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Abstract

Conventional approaches to relation extraction
usually require a fixed set of pre-defined re-
lations. Such requirement is hard to meet in
many real applications, especially when new
data and relations are emerging incessantly
and it is computationally expensive to store
all data and re-train the whole model every
time new data and relations come in. We for-
mulate such a challenging problem as lifelong
relation extraction and investigate memory-
efficient incremental learning methods without
catastrophically forgetting knowledge learned
from previous tasks. We first investigate a
modified version of the stochastic gradient
methods with a replay memory, which surpris-
ingly outperforms recent state-of-the-art life-
long learning methods. We further propose to
improve this approach to alleviate the forget-
ting problem by anchoring the sentence em-
bedding space. Specifically, we utilize an ex-
plicit alignment model to mitigate the sentence
embedding distortion of the learned model
when training on new data and new relations.
Experiment results on multiple benchmarks
show that our proposed method significantly
outperforms the state-of-the-art lifelong learn-
ing approaches.

1 Introduction

The task of relation detection/extraction aims to
recognize entity pairs’ relationship from given
contexts. As an essential component for structured
information extraction, it has been widely used in
downstream tasks such as automatic knowledge-
based completion (Riedel et al., 2013) and ques-
tion answering (Yih et al., 2015; Yu et al., 2017).

Existing relation detection methods always as-
sume a closed set of relations and perform once-

∗ Co-mentoring
Code and dataset can be found in this repository:

https://github.com/hongwang600/Lifelong_
Relation_Detection

and-for-all training on a fixed dataset. While
making the evaluation straightforward, this set-
ting clearly limits the usage of these methods in
realistic applications, where new relations keep
emerging over time. To build an evolving system
which automatically keeps up with the dynamic
data, we consider a more practical lifelong learn-
ing setting (also called continual learning) (Ring,
1994; Thrun, 1998; Thrun and Pratt, 2012), where
a learning agent learns from a sequence of tasks,
where each of them includes a different set of re-
lations. In such scenarios, it is often infeasible to
combine the new data with all previous data and
re-train the model using the combined dataset, es-
pecially when the training set for each task is huge.

To enable efficient learning in such scenar-
ios, recent lifelong learning research (Kirkpatrick
et al., 2016; Lopez-Paz and Ranzato, 2017) pro-
pose to learn the tasks incrementally, while at the
same time preventing catastrophic forgetting (Mc-
Closkey and Cohen, 1989; Ratcliff, 1990; McClel-
land et al., 1995; French, 1999), i.e., the model
abruptly forgets knowledge learned on previous
tasks when learning on the new task. Current life-
long learning approaches address such challenge
by either preserving the training loss on previ-
ously learned tasks (GEM) (Lopez-Paz and Ran-
zato, 2017), or selectively dimming the updates
on important model parameters (EWC) (Kirk-
patrick et al., 2016). These methods usually in-
volve adding additional constraints on the model’s
parameters or the updates of parameters by uti-
lizing stored samples. Despite the effectiveness
of these methods on simple image classification
tasks, there is little research validating the practi-
cal usage of these methods in realistic NLP tasks.
In fact, when applying these methods to our rela-
tion extraction task, we observe that they under-
perform a simple baseline that updates the model
parameters (i.e., learning by SGD) with a mix

https://github.com/hongwang600/Lifelong_Relation_Detection
https://github.com/hongwang600/Lifelong_Relation_Detection
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of stored samples from previous tasks and new
samples from the incoming task. We further test
this simple baseline on commonly used continual
learning benchmarks and get similar observations.

In this work, we thoroughly investigate two ex-
isting continual learning algorithms on the pro-
posed lifelong relation extraction task. We ob-
serve that recent lifelong learning methods only
operate on the models’ parameter space or gra-
dient space, and do not explicitly constraint the
feature or embedding space of neural models. As
we train the model on the new task, the embed-
ding space might be distorted a lot, and become
infeasible for previous tasks. We argue that the
embedding space should not be distorted much in
order to let the model work consistently on previ-
ous tasks. To achieve this, we propose an align-
ment model that explicitly anchors the sentence
embeddings derived by the neural model. Specif-
ically, the alignment model treats the saved data
from previous tasks as anchor points and mini-
mizes the distortion of the anchor points in the em-
bedding space in the lifelong relation extraction.
The aligned embedding space is then utilized for
relation extraction. Experiment results show that
our method outperforms the state-of-the-art signif-
icantly in accuracy while remaining efficient.

