We assemble
candidates from the same three sources described
above. Sets (a) and (c) already use fast GPU op-
erations. These operations can be done efficiently
even batch-wise. Set (b) is less amenable to vec-
torization, but can be assembled by querying each
hypothesis for its unmet constraints. We now use a
sorting-based algorithm to parallelize the divvying

3The difference between (a) and (c) is that the items con-
stituting (a) typically come from different extensions of the
top hypotheses, whereas (c) ensures that one extension of
each hypothesis is in the candidates list.

843

Speed (sent/sec) BLEU

Constraints batch size 1 batch size 20

Baseline +MST,VDBA Baseline +MST,VDBA Baseline +MST,VDBA

none 4.78 4.84 17.92 17.51 40.9 40.9
phr4 0.75 0.89 0.93 4.71 47.8 49.2
rand3 0.78 0.80 0.87 4.59 43.0 43.2

Table 1: Comparison between the baseline implementation (SOCKEYE 1.18.57, commit 59180f3) and our approach
with multi-state tries (MST) and vectorized Dynamic Beam Allocation (VDBA) in placing different constraints
randomly extracted from the reference. All runs use a beam size of 10. The pruning threshold was set to 0 for no
constraints (“none”) and 30 for “phr4” and “rand3”. Decoding speed is measured on an NVIDIA GTX 1080 Ti in
sentences per second (the higher the better). Output quality is measured using SacreBLEU (the higher the better).

up of the beam to hypotheses having met different
numbers of constraints.

We do this by assembling a matrix with all the
candidates for all sentences in the batch (Fig. 3).
This matrix contains a column for each candidate,
including the sentence number, the number of un-
met constraints for that hypothesis, its sequence
score, the hypothesis it extends, and the next vo-
cabulary ID. With this matrix, we can quickly
select the k hypothesis extensions for the next
timestep using a multi-key sort. The first key is
the sentence number. Next, it is the number of un-
met constraints in each hypothesis. We then make
use of a "step" row, which assigns increasing in-
dices within each group of hypotheses with the
same number of unmet constraints. Sorting on this
row as the third key establishes a round-robin as-
signment of the k-sized beam to items having met
different numbers of constraints. In the end, we
select the top k items (in the example, k = 7 and
the selected columns are in gray).

3.4 Evaluation

We use SOCKEYE (Hieber et al., 2017)4 for our
evaluations. We trained a 6-layer German–English
Transformer using the default settings on the
WMT’18 training data and the newstest2018
test set for evaluation (Bojar et al., 2018). Fol-
lowing Post and Vilar (2018), we compare decod-
ing results in an unconstrained setting and with
two sets of positive constraints: “rand3”, which
selects 3 random words from the reference, and
“phr4”, which selects a single 4-word phrase. We
report decoding speed (in sentences per second)
and BLEU score (Papineni et al., 2002), as mea-
sured by SacreBLEU (Post, 2018). The results are

4https://github.com/awslabs/sockeye/

shown in Table 1.
Our approach is faster than existing approaches

when decoding with positive constraints and pro-
duces the same or higher BLEU scores, which we
take as a sign of more fluent and natural hypothe-
ses under constraints. Without batching, there is
no speedup, but at a batch size of 20, we see
roughly a 5× speedup.

4 Improved Monolingual Rewriter

Inspired by the approach described in PARA-
BANK (Hu et al., 2019), we trained a more
powerful English monolingual rewriter by using
a multi-head self-attention NMT model, Trans-
former (Vaswani et al., 2017). We used a 6-layer
encoder and decoder with a model size of 512 and
8 attention heads. The encoder and decoder em-
beddings share the same weight. Unlike PARA-
BANK, which trained a rewriter on a subset of
50M paraphrase pairs out of its collection, we
trained on all of the paraphrastic pairs in PARA-
BANK originated from CzEng5 that: (1) have a
regression score over 0.50; (2) only consist of
ASCII characters after punctuation normalization;
and (3) have a reference/paraphrase token Jaccard
index between 0.25 and 0.65.

We retain 141,381,887 paraphrastic pairs, out of
over 220 million, as training data after applying
these filters. To ensure output quality, we only use
back-translated paraphrases as source.

PARABANK is a real-cased resource. We mark
all words that have first-character capitalization
and convert them to lowercase. The marking is

5PARABANK generated paraphrases from two large
bilingual corpora, CzEng (Bojar et al., 2016a) and Gi-
gaFrEn (Callison-Burch et al., 2009). We picked paraphrases
from only CzEng, the larger one of the two.

