
Proceedings of NAACL-HLT 2019, pages 826–838
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

826

PoMo: Generating Entity-Specific Post-Modifiers in Context
Jun Seok Kang1, Robert L. Logan IV2, Zewei Chu3, Yang Chen3,

Dheeru Dua2, Kevin Gimpel4, Sameer Singh2, Niranjan Balasubramanian1

1Stony Brook University, NY, USA
2University of California, Irvine, CA, USA

3University of Chicago, IL, USA
4Toyota Technological Institute at Chicago, IL, USA
{junkang,niranjan}@cs.stonybrook.edu

{rlogan,ddua,sameer}@uci.edu
{zeweichu,yangc1}@uchicago.edu

{kgimpel}@ttic.edu
Abstract

We introduce entity post-modifier generation
as an instance of a collaborative writing task.
Given a sentence about a target entity, the task
is to automatically generate a post-modifier
phrase that provides contextually relevant in-
formation about the entity. For example, for
the sentence, “Barack Obama, , sup-
ported the #MeToo movement.”, the phrase
“a father of two girls” is a contextually rel-
evant post-modifier. To this end, we build
PoMo, a post-modifier dataset created auto-
matically from news articles reflecting a jour-
nalistic need for incorporating entity informa-
tion that is relevant to a particular news event.
PoMo consists of more than 231K sentences
with post-modifiers and associated facts ex-
tracted from Wikidata for around 57K unique
entities. We use crowdsourcing to show that
modeling contextual relevance is necessary for
accurate post-modifier generation.

We adapt a number of existing generation ap-
proaches as baselines for this dataset. Our
results show there is large room for improve-
ment in terms of both identifying relevant facts
to include (knowing which claims are relevant
gives a > 20% improvement in BLEU score),
and generating appropriate post-modifier text
for the context (providing relevant claims is
not sufficient for accurate generation). We con-
duct an error analysis that suggests promising
directions for future research.

1 Introduction

The goal of machine-in-the-loop writing systems
is to assist human writers by directly augmenting
their text. Examples include systems that refine
human text for grammar (Rao and Tetreault, 2018),
collaborate on story plot generation systems (Clark
et al., 2018; Yu and Riedl, 2012), or modify the
content for style (Hu et al., 2017; Shen et al., 2017;
Yang et al., 2018). In this paper, we introduce

Professor Melman ’s arguments appealed to a
wide spectrum, attracting unions like the United
Automobile Workers and the Machinists Union ...
Noam Chomsky , , said Dr. Melman helped

mobilize what once was weak and scattered re-
sistance to war and other military operations.
“The country is a lot different than it was 30 to
40 years ago, and he had a big role in that,” Mr.
Chomsky said.

Noam Chomsky (Q9049)

spouse Carol Chomsky

occupation university teacher

political ideology anarchism

employer MIT

notable work “Class Warfare”

Input Entity Mention and Context

and Claims from Wikidata

Output “the MIT professor and antiwar activist”

Figure 1: Post-Modifier Generation Task

post-modifier generation as an instance of such an
assistive writing task in the news domain. Jour-
nalists use post-modifiers to introduce background
information about entities discussed in news arti-
cles. To write these post-modifiers journalists often
need to look up relevant facts about entities. A
post-modifier generation system can be seen as a
collaborative assistant that automatically finds rel-
evant facts and inserts a small text fragment that
augments the text produced by the human writer.

Post-modifier generation is a contextual data-to-
text generation problem, where the data is the set
of known facts about the target entity, and the text
to be generated is a post-modifier that is relevant
to the rest of the information conveyed in the text.
Figure 1 shows an example. Given a sentence about
the anti-war resistance work of Noam Chomsky,
the target entity, and a set of known facts about
him, the task is to generate a post-modifier that
introduces Chomsky as a professor and mentions

827

his background as an anti-war activist. An effective
post-modifier generation system must: (i) select
suitable facts about the entity given the text, and
(ii) produce text that covers these facts in a way
that fits in with the rest of the text.

We introduce PoMo, an automatically generated
dataset for developing post-modifier generation
systems.1 PoMo is a collection of sentences that
contain entity post-modifiers, along with a collec-
tion of facts about the entities obtained from Wiki-
data (Vrandečić and Krötzsch, 2014). We use a
small number of dependency patterns to automati-
cally identify and extract post-modifiers of entities
in sentences. We then link the extracted entities
with the entries in Wikidata. The resulting dataset
has 231,057 instances covering 57,966 unique en-
tities. Our analysis show that the post-modifiers
often combine multiple facts and are specific to the
sentential context.

We conduct two sets of experiments that high-
light the challenges in post-modifier generation.
(i) Claim Selection: Given an input sentence, the
first step in generating a post-modifier is to fig-
ure out which facts to use. We formulate this as
a distantly-supervised ranking problem, where we
train neural models that learn to identify relevant
claims for a given sentence. These claim rank-
ing models perform well when predicting the rele-
vance of coarse-grained facts (e.g. occupation), but
fare poorly when predicting finer-grained facts (e.g.
place of birth). (ii) Generation: We adapt recent
sequence-to-sequence generation models for this
task. Results show that generation remains a chal-
lenge. Even though our automatic claim ranking
does not improve generation, further experiments
with oracle selected claims demonstrate that when
relevant claims are known, the models can generate
post-modifiers which humans deem comparable in
quality to ones written by professional journalists.