The main contributions of this work include:
• We introcduce the lifelong relation detection

problem and construct lifelong relation detection
benchmarks from two datasets with large rela-
tion vocabularies: SimpleQuestions (Bordes et al.,
2015) and FewRel (Han et al., 2018).
•We propose a simple memory replay approach

and find that current popular methods such as
EWC and GEM underperform this method.
• We propose an alignment model which aims

to alleviate the catastrophic forgetting problem by
slowing down the fast changes in the embedding
space for lifelong learning.

2 Problem Definition

Generic definition of lifelong learning problems
In lifelong learning, there is a sequence of K
tasks {T (1), T (2), . . . , T (K)}. Each task T (k) is
a conventional supervised task, with its own la-
bel set L(k) and training/validation/testing data
(T (k)

train, T
(k)
valid, T

(k)
test ), each of which is a set of la-

beled instances {(x(k), y(k))}. Note that x(k) is the
input data of the context and candidate relations,
and y(k) is the ground-truth label. The goal of life-

long learning is to learn a classification model f .
At each step k, f observes the task T (k), and op-
timizes the loss function on its training data with
a loss function `(f(x), y). At the same time, we
require the model f learned after step k could still
perform well on the previous k − 1 tasks. That is,
we evaluate the model by using the average accu-
racy of k tasks at each step as 1

k

∑k
j=1 accf,j .

To make f perform well on the previous tasks,
during the lifelong learning process, we usually al-
low the learner to maintain and observe a memory
M of samples from the previous tasks. Practi-
cally, with the growth of the number of tasks, it
is difficult to store all the task data1. Therefore,
in lifelong learning research, the learner is usu-
ally constrained on the memory size, denoted as
a constant B. Thus at each step k, the learner is
allowed to keep training samples from {T (j)|j =
1, . . . , k − 1} with size less or equal to B.

Lifelong relation detection In this paper we in-
troduce a new problem, lifelong relation detection.
Relation detection is an important task that aims to
detect whether a relation exists between a pair of
entities in a paragraph. In many real-world sce-
narios, relation detection naturally forms a life-
long learning problem because new relation types
emerge as new knowledge is constantly being dis-
covered in various domains. For example, in the
Wikidata (Vrandečić and Krötzsch, 2014) knowl-
edge graph, the numbers of new items and proper-
ties are constantly increasing2. So we need to keep
collecting data and updating the model over time
in order to handle newly added relations.

The problem of lifelong relation detection has
the same definition as above with only one dif-
ference: during prediction time, we hope to know
whether an input paragraph contains any relation
observed before. Therefore at time k, given an
input x from task j′<k, instead of predicting an
y ∈ L(j′), we predict y(k) ∈

⋃k
j=1 L

(j). That
says, the candidate label set is expanding as the
learner observes more tasks, and the difficulty of
each previous task is increasing over time as well.

1Even the data can be stored, it is unrealistic to make full
usage of the stored data. For example, random sampling from
all previous task data (e.g., for the methods in Section 4) will
become statistically inefficient.

2https://www.wikidata.org/wiki/
Wikidata:News

https://www.wikidata.org/wiki/Wikidata:News
https://www.wikidata.org/wiki/Wikidata:News
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3 Evaluation Benchmarks for Lifelong
Learning

3.1 Previous non-NLP Benchmarks

Lifelong MNIST MNIST is a dataset of hand-
writing ten digits (LeCun, 1998), where the in-
put for each sample is an image, and the label
is the digit the image represents. Two variants
of the MNIST dataset were proposed for lifelong
learning evaluation. One is MNIST Permutations
(Kirkpatrick et al., 2016), where a task is created
by rearranging pixels according to a fixed permu-
tation. K different permutations are used to gen-
erate K tasks. Another variant is MNIST Rota-
tions (Lopez-Paz and Ranzato, 2017), where each
task is created by rotating digits by a fixed angle.
K angles are chosen for creating K tasks. In our
experiments, we follow (Lopez-Paz and Ranzato,
2017) to have K = 20 tasks for each benchmark.

Lifelong CIFAR CIFAR (Krizhevsky and Hin-
ton, 2009) is a dataset used for object recognition,
where the input is an image, and the label is the ob-
ject the image contains. Lifelong CIFAR100 (Re-
buffi et al., 2017a) is a variant of CIFAR-100 (CI-
FAR with 100 classes) by dividing 100 classes into
K disjoint subsets. Each task contains samples
from 100

K classes in one subset. Following (Lopez-
Paz and Ranzato, 2017), we have K = 20 tasks,
where each of them has 5 labels.