844

used as a source factor (Sennrich and Haddow,
2016) to the encoder. This helps us to decrease
the vocabulary size of the the training data.

We learn a shared byte-pair encoding (BPE)
over the entire training data with 30,000 BPE op-
erations (Sennrich et al., 2016), keeping all vo-
cabulary items with a frequency over 50 in the
post-BPE data. We follow Sennrich and Haddow
(2016) and use “BIOE" tagging to annotate BPE
segmentation and broadcast the casing factor ac-
cordingly. The encoder uses both source factors.

The model is trained on 2 NVIDIA GTX
1080Ti’s until convergence (5 days).

Rewriter Evaluation We randomly sampled
100 instances from both MNLI matched and mis-
matched development set. Each instance con-
sists of 4 sentences: premise, entailed, contra-
dicting, and neutral. We use the following 3
different rewriters to rewrite all 800 sentences:
(1) an LSTM-based rewriter trained on PARA-
BANK alpha; following (Hu et al., 2019); (2)
a Transformer-based rewriter trained on PARA-
BANK alpha; and (3) a Transformer-based rewriter
trained on full PARABANK with the filters and im-
provements described here.

Inspired by the interface of EASL (Sakaguchi
and Van Durme, 2018), we ask crowd-workers to
give each paraphrase a score between 0 and 100
depending its semantically similarity to the orig-
inal, reference sentence. Independently, we pro-
vide options for flagging ungrammatical or non-
sensical sentences. Paraphrases are judged by up
to 3 different workers, with 11 workers participat-
ing. We randomly include an attention check con-
sisting of reference sentence itself.6

The result is shown in Table 2. Switching the
rewriter architecture from LSTM to Transformer
improves the human-judged semantic similarity
by 5.1% and fluency by 6.5%. The improvements
described here leads to a gain of 9.6% in semantic
similarity and 10.2% in fluency overall.

This improved Transformer-based rewriter is
subsequently used for data augmentation.

5 Paraphrastic Data Augmentation

We demonstrate the utility of our improved
lexically-constrained decoding via data augmenta-
tion with some simple rewriting heuristics and two
augmentation strategies. First, the model could be

6Only workers who pass the test at least 90% of the time
and contribute at least 9 judgments are included in the result.

Similarity STD Fluency

LSTM alpha 74.5 25.0 80.7%
Transf. alpha 78.3 22.9 87.2%
Transf. Full 81.7 20.9 90.9%

Table 2: Comparison between three monolingual
rewriting systems. Systems will “alpha" are trained on
PARABANK alpha, which the other one is trained on
the full data. Similarity is the mean human-judged se-
mantic similarity score; the higher the better. STD de-
scribed the standard deviation of similarity. Fluency is
the percentage of paraphrases judged to be both gram-
matical and meaningful.

trained on the augmented (training) data. Orthog-
onally, predictions can be made on the all of the
augmented (evaluation) data, which can then be
aggregated. We show experimental results on nat-
ural language inference (NLI, Section 5.1), ques-
tion answering (QA, Section 5.2), and NMT (Sec-
tion 5.3) tasks.

These results are merely indicative of the po-
tential in data augmentation via constrained para-
phrasing, and are by no means a thorough inves-
tigation of strategies that yield the best improve-
ments. Such an investigation, however, could
be enabled by our algorithmic improvements and
practitioners’ domain expertise.

5.1 Natural Language Inference

Natural language inference is the task of deter-
mining entailment. Two sentences, a premise p
and a hypothesis h, are labelled with ENTAIL-
MENT, CONTRADICTION, or NEUTRAL depend-
ing on whether p logically entails, contradicts,
or does not interact with h. MultiNLI (MNLI)
(Williams et al., 2018) is a large, multi-genre
dataset for natural language inference. The dataset
is also divided into matched and mismatched por-
tions based on whether the source of the evaluation
data matches the source of the training set. Recent
models rely on contextual sentence encoders pre-
trained on vast amounts of English monolingual
text (Peters et al., 2018; Devlin et al., 2018).

We train and evaluate a model on MNLI, and
find that data augmentation leads to improvements
exceeding and complementary to those by ELMo,
possibly due to improved lexical diversity during
training and at inference.

845

Model We use the model described in Bowman
et al. (2019)7 with the default parameters. They
train a sentence representation model (possibly
on top of ELMo) on the MNLI training set and
subsequently train a clean task-specific model for
each task (for this model, MNLI again). The
task-specific MNLI model roughly follows BiDAF
(Seo et al., 2016), followed by an MLP.