In summary, the main contributions of this work
are: 1) a data-to-text problem that introduces
new challenges, 2) an automated dataset creation
pipeline and a large resulting dataset, 3) a crowd-
sourcing study that verifies the contextual relevance
of post-modifiers, and 4) a characterization of the
difficulty of the task via performance analysis of
numerous baselines.

1https://stonybrooknlp.github.io/PoMo/

CNN DM NYT Total

Train 6,557 11,323 202,735 220,615
Valid 162 267 4,771 5,200
Test 181 288 4,773 5,242

Total 6,900 11,878 212,279 231,057

Table 1: Dataset distribution by sources.

2 PoMo: Task and Dataset

Post-modifier generation can be formulated as a
data-to-text generation problem. The input is text
mentioning a target entity and a set of known facts
about the entity. The output is a phrase that: (i) fits
as a post-modifier of the target entity mentioned
in the input text, and (ii) conveys a subset of facts
relevant to the context of the input text.

Figure 1 shows an example for the target entity
Noam Chomsky. The input includes a sentence
mentioning Chomsky’s work on mobilizing anti-
war groups along with its surrounding context, and
a listing of all facts about Chomsky that are avail-
able in Wikidata. Given these inputs, the task is
to output a post-modifier phrase that conveys facts
about Chomsky that fit within the sentence. In this
example the post-modifier conveys both general
background information about Chomsky (his oc-
cupation), and specific information relevant to the
context of the sentence (being an anti-war activist).

This task can be seen as an instance of collabora-
tive writing, where the journalist writes text about
specific news events involving entities, and the gen-
eration system assists the journalist by inserting
new text that augments the story. Given a large
collection of news articles, we can automatically
create training data for such systems by removing
the pieces of text that we want the assistant to gen-
erate. This requires reliable ways to identify text to
remove and sources of information that can be used
to generate the text. Here we describe a pipeline
for generating such a dataset for our task.

2.1 Dataset

We construct the PoMo dataset using three different
news corpora: NYTimes (Sandhaus, 2008), CNN
and DailyMail (Hermann et al., 2015). We use
Wikidata to collect facts about entities.2

2Wikidata dump from https://www.wikidata.
org/wiki/Wikidata:Database_download (Dump
date: 2018/06/25)

https://stonybrooknlp.github.io/PoMo/
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:Database_download

828

2.1.1 Post-Modifier and Entity Identification
We use Stanford CoreNLP (Manning et al., 2014)
to parse each sentence in the news articles and to
identify named entities. We extract post-modifiers
by finding noun phrases that share an appos re-
lation3 with any recognized named entity in the
sentence. In this work, we only consider post-
modifiers for people. In the future, we plan to
expand PoMo to include more post-modifiers for
other targets, such as organizations. We extract
only one such pair from a given sentence to reduce
the possible noise in the extraction process.

In our running example from Figure 1, Noam
Chomsky is recognized as a person entity. The
word “professor” is an appositive dependency of
the word “Chomsky” and therefore, we extract
the NP “the Massachusetts Institute of Technology
professor and antiwar activist” which includes the
word “professor” as a post-modifier for the target
entity Noam Chomsky.

2.1.2 Entity Claim Matching
Wikidata provides information about entities in the
form of key-value pairs that are called claims. To
collect the facts about a target entity, we need to
link the target to a specific entity in Wikidata. We
first search through Wikidata labels and aliases to
find candidates with the same name as the target.
We sort the candidates based on the number of
claims that have a significant word overlap with
the extracted post-modifier. We link the entity to
the highest ranked candidate whose claims cover
at least 30% of the non stop words in the post-
modifier. If such a candidate is found we record the
claims that overlap with the post-modifier. If no
such candidate is found then we discard the entity.

We evaluate this simple heuristic by comparing
the results to using an off-the-shelf entity linking
system AIDA-light (Nguyen et al., 2014) and show
the results in Table 2. We find that AIDA-light
agrees with our entity linking in 91.2% of the cases.
AIDA-light is able to link 94.3% of the entities we
found from NYTimes, but for CNN and DailyMail,
it links only 87.0% and 86.34% of the entities, re-
spectively. This decrease is likely due to the fact
that AIDA-light was last updated in 2014 while the
CNN/DailyMail datasets contain articles collected
until the end of April 2015. On the other hand,
NYTimes articles range from 1987 to 2007. Our

3An appositional modifier of an NP is another NP immedi-
ately to the right that defines or modifies the NP.

AIDA Succ. Agreement

Overall 93.66 91.22

Train 93.65 91.16
Valid 94.06 91.13
Test 93.80 93.65

CNN 87.03 90.34
DM 86.34 85.66
NYT 94.29 91.53

Table 2: Percent agreement with AIDA-light’s named
entity disambiguation results.

heuristic seems to be reasonably reliable as it does
not depend on anything else but the data sources:
news articles and Wikidata.