3.2 The Proposed Lifelong Relation
Detection Benchmarks

Lifelong FewRel FewRel (Han et al., 2018) is
a recently proposed dataset for few-shot relation
detection. There are 80 relations in this dataset.
We choose to create a lifelong benchmark based
on FewRel because there are a sufficient number
of relation labels. We extract the sentence-relation
pairs from FewRel and build our lifelong FewRel
benchmark as follows. Each sample contains a
sentence with the ground-truth relation it refers,
and a set of 10 randomly chosen false relations
from all the whole relations set. The model is
required to distinguish the right relation from the
candidates. We apply K-Means over the averaged
word embeddings of the relation names and divide
80 relations into 10 disjoint clusters. This results
in 10 tasks in this benchmark, and each task con-
tains relations from one cluster. Candidate rela-
tions will be masked if they do not appear in the
history tasks.

Lifelong SimpleQuestions SimpleQuestions is
a KB-QA dataset containing single-relation ques-
tions (Bordes et al., 2015). (Yu et al., 2017) cre-
ated a relation detection dataset from SimpleQues-
tions that contains samples of question-relation
pairs. For each sample, a candidate set of relations
is also provided. Similar to lifelong FewRel, we
divide relations into 20 disjoint clusters by using
K-Means. This results in 20 tasks, and each task
contains relations from one cluster.

4 Simple Episodic Memory Replay
Algorithm for Lifelong Learning

Catastrophic forgetting is one of the biggest obsta-
cles in lifelong learning. The problem is particu-
larly severe in neural network models, because the
learned knowledge of previous tasks is stored as
network weights, while a slight change of weights
when learning on the new task could have an un-
expected effect on the behavior of the models on
the previous tasks (French, 1999).

Currently, the memory-based lifelong learning
approaches, which maintain a working memory of
training examples from previous tasks, are proved
to be one of the best solutions to the catastrophic
forgetting problem. In this section, we first pro-
pose a memory-based lifelong learning approach,
namely Episodic Memory Replay (EMR), which
uses the working memory by sampling stored sam-
ples to replay in each iteration of the new task
learning. Surprisingly, such a straightforward ap-
proach with a clear motivation was never used in
previous research. We first compare EMR with
the state-of-the-art memory-based algorithm Gra-
dient Episodic Memory (GEM). We also show
that the EMR outperforms GEM on many bench-
marks, suggesting that it is likely to be among the
top-performed lifelong learning algorithms, and it
should never be ignored for comparison when de-
veloping new lifelong learning algorithms.

4.1 Episodic Memory Replay (EMR)

EMR is a modification over stochastic gradient
descent algorithms. It replays randomly sampled
data from memory while training on a new task,
so the knowledge of previous tasks could be re-
tained in the model. After training on each task k,
EMR selects several training examples to store in
the memoryM, denoted asM

⋂
T
(k)
train.3

3(Rebuffi et al., 2017b) propose to dynamically change
the size of memory set for each task during training. The
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To handle the scalability, EMR stochastically
replays the memory. Specifically, when training
on task k with each mini-batch D

(k)
train ⊂ T

(k)
train,

EMR samples from the memoryM to form a sec-
ond mini-batch D(k)

replay ⊂ M. Then two gradient

steps are taken on the two mini-batches of D(k)
train

and D(k)
replay. Note that EMR could work with any

stochastic gradient optimization algorithm, such
as SGD, Adagrad, AdaDelta, and Adam, to opti-
mize the model f with the mixed mini-batches.

We try two variations of D(k)
replay sampling: first,

task-level sampling, which samples from one pre-
vious task j each time, i.e., D(k)

replay ⊂ M
⋂
T
(j)
train.

Second, sample-level sampling, which samples all
over the memory, i.e., D(k)

replay ⊂M.
The two approaches differ in the task instance

sampling probability. The task-level approach as-
sumes a uniform distribution over tasks, while the
sample-level approach has a marginal distribution
on tasks that is proportional to the number of their
training data inM.4 When tasks are balanced like
MNIST and CIFAR, or when the stored data in the
memory for different tasks are balanced, the two
approaches become equivalent.