We also train a model without the ELMo con-
textual layers to compare contextual sentence rep-
resentations against data augmentation. Since
there is minor variance between different random
seeds,8 we train each model twice and evaluate the
best-performing model on the development set.

Paraphrase Generation We generate para-
phrases for our data augmentation experiments
by negatively constraining on the most content-
bearing token of each input sequence, as deter-
mined by inverse document frequency (IDF). For
a given input sequence s we calculate the IDF of
each token ti ∈ s as log |D|

|d∈D:ti∈d| where D is the
set of all English sentences in the train set. This
relatively simple lexical constraint tends to force
the decoder to rewrite the input sequence using
different (but semantically related) words while
maintaining fluency. In practice, we observed an
average unigram precision of 67.6%; i.e., 32.4%
of tokens in paraphrases were not contained in
their corresponding inputs.

Additional results using a positively constrained
rewriter in Appendix A.

Data Setup We first rewrite all premises P to
P ′ and all hypotheses H to H ′, then for each
pi ∈ P, hi ∈ H , we include all four exam-
ples, (pi, hi), (pi, h′i), (p

′
i, hi), and (p′i, h

′
i) into the

training set, always preserving the original corre-
sponding gold label. We include two copies of the
original dataset in training to increase its weight.
The original MNLI dataset contains 393K training
pairs, and 20K in each dev and test, while the aug-
mented dataset consists of 1.96M training pairs,
and 79K in dev and test.

At test time, we rewrite the test sentence pairs.
A trained model can also make predictions on
each of three rewritten sentence pairs. Together
with the original prediction, these four can then be
aggregated by assigning weights to each predic-
tion source. In our experiments, we perform this

7https://github.com/
jsalt18-sentence-repl/jiant

8Bowman et al. (2019) found the variance to be 0.2

Dev. Test. (m/mm)

Baseline 74.8 74.7 (74.8/74.6)
+Agg. 75.0 74.9 (74.9/74.8)
+Train 75.4 75.2 (75.0/75.3)
+Train+Agg. 75.6 75.4 (75.1/75.7)

+ELMo 75.8 75.0 (75.1/75.0)
+Agg. 75.9 75.2 (75.3/75.1)
+Train 76.4 75.6 (75.6/75.6)
+Train+Agg. 76.7 75.8 (75.9/75.7)

Table 3: F1 scores on MNLI. +Train denotes training
on augmented data; +Agg. denotes using a weighted
aggregation. Scores on the development set are a
weighted average between the matched (m) and mis-
matched (mm) portions of the dataset, while the test set
scores are additionally broken down into each category.

weighted aggregation (+Agg) for each model, tun-
ing on the development set (Appendix B).

Experimental Results We find in Table 3 that
data augmentation helps during training and infer-
ence. Not only are the total gains from augmenta-
tion comparable to those from ELMo, they are ap-
parent even in the presence of the contextual sen-
tence encoder. This suggests that the gains from
data augmentation through rewrites complement
recent gains from contextual sentence encoders.

The fairest external comparison is with Bow-
man et al. (2019), as our model is identical. Their
best models achieve 76.2 F1 on development and
75.4 F1 on test. On the development set, they see
a gain of 0.6 points by using multi-task training
and external datasets. On that set, we report a total
gain of up to 0.9 points purely through data aug-
mentation. With respect to absolute test set scores,
our best model outperforms theirs by 0.4, show-
ing that rewriter-based data augmentation can be a
powerful method for NLP tasks.

Analysis NLI systems have been shown to be
brittle when the input is perturbed (Alzantot et al.,
2018). Even when the premise or hypothesis is
changed in a way that preserves the entailment se-
mantics, the NLI system may make an incorrect
prediction where it was previously correct. We
present evidence showing that data augmentation
for NLI reduces the brittleness of our model.

To demonstrate the brittleness of the base-
line models, we analyze how predictions change.
The model trained on the original un-augmented

846

P ′, H P,H ′ P ′, H ′ +Agg.