2.2 Analysis

Table 1 shows the distribution of the data sources
over train, validation, and test sets. All splits main-
tain the relative distributions of the data sources
to prevent stylistic mismatches from influencing
generation. We also ensure that there is no entity
overlap among the splits. Within the NYTimes data,
we verify that the distribution over years between
1987 and 2007 is also similar over the sets.

Distribution of Post-Modifiers and Entities
Figure 2a shows the distribution of post-modifier
lengths in terms of token counts. Most post-
modifiers are three to eight words long, and about
17.3% are even longer. Figure 2b shows an esti-
mate of the number of relevant facts covered by
the post-modifiers; this estimate uses the number
of claims that overlap with the post-modifier via
heuristic matching. More than half of the post-
modifiers convey two or more facts. About 11.4%
convey five or more facts. These results suggest
that generating post-modifiers requires composing
together multiple relevant facts.

Table 3 lists the most frequent types of facts
used in the post-modifiers in our dataset. Most
relate to generic biographical information such as
the entity’s occupation, organizations they belong
to, place of birth, etc. Here again we see a range of
types of information being conveyed which is likely
to present a challenge for generation systems.

The dataset also covers a wide variety of en-
tity types. We cluster the target entities by their
occupation listed in Wikidata. We also use Word-
Net (Miller, 1995) to traverse the hypernyms of the
words to find frequent ones. Then, we manually
select the top ten occupation types. Any entity that

829

in
st

an
ce

 c
ou

nt

0K

20K

40K

number of post-modifier tokens
1 2 3 4 5 6 7 8 9 10+

(a) Histogram of the token counts of
the post-modifiers. Majority of the post-
modifiers (171K instances, 74.14%) have
3 to 8 tokens. Average is 5.8 tokens.

0%

20%

40%

number of relevant facts
1 2 3 4 5 6 7 8 9 10+

(b) Number of relevant facts per instance
in the dataset. More than a half of the
post-modifiers are related to two or more
facts.

Other PM True PM

0%

20%

40%

very bad bad neutral good very good

(c) Histogram of the scores for post-
modifiers, averaged over three annota-
tions. The distribution of ratings for true
and other post-modifiers.

Figure 2: PoMo Post-Modifier Statistics

Fact Type Count
position held 151,959

occupation 82,781
educated at 53,067

member of political party 42,416
member of sports team 41,602

employer 36,412
award received 31,618

position played on team / speciality 23,987
country of citizenship 17,444

nominated for 15,139
place of birth 9,185
participant of 8,520

member of 7,565
languages spoken, written or signed 4,827

place of death 4,071

Table 3: Top 15 frequent fact types based on heuristic
fact coverage identification.

does not belong to the top ten is assigned to a single
other group. The resulting distribution is shown in
Table 4.

Quality of Post-Modifiers We conduct a crowd-
sourcing study to understand how often the post-
modifiers are specific to the particular context. For
each (entity, context, post-modifier) triple in the
validation set, we create multiple alternative post-
modifiers by randomly choosing up to ten other
post-modifiers that are found in some other sen-
tences for the same entity. Crowd workers rate the
quality of these post-modifiers. Figure 3 shows a
screenshot of a task given to crowd workers. If the
true post-modifier, the one that is actually used in
the context, is rated the highest compared to the
rest, then we assume the post-modifier is indeed
specific to the context. On the other hand, if the
crowd workers rate multiple other post-modifiers as
good fits for the context, then the true post-modifier
is not context specific. Figure 2c shows the distri-
bution of ratings for true and other post-modifiers.
The true post-modifiers tend to be rated very good
or good more often than the other post-modifiers.

Occupation Count Percentage
athlete 13,560 23.39%
writer 9,177 15.83%

politician 8,518 14.69%
entertainer 6,488 11.19%

other 5,870 10.13%
scientist 4,487 7.74%

artist 4,175 7.20%
official 2,098 3.62%
lawyer 1,132 1.95%

educator 961 1.66%
capitalist 789 1.36%

scholar 711 1.23%

Table 4: Distribution of the inferred occupations of the
target entities. Entities clustered by their occupation.

Figure 3: Screenshot of the crowdsourcing task. We
asked crowd to rate the quality of post-modifiers.

This suggests that in many cases post-modifiers
are specific to the context and cannot be simply
replaced by other post-modifiers.

3 Relevant Claim Selection

One of the key challenges of generating post-
modifiers is to identify the claims about an entity
that are relevant to the given context. In this section,
we explore methods for solving this task.

830

3.1 Methods

We consider three different models: a most-
common claim baseline and two neural baselines.

Most-Common Claim This model employs a
simple frequency heuristic: rank claims by the fre-
quency of their types in the training post-modifiers
(e.g. as in the order given in Table 3) and deem the
top n claims in this ranking as relevant.