However, the sample-level strategy could some-
times make the code implementation more dif-
ficult: for some lifelong learning benchmarks
such as MNIST Rotation, MNIST Permutation,
and CIFAR-100 used in (Lopez-Paz and Ranzato,
2017), the tasks could differ from each other in
the input or output distribution, leading to differ-
ent computation graphs for different training ex-
amples. From our preliminary study, the task-
level approach could always give results as good
as those of the sample-level approach on our life-
long relation detection benchmarks (see Table 1) ,
so in our experiments in Section 6 we always use
the task-level approach.

4.2 Comparing EMR with State-of-the-art
Memory-based Lifelong Algorithm

In this part, we will first thoroughly introduce
a state-of-the-art memory-based lifelong learn-
ing algorithm called Gradient Episodic Memory
(GEM) (Lopez-Paz and Ranzato, 2017), and then
compare EMR with it in both time complexity and

followup work and this paper all use fixed sets, and we will
investigate the usage of dynamic sets in future work.

4The two approaches hence favor different evaluation
metrics – the former fits macro averaging better and the latter
fits micro averaging better.

experimental results on several benchmarks.

Gradient Episodic Memory (GEM) The key
idea of GEM (Lopez-Paz and Ranzato, 2017) is
to constrain the new task learning with previous
task data stored in memory. Specifically, it con-
strains the gradients during training with the fol-
lowing operation. When training on task k, for
each mini-batch D(k)

train ⊂ T
(k)
train, it first computes

the gradient g(k)train on D(k)
train, and the average gra-

dients on the stored data of each previous task j,
denoted as g(j)task. More concretely, we define

g
(j)
task =

∑
i′ ∇`(f(x

(j)
i′ ), y

(j)
i′ )

|M
⋂
T
(j)
train|

,

where j<k, `(·) is the loss function, and
(x

(j)
i′ , y

(j)
i′ ) ∈ M

⋂
T
(j)
train, i.e. (x

(j)
i′ , y

(j)
i′ ) is a

training instance in T (j) that was stored in mem-
ory M. Then the model f is updated along the
gradient g̃ that solves the following problem:

ming̃ ||g̃ − g(k)train||
2

s.t. 〈g̃, g(j)task〉 ≥ 0, j = 1, . . . , k − 1.

g̃ is the closest gradient to the gradient on the cur-
rent training mini-batch, g(k)train, without decreasing
performance on previous tasks much since the an-
gle between g̃ and g(j)task is smaller than 90◦.

Time Complexity One difference between
EMR and GEM is that EMR deals with uncon-
strained optimization and does not require the
gradient projection, i.e., solving g̃. But since
the model f is deep networks, empirically the
time complexity is mainly dominated by the
computation of forward and backward passes. We
analyze the time complexity as below:

In task k, suppose the mini-batch size is |D|
and the memory replay size is m, our EMR takes
|D| + m forward/backward passes in each train-
ing batch. Note that m is a fixed number and set
to be equal to the number of instances stored for
each previous task in our experiments. While for
GEM, it needs to compute the gradient of all the
data stored in the memoryM, thus |D|+ |M| for-
ward/backward passes are taken. Its complexity is
largely dominated by the size |M| (upper bounded
by the budget B). When the budget B is large,
with the number of previous tasks increases, M
grows linearly, and GEM will become infeasible.
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Task
EMR

GEM
sample task

MNIST Rotation – 0.828 0.860
MNIST Permutation – 0.824 0.826

CIFAR-100 – 0.675 0.675
FewRel 0.606 0.620 0.598

SimpleQuestions 0.804 0.808 0.796

Table 1: The average accuracy across all the tasks at
last time step for EMR and GEM on both non-NLP
and our lifelong relation detection benchmarks. For the
experiments on MNIST and CIFAR, we follow the set-
ting in (Lopez-Paz and Ranzato, 2017) (see Appendix
A.2 for details). For the experiments on FewRel and
SimpleQuestions, we use the same setting in Section
6. We only implement task-level EMR for MNIST and
CIFAR because of the relatively easy implementation.

Superior Empirical Results of EMR The EMR
algorithm is much simpler compared to the GEM.
However, one interesting finding of this paper
is that the state-of-the-art GEM is unnecessarily
more complex and more inefficient, because EMR,
a simple stochastic gradient method with memory
replay, outperforms it on several benchmarks.