No change 88.51 84.23 81.95 96.20
− → + 4.23 5.33 6.08 1.75
+→ − 5.84 8.44 9.67 1.49
−1 → −2 1.42 2.00 2.30 0.57

No change 88.20 83.26 80.68 96.00
− → + 4.03 5.45 6.11 1.80
+→ − 6.42 9.22 10.78 1.72
−1 → −2 1.35 2.08 2.42 0.47

Table 4: Percentage of changed predictions on the
MNLI development set using the baseline model with-
out (top) and with (bottom) ELMo. − → + (correct af-
ter rewrite), +→ − (originally correct), and−1 → −2

(different incorrect) are changes after rewriting. +Agg.
denotes the predictions after weighted aggregation.

dataset is evaluated on the original development
set and each of the rewritten development sets, and
we investigate the differences. Table 4 shows how
often original predictions are different from the
corresponding predictions on the rewritten devel-
opment sets; predictions can be (1) unchanged, (2)
newly correct, (3) newly incorrect, or (4) changed
but still incorrect, while Figure 4 shows how even
relatively modest, semantically valid paraphrases
can cause the NLI model change incorrectly.

Given a perfect rewriter that always generates
semantically equivalent paraphrases and a perfect
NLI model robust to perturbations, we would ex-
pect no change in predictions between the original
development set and the rewritten ones. However,
this is not what we observe; Table 4 shows that
rewriting leads to a greater percentage of newly in-
correct predictions than newly correct predictions.

We believe that the higher percentage of newly
incorrect predictions on the rewritten development
sets demonstrates the brittleness of the NLI sys-
tem rather than semantic dissimilarity that may be
introduced by the rewriter. We note that the aggre-
gated predictions shows the opposite pattern: we
see a higher percentage of newly correct predic-
tions than incorrect ones. If the paraphrases were
largely semantically dissimilar we would not ex-
pect any gain by combining predictions.

Given both the numerical boost seen by aggre-
gation and the above examples, we hypothesize
that the rewriter does not frequently change en-
tailment semantics. Because the semantics remain
similar, and because the paraphrases were gener-

P : Visit at sundown or out of season to get the full
flavor of the setting

H: The setting is better to visit at sundown or during
low season

H ′: It is better to visit at sunset or during low season

Gold: Entailed
P,H: Predict Entailed
P,H ′: Predict Neutral

P : I had rejected it as absurd , nevertheless it persisted
H: It persisted even after I rejected it as an absurdity
H ′: It went on even after I turned it down as an absurdity

Gold: Entailed
P,H: Predict Entailed
P,H ′: Predict Contradiction

Figure 4: Cases where the baseline system changes its
prediction on rewritten examples.

ated with constraints designed to introduce lexical
diversity, we believe that the label-preserving data
augmentation improves the NLI model by making
it more tolerant of minor lexical differences, better
able to generalize, and less inclined to memorize.

5.2 Question Answering

We apply our paraphrastic rewriter to the task of
question answer sentence selection to see if aug-
menting with paraphrases leads to improvements.
The task is defined as follows: Given a question
q and a set of candidate sentences {ci}, select the
candidates which answer q.

Model We adapt a popular neural architecture
for NLI, InferSent (Conneau et al., 2017), to our
QA sentence selection task. In InferSent, the ques-
tions and answers (originally the premises and hy-
potheses) are embedded using an uncontextual-
ized word embedding (e.g. GloVe), which we
also experiment with ELMo (Peters et al., 2018)
to incorporate recent advancements in large-scale
contextualized pre-training. Bidirectional LSTMs
(Graves and Schmidhuber, 2005) are run atop
of these contextualized embeddings and a max-
pooling layer is used to generate a feature vec-
tor for both the question and the answer. Follow-
ing various matching methods (Mou et al., 2016)
and a multi-layer feed-forward neural network, the
model produces a final score.

We train the system following the method pro-
posed by Rao et al. (2016), utilizing a ranking loss
(Weston and Watkins, 1999) that contrasts positive
answers against negative ones.

847

Paraphrase Generation We augment each an-
swer candidate sentence with exactly 1 paraphrase
in the dataset using the following heuristics: (1)
named entities shared between a specific answer
and its corresponding question are retained as
positive constraints; (2) correct answer spans are
retained as positive constraints; (3) words with
the top-k IDFs (inverse document frequencies;
hence “important” words) that are not positive
constraints are selected as negative constraints to
promote the lexical diversity of the paraphrases.9

Data Setup We augment the raw TREC-QA
dataset (Wang et al., 2007) under the following
orthogonal strategies: (1) augmenting the train-
ing set with the paraphrases generated via the ap-
proach described above; (2) augmenting the an-
swer candidates at evaluation time, and choosing
the max score among the paraphrases as the score
(aggregation by voting).

Experimental Results We evaluate our mod-
els using average precision (MAP) and mean re-
ciprocal rank (MRR). Model selection is done
with early stopping to choose the epoch with the
maximum MAP score. Note that the “Baseline
(+ELMo)” settings below falls back to the stan-
dard QA selection task, and our score under ELMo
is comparable to earlier state-of-the-art results,
e.g. by Rao et al. (2016).