Neural Baselines We use two neural baselines
with the following architecture. Word embeddings
are used to represent words in the context (e.g.
current and previous sentence) and claims. The
sequences of embeddings are then fed through 2-
layer LSTM’s (Hochreiter and Schmidhuber, 1997)
to obtain separate representations of the context
and claims. These representations are subsequently
concatenated together and fed through a fully-
connected layer with sigmoid activation, producing
a scalar value for each claim representing the prob-
ability that it is relevant. We use this model in two
ways: as a classifier, and as a ranking model. When
used as a classifier, any claim whose score exceeds
a threshold τ is predicted to be relevant. When
used as a ranking model, the top n highest-scoring
claims are predicted to be relevant.

3.2 Experiments

We train our baselines on the PoMo dataset, using
the claims detected during dataset collection as a
(distant) source of supervision. Precision, recall,
and F1 score are used to evaluate model perfor-
mance. Model hyperparameters are chosen using
(coarse) grid search to maximize F1 score on the
validation set. The neural baselines use a vocabu-
lary size of 50,000, 100-dimensional word embed-
dings, and 256 hidden units in the LSTM layers.
Dropout (Srivastava et al., 2014) is applied between
the LSTM layers with a 0.5 keep probability. The
neural classifier uses threshold τ = 0.37. We find
the optimal value of n is 4 for the most-common
claims model and 2 for the neural ranker.

Quantitative results are provided in Table 5.
Both neural baselines perform considerably better
than the most-common claims model. This indi-
cates that the provided contexts and claim values
contain useful information for claim selection that
goes beyond the information captured by global
statistics of the dataset alone. We additionally ob-
serve that the ranking-based approach outperforms
the classification-based approach in terms of both

Prec. Recall F1

Most-Common Claim (n=4) 39.9 51.6 45.0
Neural Classifier (τ=0.37) 52.0 63.8 57.4
Neural Ranker (n=2) 66.5 62.7 64.5

Table 5: Baseline model performance on the claim se-
lection task.

Fact Type F1

employer 76.95
position played on team / speciality 76.65
position held 63.10
occupation 50.02
member of political party 48.71
member of 45.60
member of sports team 38.53
award received 37.53
nominated for 30.87
educated at 29.56
participant of 29.04
country of citizenship 16.28
place of death 14.72
place of birth 6.80
languages spoken, written or signed 0.00

Table 6: F1 score of neural ranker (n = 2) on top 15
fact types.

precision and F1 score, while having only slightly
worse recall.

To better understand the cases where the neural
models fail and succeed, we examine the distribu-
tion of F1 scores over the top 15 fact types (see
Table 6). Interestingly, when ranked by F1 score
we observe that fact types fall naturally into topi-
cally related groups:

1. position / occupation-related facts: position
played, position held, occupation

2. membership-related facts: member of political
party, member of, member of sports team

3. achievement-related facts: award received,
nominated for

4. location-related facts: country of citizenship,
place of death, place of birth

With the exception of employer, the overarching
trend is that the model identifies the relevance
of coarse-grained claims better than fine-grained
claims (e.g occupations, political parties, and sports
positions are much more likely to be shared be-
tween entities than birth and death places). This
suggests that developing better methods for deter-
mining the relevance of fine-grained claims is a
promising avenue for future research on this task.

831

4 Post-Modifier Generation

We move our focus to the main task of post-
modifier generation.

4.1 Methods

At its core, post-modifier generation involves pro-
ducing a variable-length sequence output condi-
tioned on two variable-length inputs: the words in
the current and previous sentence (e.g. the con-
text), and the collection of claims about the entity.
Accordingly, the sequence-to-sequence (seq2seq)
framework (Sutskever et al., 2014) is a natural fit
for the task — we use it as the foundation for all
of our baseline models. Since research has shown
that attention (Bahdanau et al., 2015) and copy
mechanisms (Gu et al., 2016) consistently improve
seq2seq model performance, we use these in our
baselines as well.

One choice that must be made when using this
framework is how to combine the different inputs.
The default approach we use is to concatenate the
claim and context into a linear sequence of tokens
during preprocessing (shown in Figure 4a). We
also experiment with encoding the claims and each
of the context sentences separately, then concate-
nating their vector representations before decoding.
We refer to this as the tri-encoder approach (shown
in Figure 4b).

As discussed earlier, selecting relevant claims
is crucial to generating good post-modifiers. One
way to incorporate claim selection is to use our
baseline models from Section 3 to cut out irrele-
vant claims from the input before feeding them to
the encoder (e.g. performing hard claim selection).
This pipelined approach is not differentiable, and
can suffer from cascading errors. An alternative
way is to use the model’s attention mechanism as
a form of soft claim selection that attends only to
the relevant claims. The drawback of this approach
is that it does not make use of the available claim
annotations, which are an important source of su-
pervision.

Building on these observations, we propose an
end-to-end claim selection model which incorpo-
rates an additional term to the loss function that
encourages the claim-level attention probabilities
to be higher for the identified relevant claims as
shown in Figure 4c. The process for computing
this loss term works as follows. We begin by sum-
ming together attention scores for tokens within
claims to obtain a claim-level score. These scores

Prev. Sent. Context Claims Post-Modifier

...