The results are shown in Table 1. The num-
bers are the average accuracy, i.e. 1

k

∑k
j=1 accf,j ,

at last time step. For both algorithms, the train-
ing data is randomly sampled to store in the mem-
ory, following (Lopez-Paz and Ranzato, 2017). On
lifelong relation detection, the EMR outperforms
GEM on both of our created benchmarks. To fur-
ther show its generalizability, we apply the EMR
to previous lifelong MNIST and CIFAR bench-
marks and compare to the results in (Lopez-Paz
and Ranzato, 2017) with all the hyperparameters
set as the same. Still, EMR performs similarly to
GEM except for the MNIST Rotation benchmark.5

From the above results, we learned the lesson
that previous lifelong learning approaches actu-
ally fail to show improvement compared to doing
memory replay in a stochastic manner. We hy-
pothesise that GEM performs worse when there is
positive transfer among tasks, making the gradient
projection an inefficient way to use gradients com-
puted from memory data. Therefore, in the next
section, we start with the basic EMR and focus on
more efficient usage of the historical data.

5Even on MNIST Rotation, it has achieved a competi-
tive result, since the conventional training on shuffled data
from all the tasks in this benchmark gives ∼ 0.83 according
to (Lopez-Paz and Ranzato, 2017).

5 Embedding Aligned EMR (EA-EMR)

Based on our basic EMR, this section proposes our
solution to lifelong relation detection. We improve
the basic EMR with two motivations: (1) previ-
ous lifelong learning approaches work on the pa-
rameter space. However, the number of param-
eters in a deep network is usually huge. Also,
deep networks are highly non-linear models, and
the parameter dimensions have complex interac-
tions, making the Euclidean space of parameters
not a proper delegate of model behavior (French,
1999). That is, a slight change in parameter space
could affect the model prediction unexpectedly.
The above two reasons make it hard to maintain
deep network behaviors on previous tasks with
constraints or Fisher information. Therefore, we
propose to alleviate catastrophic forgetting in the
hidden space (i.e., the sentence embedding space).
(2) for each task, we want to select the most in-
formative samples to store in the memory, instead
of random sampling like in (Lopez-Paz and Ran-
zato, 2017). Therefore the budget of memory can
be better utilized.

5.1 Embedding Alignment for Lifelong
Learning

This section introduces our approach which per-
forms lifelong learning in the embedding space,
i.e., the Embedding Aligned EMR (EA-EMR).

In EA-EMR, for each task k, besides storing the
original training data (x(k), y(k)) in the memory
M, we also store the embeddings of x(k). In the
future after a new task is trained, the model pa-
rameters are changed thus the embeddings for the
same (x(k), y(k)) would be different. Intuitively, a
lifelong learning algorithm should allow such pa-
rameter changes but ensure the changes do not dis-
tort the previous embedding spaces too much.

Our EA-EMR alleviates the distortion of em-
bedding space with the following idea: if the em-
bedding spaces at different steps are not distorted
much, there should exist a simple enough trans-
formation a (e.g., a linear transformation in our
case) that could transform the newly learned em-
beddings to the original embedding space, without
much performance degeneration on the stored in-
stances. So we propose to add a transformation a
on the top of the original embedding and learn the
basic model f and the transformation a automat-
ically. Specifically, at the k-th task, we start with
the model f (k−1), and the transformation a(k−1),
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that trained on the previous k − 1 tasks. We want
to learn the basic model f and the transformation
a such that the performance on the new task and
stored instances are optimized without distorting
the previous embedding spaces much.

min
f(·),a(·)

∑
(x,y)∈D(k)

train

`(a(f(x)), y)+

∑
(x,y)∈D(k)

replay

(
`(a(f(x)), y) + ‖a(f(x))− a(k−1)(f (k−1)(x))‖2

)

We propose to minimize the above objective
through two steps. In the first step, we optimize
the basic model f by:

min
f(·)

∑
(x,y)∈D(k)

train
⋃

D
(k)
replay

`
(
a(k−1)(f(x)), y

)

This step mainly focuses on learning the new task
without performance drop on the stored samples.