MAP MRR

Baseline 71.42 75.16
+Voting 72.94 77.17
+Train 71.57 74.63
+Train +Voting 73.96 80.77

+ELMo 77.49 81.86
+Voting 80.61 85.65
+Train 75.58 80.30
+Train +Voting 77.86 84.34

Table 5: Experimental results on QA selection.

It is shown that augmenting at evaluation time
(aggregation by voting) result in stable improve-
ment (around +2~3% MAP and +2~6% MRR for
both scenarios that either augments the training
data or not)—this shows that increasing the para-
phrastic diversity of the answer candidates could

9 Stopwords and tokens with non-letter characters (e.g.
with, 42, n’t) are excluded. k ∈ {2, 3, 4} is a hyperparameter
we tune – we found out that generally k = 2 works the best.

potentially make the system more robust. How-
ever augmenting the training set does not yield
such improvements—we speculate that this may
introduce some noise to the training data.

5.3 Machine Translation

We apply our paraphrastic rewriter to the WMT
2016 Turkish-English translation task (Bojar et al.,
2016b). We see no improvement in English to
Turkish translation, but see a 1.1 BLEU improve-
ment when training an initial NMT system on half
paraphrased and half original data, and continued
training on the original data. Full details of the ex-
periments are in Appendix C. This was the highest
concentration of standard data we experimented
with, and future work will explore additional ways
of data augmentation using paraphrases.

6 Conclusion

Lexically-constrained sequence decoding pro-
vides control over whether certain tokens or token
sequences appear in the output. Motivated by ap-
plications such as large-scale MT, we improved
the speed for constrained decoding significantly
by proposing a vectorized dynamic beam alloca-
tion algorithm. We also added multi-state trie rep-
resentations for robustness to corner cases.

Also reliant on the efficiency of constrained de-
coding is data augmentation via rewriting, where
one might need to explore a variety of strate-
gies with task-specific constraints on development
data. We trained an improved monolingual sen-
tential rewriter and used it to rewrite data for NLP
tasks. We experimented with augmenting train-
ing data, aggregating predictions on rewritten test
data, and both. Using a few simple constraint
heuristics, we showed improvements additive to
ELMo in NLI and QA, and in MT. The rewriter,
along with the augmented data files, can be found
at http://nlp.jhu.edu/parabank. We
hope this will enable future exploration of aug-
mentation strategies for a variety of NLP tasks.

Acknowledgments

Thanks to Michael Denkowski, who first sug-
gested using a trie to represent constraints in a
group discussion. This research was supported in
part by DARPA AIDA and DARPA LORELEI.

848

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2890–2896, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2017. Guided open vocabulary
image captioning with constrained beam search.
In Proceedings of EMNLP 2017, pages 936–945,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Ondřej Bojar, Ondřej Dušek, Tom Kocmi, Jindřich Li-
bovický, Michal Novák, Martin Popel, Roman Su-
darikov, and Dušan Variš. 2016a. CzEng 1.6: En-
larged Czech-English Parallel Corpus with Process-
ing Tools Dockered. In Text, Speech, and Dialogue:
19th International Conference, TSD 2016, number
9924 in Lecture Notes in Computer Science, pages
231–238, Cham / Heidelberg / New York / Dor-
drecht / London. Masaryk University, Springer In-
ternational Publishing.

Ondřej Bojar, Christian Federmann, Mark Fishel,
Yvette Graham, Barry Haddow, Philipp Koehn, and
Christof Monz. 2018. Findings of the 2018 con-
ference on machine translation (WMT18). In Pro-
ceedings of the Third Conference on Machine Trans-
lation: Shared Task Papers, pages 272–303, Bel-
gium, Brussels. Association for Computational Lin-
guistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016b. Findings of the 2016 confer-
ence on machine translation. In Proceedings of
the First Conference on Machine Translation, pages
131–198, Berlin, Germany. Association for Compu-
tational Linguistics.

Samuel R. Bowman, Ellie Pavlick, Edouard Grave,
Benjamin Van Durme, Alex Wang, Jan Hula, Patrick
Xia, Raghavendra Pappagari, R. Thomas McCoy,
Roma Patel, Najoung Kim, Ian Tenney, Yinghui
Huang, Katherin Yu, Shuning Jin, and Berlin Chen.
2019. Looking for ELMo’s friends: Sentence-level
pretraining beyond language modeling.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1–28, Athens, Greece.
Association for Computational Linguistics.