Attention

......

(a) Basic sequence-to-sequence model

Prev. Sent. Context Claims Post-Modifier

...

Attention

...

Attention Attention

...

(b) Tri-encoder model

Post-Modifier

...

Attention

Prev. Sent. ContextClaims

......

Aux. Claim
Ranking Loss

(c) End-to-end claim selection model

Figure 4: PoMo Models for post-modifier genera-
tion. Grey boxes at the bottom represent individual en-
coder/decoder modules. (a) For baseline BiLSTM and
transformer models all inputs are concatenated into one
sequence. (b) The tri-encoder model has a separate en-
coder and attention for each type of input. The outputs
of attention layers are concatenated together before
generation. (c) The end-to-end claim selection model
attends to only the claim embeddings and uses an aux-
iliary loss term to encourage high attention scores for
relevant claims.

are then fed through a sigmoid activation function
to obtain a soft claim selection probability. For
each claim, we measure the binary cross entropy
between the predicted selection probability and a
binary variable indicating whether or not the claim
was identified as relevant. The final loss term is the
average of these binary cross entropies. Note that
we do not use a copy mechanism in this model to
avoid double-counting (since relevant claims were
identified using word overlap).

4.2 Experiments
We experiment with two types of encoder/decoder
modules: bidirectional LSTMs, and transform-

832

ers (Vaswani et al., 2017). We use a vocabulary
of size 50K, truncate the maximum input sequence
length to 500, and use a batch size of 32 in all
experiments. To help models distinguish between
claims and context we demarcate claim fields with
special <claim>, <key>, and <value> tokens.
We train all the models for 150k steps, and evaluate
on the validation dataset every 10k steps. Evalua-
tion is performed using the BLEU (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005)
translation metrics, and Precision, Recall and F1

score of the predicted bag-of-words (omitting stop-
words). The model with the highest F1 score on
the validation set is used during test time.

For the bidirectional LSTM, we use 2 hidden lay-
ers with 512 hidden units, 500-dimensional word
embeddings, and apply dropout between layers
with a keep probability of 0.7. Models are trained
using stochastic gradient descent with a learning
rate of 1.0. For the transformer model, we use 4
attention heads, 4 layers of transformer blocks with
64 hidden units for the encoder and the decoder,
a penultimate hidden layer with 256 units, and
64-dimensional word embeddings. Transformer
models are trained using Adam (Kingma and Ba,
2015) with an initial learning rate of 2.0, and a la-
bel smoothing (Szegedy et al., 2016) factor of 0.1
when calculating loss.

We perform a variety of experiments, the results
of which are displayed in Table 7. In this table,
Transformer and BiLSTM refer to models trained
using the default approach to combining context
and claims, while Tri-encoder refers to a BiLSTM
model trained using the approach described in 4.1
(we do not train a transformer version since its
performance is lackluster). Here are detailed de-
scriptions of the experiments performed in each
section:

• All Claims: Results for vanilla seq2seq models.
• Oracle: Hard claim selection is performed using

the oracle relevant claims.
• Neural Ranker (n = 10): Hard claim selection

is performed using the top-10 claims returned by
the neural ranker baseline.
• End-to-End Claim Selection: Results for the

end-to-end claim selection model.

In order to understand the relative contribution of
the different inputs, we also include results for
the BiLSTM model trained using either only the
claims, or only the context sentences. In Figure 5
and 6, we show the performances by post-modifier

and sentence lengths to examine the impact of the
such variables.

Discussion of Quantitative Results Our results
contain a few key findings. The first is that know-
ing the relevant claims is critical to obtaining state-
of-the-art performance; even knowing only oracle
claims is sufficient to perform better than all of the
other baselines, although there is a still a large im-
provement when context is additionally provided.
However, model-based approaches for claim selec-
tion do not seem to help: hard claim selection using
the neural ranker performs just as well as the vanilla
models, and our proposed approach for end-to-end
claim selection has a negative impact. This moti-
vates the need for more effective methods of claim
selection. The decreasing performances of the
BiLSTM seq2seq models by the increasing target
post-modifier and sentence lengths show the dif-
ficulty of generating long texts and handling long
input data. Finally, we observe that the transformer-
based seq2seq models are not particularly well-
suited to this task. In all cases their performance is
inferior to the BiLSTM-based approaches. Large-
scale, pre-trained transformer-based language mod-
els, such as GPT-2 (Radford et al., 2019) and
BERT (Devlin et al., 2018), might be an interest-
ing addition to the baselines, by framing the task
as filling in the blanks for post-modifiers. How-
ever, when restricted to approaches that only use
our dataset for training, we expect those based on
language models to struggle due to the separation
of entities among train, validation, and test.