In second step, we optimize a to keep the em-
bedding space of the current task and restore the
previous embedding space of all stored samples:

min
a(·)

∑
(x,y)∈D(k)

train

‖a(f(x))− a(k−1)(f(x))‖2

+
∑

(x,y)∈D(k)
replay

‖a(f(x))− a(k−1)(f (k−1)(x))‖2

Embedding Alignment on Relation Detection
Model We introduce how to add embedding
alignment to relation detection models. The ba-
sic model we use is a ranking model that is similar
to HR-BiLSTM (Yu et al., 2017). Two BiLSTMs
(Hochreiter and Schmidhuber, 1997) are used
to encode the sentence and relation respectively
given their GloVe word embedding (Pennington
et al., 2014). Cosine similarity between the sen-
tence and relation embedding is computed as the
score. Relation with maximum score is predicted
by the model for the sentence. Ranking loss is
used to train the model6. This base model is our
model f , which is trained on a new task k at each
step and results in an updated model f (k). Our
proposed approach (Figure 1) inserts an alignment
model a to explicitly align to embedding space
for stored instances and maintain the embedding
space of the current task. Note that the label y (the
relation here) also has embedding, so it needs to
pass through the alignment model a as well.

6Though the basic model is simple, it achieves reasonable
results on the two datasets when training with all the data,
i.e., 0.837 on FewRel and 0.927 on SimpleQuestions.

Figure 1: This figure shows how we add the alignment
model (a linear model in our case) on the basic rela-
tion detection model, where two BiLSTMs are used to
encode the text and relation, and cosine similarity be-
tween their embeddings are computed as the score.

5.2 Selective Storing Samples in Memory

When the budget of memory is relatively smaller,
how to select previous samples will greatly affect
the performance. Ideally, in order to make the
memory best represents a previous task, we hope
to choose diverse samples that best approximate
the distribution of task data. However, distribution
approximation itself is a hard problem and will
be inefficient due to its combinatorial optimiza-
tion nature. Therefore, many recent works such
as GEM ignore this step and randomly select sam-
ples from each task to store in the memory.

Rebuffi et al. (2017b) proposed to select exem-
plars that best approximate the mean of the distri-
bution. This simplest distribution approximation
does not give an improvement in our experiments
because of the huge information loss. Therefore,
we propose a better approach of sample selection
by clustering over the embedding space from the
model, and choose one representative from each
cluster to store in the memory. More specifically,
The embedding after alignment model is used to
represent the input because the model makes pre-
diction based on that. Then we apply K-Means
(the number of clusters equals the budget given to
the specific task) to cluster all the samples of the
task. For each cluster, we select the sample closest
to the centroid to store in the memory.

We leave more advanced approaches of rep-
resentative sample selection and their empirical
comparison to future work.



802

(a) FewRel (b) SimpleQuestions

Figure 2: This figure shows the average accuracy of all the observed tasks on the benchmarks of lifelong FewRel
and lifelong SimpleQuestions during the lifelong learning process. The average performance of 5 runs is reported,
and the average running time is shown in the brackets.

6 Experiments

6.1 Experimental Setting
We conduct experiments on our lifelong bench-
marks: lifelong SimpleQuestions (Bordes et al.,
2015) and lifelong FewRel (Han et al., 2018) to
compare our proposed methods EA-EMR, EA-
EMR without Selection (EA-EMR NoSel), EA-
EMR without Alignment (EA-EMR noAlign),
and EMR with the following baselines.
• Origin, which simply trains on new tasks

based on the previous model.
• EWC (Kirkpatrick et al., 2016), which slows

down updates on important parameters by adding
L2 regularization of parameter changes to the loss.
• GEM (Lopez-Paz and Ranzato, 2017), which

projects the gradient to benefit all the tasks so far
by keeping a constraint for each previous task.
• AGEM (Anonymous, 2019), which only uses

one constraint that the projected gradient should
decrease the average loss on previous tasks.

On both FewRel and SimpleQuestions, the
epoch to train on each task is set to be 3. Learning
rate for the basic model is set to be 0.001. The hid-
den size of LSTM is set to be 200. The batch size
is set to be 50. For each sample in the memory,
10 candidate relations is randomly chosen from
all observed relations to alleviate the problem that
new relations are emerging incessantly.

Parameters for our model and baselines are set
as follows. For EA-EMR and EA-EMR NoSel,
when training the alignment model, the learning
rate is set to be 0.0001, and the training epoch is
set to be 20 and 10 for FewRel and SimpleQues-
tions respectively. For AGEM, 100 samples are

Method FewRel SimpleQuestions
Whole Avg Whole Avg

Origin 0.189 0.208 0.632 0.569
Baselines

GEM 0.492 0.598 0.841 0.796
AGEM 0.361 0.425 0.776 0.722
EWC 0.271 0.302 0.672 0.590

Ours
Full EA-EMR 0.566 0.673 0.878 0.824

w/o Selection 0.564 0.674 0.857 0.812
w/o Alignment 0.526 0.632 0.869 0.820
w/o Alignment but keep 0.545 0.655 0.871 0.813the architecture

EMR Only 0.510 0.620 0.852 0.808

Table 2: This table shows the accuracy on the whole
testing data (”Whole” column), and average accuracy
on all observed tasks (”Avg” column) after the last time
step. The average performance of 5 runs are listed here
and the best result on each dataset is marked in bold.

randomly chosen from all the previous tasks to
form a constraint. For EWC, we set the balancing
parameter α = 100. For GEM and EMR related
methods, memory size of each task is set to be 50.