Charles Chen and Razvan Bunescu. 2017. An explo-
ration of data augmentation and rnn architectures
for question ranking in community question answer-
ing. In Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), pages 442–447, Taipei, Tai-
wan. Asian Federation of Natural Language Pro-
cessing.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. CoRR, abs/1810.04805.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of EMNLP 2018, pages 489–
500. Association for Computational Linguistics.

Marzieh Fadaee, Arianna Bisazza, and Christof Monz.
2017. Data augmentation for low-resource neural
machine translation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 567–
573, Vancouver, Canada. Association for Computa-
tional Linguistics.

Marzieh Fadaee and Christof Monz. 2018. Back-
translation sampling by targeting difficult words in
neural machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 436–446. Association
for Computational Linguistics.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In Proceedings NAACL-HLT 2013, pages
758–764.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A toolkit for neural machine
translation. CoRR, abs/1712.05690.

849

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of ACL, pages 1535–
1546, Vancouver, Canada.

Yutai Hou, Yijia Liu, Wanxiang Che, and Ting Liu.
2018. Sequence-to-sequence data augmentation for
dialogue language understanding. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 1234–1245, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

J. Edward Hu, Rachel Rudinger, Matt Post, and Ben-
jamin Van Durme. 2019. PARABANK: Monolin-
gual bitext generation and sentential paraphrasing
via lexically-constrained neural machine translation.
AAAI.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885. Associ-
ation for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452–457,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics Compan-
ion Volume Proceedings of the Demo and Poster
Sessions, Prague, Czech Republic. Association for
Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

pages 110–119, San Diego, California. Association
for Computational Linguistics.

Dekang Lin and Patrick Pantel. 2001. Dirt
@sbt@discovery of inference rules from text. In
Proceedings of the Seventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, KDD ’01, pages 323–328, New York,
NY, USA. ACM.

Minh-Thang Luong and Christopher D. Manning.
2015. Stanford Neural Machine Translation Sys-
tems for Spoken Language Domain. In Interna-
tional Workshop on Spoken Language Translation,
Da Nang, Vietnam.

Jonathan Mallinson, Rico Sennrich, and Mirella Lap-
ata. 2017. Paraphrasing revisited with neural ma-
chine translation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 881–893, Valencia, Spain. Association
for Computational Linguistics.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan,
and Zhi Jin. 2016. Natural language inference by
tree-based convolution and heuristic matching. In
Proc. ACL, page 130.

Courtney Napoles, Chris Callison-Burch, and Matt
Post. 2016. Sentential paraphrasing as black-box
machine translation. In Proceedings of the NAACL
2016, pages 62–66, San Diego, California. Associa-
tion for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings
of 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation
for neural machine translation. In Proceedings
of NAACL 2018, pages 1314–1324, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

850

Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-
contrastive estimation for answer selection with
deep neural networks. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management, pages 1913–1916.
ACM.

Keisuke Sakaguchi and Benjamin Van Durme. 2018.
Efficient online scalar annotation with bounded sup-
port. In Proceedings of ACL, pages 208–218, Mel-
bourne, Australia. ACL.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Compu-
tational Linguistics.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proceedings of the First Conference on Machine
Translation, pages 83–91, Berlin, Germany. Associ-
ation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional at-
tention flow for machine comprehension. CoRR,
abs/1611.01603.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Mengqiu Wang, Noah A Smith, and Teruko Mitamura.
2007. What is the Jeopardy model? A quasi-
synchronous grammar for QA. In Proceedings of
the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL).

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham
Neubig. 2018. Switchout: an efficient data aug-
mentation algorithm for neural machine translation.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
856–861. Association for Computational Linguis-
tics.

Hila Weisman, Jonathan Berant, Idan Szpektor, and Ido
Dagan. 2012. Learning verb inference rules from

linguistically-motivated evidence. In Proceedings
of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 194–204,
Jeju Island, Korea. Association for Computational
Linguistics.

Jason Weston and Chris Watkins. 1999. Support vec-
tor machines for multi-class pattern recognition. In
ESANN 1999, 7th European Symposium on Artifi-
cial Neural Networks, Bruges, Belgium, April 21-23,
1999, Proceedings, pages 219–224.

John Wieting and Kevin Gimpel. 2018. ParaNMT-
50M: Pushing the limits of paraphrastic sentence
embeddings with millions of machine translations.
In Proceedings of ACL, pages 451–462. ACL.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