Qualitative Analysis A cursory examination of
model predictions (see Table 8 for examples) pro-
vides insight into why post-modifier generation is
a challenging task. One issue that consistently ap-
pears is temporal inconsistency between the target
and generated post-modifiers. That is, the model
may make an error since it is unaware of the time
period that the article is written in (and also may
not be aware of the periods of time for which a
claim are true). For example, in the first instance
in Table 8 the Oracle model predicts an almost cor-
rect post-modifier but misses the fact that Kenneth
Clarke is a former Chancellor of the Exchequer.
Another apparent issue is that models tend to gen-
erate shorter post-modifiers than humans. As is
indicated in Figure 2a the post-modifiers in the
dataset on average contain 5.8 tokens, whereas gen-
erated post-modifiers have only 3.8. Lastly, we

833

Prec. Rec. F1 BLEU MET.

All Claims
Transformer 41.9 22.2 29.0 7.0 12.1
Tri-Encoder 53.9 32.4 40.5 17.0 17.6
BiLSTM 51.1 34.7 41.4 19.4 18.8

Oracle
Transformer 69.4 38.6 49.6 15.7 20.0
Tri-Encoder 68.8 47.3 56.1 24.0 24.5
BiLSTM 66.4 48.8 56.2 25.1 25.3

Neural Ranker (n = 10)
Transformer 41.5 22.4 29.1 6.9 12.1
Tri-Encoder 53.5 34.1 41.6 17.6 18.3
BiLSTM 49.0 34.2 40.3 18.5 18.5

End-to-End Claim Selection
BiLSTM 47.5 27.9 35.2 13.7 15.3

Context Only
BiLSTM 13.3 8.5 10.3 3.4 6.2

Claims Only
BiLSTM 47.3 28.5 35.6 13.5 15.0

Oracle Claims Only
BiLSTM 63.8 44.7 52.5 21.3 22.7

Table 7: Post modifier generation model performances
with seq2seq models. Precision, recall and F1 scores
are computed ignoring stopwords.

observe that our quantitative evaluation metrics can
be too strict. Take for example the second instance
in Table 8. Here the content of the target and gen-
erated post-modifiers is almost exactly the same,
however our metrics would give very low scores
due to low overlap.

Human Evaluation We additionally evaluate
the generated post-modifiers by performing a hu-
man evaluation using Amazon Mechanical Turk.
We randomly select 500 instances from test set and
show crowdworkers the sentence context, along
with the true post-modifier and a generated one. For
each instance, workers are asked to select the better
phrase, or indicate that the two phrases are of equal
quality. For the Oracle BiLSTM model, the true
post-modifiers are preferred 46% of the time, while
generated post-modifiers are preferred 43.2% of
the time. For the Neural Ranker (n = 10) BiLSTM
model, true post-modifiers are favored much more
(57.60%) than the generated ones (20%). Consis-
tent with our quantitative results, we see that claim
selection is a crucial factor in this task. We also ob-
serve a few trends in the results. People tend to pre-
fer generated post-modifiers over the ones written
by professional journalists when they are shorter
and to use more general terms without elaborat-
ing too much about the entity. In contrast, longer

All Claims BiLSTM
Neural Ranker BiLSTM
Oracle BiLSTM

0

50

100

post-modifier lengths
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

(a) F1 scores

All Claims BiLSTM
Neural Ranker BiLSTM
Oracle BiLSTM

0

50

100

post-modifier lengths
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

(b) BLEU scores

Figure 5: Performances by target post-modifier lengths
of BiLSTM model. Post-modifiers with 20 or more to-
kens are put into one group, 20+.

All Claims BiLSTM
Neural Ranker BiLSTM
Oracle BiLSTM

0

50

100

sentence lengths
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

(a) F1 scores

All Claims BiLSTM
Neural Ranker BiLSTM
Oracle BiLSTM

0

20

40

60

sentence lengths
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

(b) BLEU scores

Figure 6: Performances by input sentence lengths of
BiLSTM model. Sentences with 20 or more tokens are
put into one group, 20+.

and more detailed human written post-modifiers
are preferred when they are especially relevant to
the rest of the sentence.

5 Related Work

There is a large body of previous work on claim
selection (Kukich, 1983; Duboue and McKeown,
2003; Reiter and Dale, 1997; Tanaka-Ishii et al.,
1998; Barzilay and Lapata, 2005) and language
generation from structured data (Reiter et al., 2005;
Goldberg et al., 1994). Initially, hand-crafted
grammars were employed for language generation,
which later evolved to statistical machine transla-
tion style models (Wong and Mooney, 2007) or
PCFG based models (Belz, 2008). More recently,
the focus has shifted to learning both fact selection
and language generation jointly (Liang et al., 2009;
Angeli et al., 2010; Kim and Mooney, 2010; Lu
and Ng, 2011; Konstas and Lapata, 2013).

834

Input Sky News reported Thursday night that Kenneth Clarke , , had not yet decided whether to
support Mr. Howard ’s candidacy , raising the possibility the party could face a divisive battle for
leadership .