6.2 Lifelong Relation Detection Results

Evaluation Metrics We use two metrics to
evaluate the performance of the model:
• Average performance on all seen tasks after time
step k, which highlights the catastrophic problem:

ACCavg =
1

k

k∑
i=1

accf,i

• Accuracy on the whole testing data of all tasks:

ACCwhole = accf,Dtest

Results on FewRel and SimpleQuestions We
run each experiment 5 times independently by
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shuffling sequence of tasks, and the average per-
formance is reported. The average accuracy over
all observed tasks during the whole lifelong learn-
ing process is presented in Figure 2, and the accu-
racy on the whole testing data during the process
is shown in Appendix A.1. We also list the result
at last step in Table 2. From the results, we can
see that EWC and GEM are better than the Origin
baseline on both two datasets, which indicates that
they are able to reduce the catastrophic forgetting
problem. However, our EA-EMR perform signif-
icantly better than these previous state-of-the-arts.
The proposed EMR method itself achieves better
results than all baselines on both datasets. The ab-
lation study shows that both the selection and the
alignment modules help on both tasks.

The Effect of Embedding Alignment To inves-
tigate the effect of our embedding alignment ap-
proach, we conduct two ablation studies as below:
First, we remove both the alignment loss in equa-
tion 5.1, as well as the alignment module a, which
results in significant drop on most of the cases (the
line “w/o Alignment” in Table 2). Second, to make
sure that our good results do not come from in-
troducing a deeper model with the module a, we
propose to only remove the embedding alignment
loss, but keep everything else unchanged. That
means, we still keep the module a and the train-
ing steps, with the only change on replacing the
loss in step 2 with the one in step 1 (the line “w/o
Alignment but keep the architecture” in Table 2).
We can see that this decreases the performance a
lot. The above results indicate that by explicitly
doing embedding alignment, the performance of
the model can be improved by alleviating the dis-
tortion of previous embedding space.

Comparison of Different Sample Selection
Strategies Here we compare different selection
methods on lifelong FewRel and SimpleQues-
tions. EMR Only randomly choose samples. (Re-
buffi et al., 2017b) propose to choose samples that
can best approximate the mean of the distribu-
tion. We compare their sampling strategy (denoted
as iCaRL) with our proposed method (K-Means)
which encourages to choose diverse samples by
choosing the central sample of the cluster in the
embedding space. From the results in Table 3, we
can see that our method outperforms iCaRL and
the random baseline. While iCaRL is not signifi-
cantly different from the random baseline.

Method FewRel SimpleQuestions
Whole Avg Whole Avg

EMR Only 0.510 0.620 0.852 0.808
+ K-Means 0.526 0.632 0.869 0.820
+ iCaRL 0.501 0.615 0.854 0.806

Table 3: Comparison of different methods to select
data for EMR. The accuracy on the whole testing data
(”Whole” column), and average accuracy on all ob-
served tasks (”Avg” column) is reported. We run each
method 5 times, and give their average results.

7 Related Work

Lifelong Learning without Catastrophic For-
getting Recent lifelong learning research mainly
focuses on overcoming the catastrophic forget-
ting phenomenon (French, 1999; McCloskey and
Cohen, 1989; McClelland et al., 1995; Rat-
cliff, 1990), i.e., knowledge of previous tasks is
abruptly forgotten when learning on a new task.

Existing research mainly follow two directions:
the first one is memory-based approach (Lopez-
Paz and Ranzato, 2017; Anonymous, 2019), which
saves some previous samples and optimizes a new
task with a forgetting cost defined on the saved
samples. These methods have shown strength in
alleviating catastrophic forgetting, but the compu-
tational cost grows rapidly with the number of pre-
vious tasks. The second direction is to consolidate
parameters that are important to previous tasks
(Kirkpatrick et al., 2016; Liu et al., 2018; Ritter
et al., 2018; Zenke et al., 2017). For example,
Elastic Weight Consolidation (EWC) (Kirkpatrick
et al., 2016) slows down learning on weights that
are important to previous tasks. These methods
usually do not need to save any previous data and
only train on each task once. But their abilities to
overcome catastrophic forgetting are limited.

Lifelong Learning with Dynamic Model Ar-
chitecture There is another related direction on
dynamically changing the model structure (i.e.,
adding new modules) in order to learn the new task
without interfering learned knowledge for previ-
ous tasks, such as (Xiao et al., 2014; Rusu et al.,
2016; Fernando et al., 2017). These approaches
could successfully prevent forgetting. However,
they do not suit many lifelong settings in NLP.
First, it cannot benefit from the positive transfer
between tasks. Second, the size of the model
grows dramatically with the number of observed
tasks, which makes it infeasible for real-world
problems where there are a lot of tasks.
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Remark It is worth noting that the term life-
long learning is also widely used in (Chen et al.,
2015; Chen, 2015; Shu et al., 2016, 2017), which
mainly focus on how to represent, reserve and ex-
tract knowledge of previous tasks. These works
belong to a research direction different from life-
long learning without catastrophic forgetting.

8 Conclusion

In this paper, we introduce lifelong learning into
relation detection, and find that two state-of-the-
art lifelong learning algorithms, GEM and EWC,
are outperformed by a simple memory replay
method EMR on many benchmarks. Based on
EMR, we further propose to use embedding align-
ment to alleviate the problem of embedding space
distortion, which we think is one reason that
causes catastrophic forgetting. Also, we propose
to choose diverse samples to store in the memory
by conducting K-Means in the model embedding
space. Experiments verify that our proposed meth-
ods significantly outperform other baselines.
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Weijer, Antonio M. López, and Andrew D. Bag-
danov. 2018. Rotate your networks: Better
weight consolidation and less catastrophic forget-
ting. CoRR, abs/1802.02950.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning.
In Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 6470–6479.

James L McClelland, Bruce L McNaughton, and Ran-
dall C O’reilly. 1995. Why there are complementary
learning systems in the hippocampus and neocortex:
insights from the successes and failures of connec-
tionist models of learning and memory. Psychologi-
cal review, 102(3):419–457.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of
learning and motivation, volume 24, pages 109–
165. Elsevier.

https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=Hkf2_sC5FX
http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1506.02075
https://doi.org/10.3115/v1/N15-2018
https://doi.org/10.3115/v1/N15-2018
https://doi.org/10.3115/v1/P15-2123
https://doi.org/10.3115/v1/P15-2123
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1701.08734
https://aclanthology.info/papers/D18-1514/d18-1514
https://aclanthology.info/papers/D18-1514/d18-1514
https://aclanthology.info/papers/D18-1514/d18-1514
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1802.02950
http://arxiv.org/abs/1802.02950
http://arxiv.org/abs/1802.02950


805

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Roger Ratcliff. 1990. Connectionist models of recog-
nition memory: constraints imposed by learning
and forgetting functions. Psychological review,
97(2):285–308.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H. Lampert. 2017a.
icarl: Incremental classifier and representation
learning. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, pages
5533–5542.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H Lampert. 2017b.
icarl: Incremental classifier and representation
learning. In Computer Vision and Pattern Recog-
nition (CVPR), 2017 IEEE Conference on, pages
5533–5542. IEEE.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
74–84.

Mark Bishop Ring. 1994. Continual learning in rein-
forcement environments. Ph.D. thesis, University of
Texas at Austin Austin, Texas 78712.

Hippolyt Ritter, Aleksandar Botev, and David Bar-
ber. 2018. Online structured laplace approxima-
tions for overcoming catastrophic forgetting. CoRR,
abs/1805.07810.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Had-
sell. 2016. Progressive neural networks. CoRR,
abs/1606.04671.

Lei Shu, Bing Liu, Hu Xu, and Annice Kim. 2016.
Lifelong-rl: Lifelong relaxation labeling for sepa-
rating entities and aspects in opinion targets. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 225–
235. Association for Computational Linguistics.

Lei Shu, Hu Xu, and Bing Liu. 2017. Lifelong learn-
ing crf for supervised aspect extraction. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 148–154. Association for Computa-
tional Linguistics.

Sebastian Thrun. 1998. Lifelong Learning Algorithms,
pages 181–209. Springer US, Boston, MA.

Sebastian Thrun and Lorien