Claims + (position held: Chancellor of the Exchequer)
+ (position held: Secretary of State for the Home Department)

Target a former chancellor of the exchequer
All Claims the Home Secretary

Oracle the Chancellor of the Exchequer

Input “ A lot of people think it ’s something we just started , but we actually opened the season with our
first drive using it against Indianapolis , ” said Howard Ballard , .

Claims + (member of sports team: Buffalo Bills)
+ (position played on team / speciality: offensive tackle)
+ (mass: 325 pound)
+ (height: 78 inch)

Target Buffalo ’s robust , 6-foot-6-inch , 325-pound right tackle
All Claims & Oracle the Bills ’ offensive tackle

Table 8: Challenging PoMo instances. Two examples along with outputs of the best All Claims and Oracle models
are displayed. Claims deemed relevant during dataset curation are prefaced with a +. In the first example, knowing
the relevant claims helps the Oracle model produce an output that closely matches the Target, however lack of
temporal information causes the model to miss the word former. In the second example, the All Claims and Oracle
models produce the same post-modifier. Although it is similar to the Target in meaning, it receives a low score
using our evaluation metrics. Futhermore, our data curation method fails to identify relevant claims.

Modern approaches employ neural networks to
solve this problem end-to-end. Mei et al. (2016) uti-
lize an encoder-decoder framework to map weather
conditions to a weather forecast. Ahn et al. (2016)
and Yang et al. (2017) introduce a new class of
language models which are capable of entity co-
reference and copying facts from an external knowl-
edge base. Building upon these models, Wiseman
et al. (2017) introduce an auxiliary reconstruction
loss which use the hidden states of the decoder to
recover the facts used to generate the text. Liu et al.
(2018) introduce a hierarchical attention model for
fact selection, with the higher level focusing on
which records in the table to select and the lower
level focusing on which cells in a particular row to
pay attention to.

In order to train complex neural models, the
quest for larger datasets has become paramount.
Lebret et al. (2016) introduce the WikiBio dataset
containing Wikipedia articles of famous people and
the corresponding infobox tables. One drawback of
this dataset is that it is easily solved using template-
based models. To address this issue, Wiseman et al.
(2017) introduce the ROTOWire dataset, which
contains summaries of basketball games that are
very long and syntactically diverse. A comprehen-
sive list of datasets is provided in Appendix B.

6 Conclusions and Future Work

Inspired by recent work on collaborative writing
and data-to-text generation, we introduce post-
modifier generation, a task that bridges the gap

between these two fields. The task is to generate a
factual description of an entity which fits within the
context of a human written sentence. In order to
promote research on this task we present PoMo,
a large dataset of automatically extracted post-
modifiers from news articles, aligned to the Wiki-
data knowledge graph. We study the performance
of numerous strong baseline models on this dataset,
with a particular focus on the specific sub-task of
claim selection. Our results demonstrate that when
relevant claims are known, sequence-to-sequence
models are capable of generating post-modifiers
which humans deem comparable in quality to ones
written by professional journalists. However, ac-
cording to both quantitative metrics and human
judgment, performance is much lower when mod-
els must determine for themselves which claims
are relevant. These experiments suggest plausible
pathways to achieving human-level performance on
this task that are both challenging and interesting
problems for future research.

Acknowledgments

We would like to thank the Toyota Technolog-
ical Institute at Chicago for hosting the Work-
shop on Collaborative and Knowledge-Backed Lan-
guage Generation which initiated the efforts for this
project. The authors would also like to thank David
Yarowsky, Jason Eisner, Kevin Duh, Kyle Gorman,
and Philipp Koehn for feedback on early ideas for
post-modifier generation.

835

References
Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and

Yoshua Bengio. 2016. A neural knowledge language
model. arXiv preprint arXiv:1608.00318.

Gabor Angeli, Percy Liang, and Dan Klein. 2010. A
simple domain-independent probabilistic approach
to generation. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 502–512. Association for Compu-
tational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Regina Barzilay and Mirella Lapata. 2005. Collective
content selection for concept-to-text generation. In
Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, pages 331–338. Association for
Computational Linguistics.

Anja Belz. 2008. Automatic generation of weather
forecast texts using comprehensive probabilistic
generation-space models. Natural Language Engi-
neering, 14(4):431–455.

Elizabeth Clark, Anne Spencer Ross, Chenhao Tan,
Yangfeng Ji, and Noah A Smith. 2018. Creative
writing with a machine in the loop: Case studies on
slogans and stories. In 23rd International Confer-
ence on Intelligent User Interfaces, pages 329–340.
ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Pablo A Duboue and Kathleen R McKeown. 2003. Sta-
tistical acquisition of content selection rules for nat-
ural language generation. In Proceedings of the
2003 conference on Empirical methods in natural
language processing, pages 121–128. Association
for Computational Linguistics.

Eli Goldberg, Norbert Driedger, and Richard I Kit-
tredge. 1994. Using natural-language processing to
produce weather forecasts. IEEE Expert, 9(2):45–
53.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of

the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1631–1640.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems, pages 1693–1701.

Sepp Hochreiter and Jrgen Schmidhuber. 1997. Long
short-term memory. In Neural Computation.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward
controlled generation of text. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1587–1596. JMLR. org.

Joohyun Kim and Raymond J Mooney. 2010. Gen-
erative alignment and semantic parsing for learn-
ing from ambiguous supervision. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics: Posters, pages 543–551. Associa-
tion for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ioannis Konstas and Mirella Lapata. 2013. A global
model for concept-to-text generation. Journal of Ar-
tificial Intelligence Research, 48:305–346.

Karen Kukich. 1983. Design of a knowledge-based re-
port generator. In Proceedings of the 21st annual
meeting on Association for Computational Linguis-
tics, pages 145–150. Association for Computational
Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1203–1213.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 1-Volume 1, pages
91–99. Association for Computational Linguistics.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2018. Table-to-text generation by
structure-aware seq2seq learning. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Wei Lu and Hwee Tou Ng. 2011. A probabilistic forest-
to-string model for language generation from typed
lambda calculus expressions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1611–1622. Association
for Computational Linguistics.

836

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. 2016. What to talk about and how? selective
generation using lstms with coarse-to-fine alignment.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 720–730, San Diego, California. Association
for Computational Linguistics.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Dat Ba Nguyen, Johannes Hoffart, Martin Theobald,
and Gerhard Weikum. 2014. Aida-light: High-
throughput named-entity disambiguation. LDOW,
1184.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Sudha Rao and Joel R. Tetreault. 2018. Dear sir or
madam, may i introduce the gyafc dataset: Corpus,
benchmarks and metrics for formality style transfer.
In NAACL-HLT.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Ehud Reiter, Somayajulu Sripada, Jim Hunter, Jin Yu,
and Ian Davy. 2005. Choosing words in computer-
generated weather forecasts. Artificial Intelligence,
167(1-2):137–169.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in Neural Informa-
tion Processing Systems, pages 6830–6841.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2016. Re-
thinking the inception architecture for computer vi-
sion. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 2818–2826.

Kumiko Tanaka-Ishii, Kôiti Hasida, and Itsuki Noda.
1998. Reactive content selection in the generation
of real-time soccer commentary. In Proceedings of
the 17th international conference on Computational
linguistics-Volume 2, pages 1282–1288. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Yuk Wah Wong and Raymond Mooney. 2007. Genera-
tion by inverting a semantic parser that uses statisti-
cal machine translation. In Human Language Tech-
nologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference,
pages 172–179.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2017. Reference-aware language models. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1850–1859, Copenhagen, Denmark. Association for
Computational Linguistics.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing,
and Taylor Berg-Kirkpatrick. 2018. Unsupervised
text style transfer using language models as discrim-
inators. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-
itors, Advances in Neural Information Processing
Systems 31, pages 7287–7298. Curran Associates,
Inc.

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/10.18653/v1/N16-1086
https://doi.org/10.18653/v1/N16-1086
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.18653/v1/D17-1197
http://papers.nips.cc/paper/7959-unsupervised-text-style-transfer-using-language-models-as-discriminators.pdf
http://papers.nips.cc/paper/7959-unsupervised-text-style-transfer-using-language-models-as-discriminators.pdf
http://papers.nips.cc/paper/7959-unsupervised-text-style-transfer-using-language-models-as-discriminators.pdf

837

Hong Yu and Mark O. Riedl. 2012. A sequential rec-
ommendation approach for interactive personalized
story generation. In AAMAS.

838

A Additional Claim Selection Materials

Table 9 lists the evaluation results of most-common
claim baseline for n, the number of claims to pre-
dict, from 1 to 5. We obtain highest F1 with n = 4.

n Precision Recall F1

1 57.7 31.8 41.0
2 49.6 38.3 43.2
3 43.4 45.2 44.3
4 39.9 51.6 45.0
5 36.0 56.8 44.0

Table 9: Evaluation metrics for most-common claim
baseline for different values of n.

Neural baseline shows improved performance
compared to most-common claim baseline, show-
ing its best performance when n = 2.

n Precision Recall F1

1 75.2 42.4 54.3
2 66.5 62.7 64.5
3 56.0 69.6 62.1
4 48.7 76.2 59.4

Table 10: Evaluation metrics for neural baseline for dif-
ferent values of n.

B Existing Data-to-Text Datasets

Table 11 provides a comprehensive list of data-
to-text datasets. PoMo presents a different set of
challenges from these datasets. While the target
text is shorter and less diverse, the task adds an
additional challenge of figuring out which claims
to use, a task which our evaluation shows is quite
challenging.

Dataset Size Domain of structured data to
language

WEATHER.GOV 29.5k Weather conditions to forecast re-
port

ALLRECIPES 31k Table of ingredients to recipes
ROBOCUP 1.5k Game statistics to summaries
ROTOWIRE 4.9k Basketball statistics to game sum-

maries
WIKIBIO 728k Infobox to Wikipedia biography

articles
SBNations 10.9K Game statistic to fan written sum-

maries
WikiFacts 40k Freebase /film/actor facts to Wiki

description of actor

Table 11: A comparative analysis of various datasets.

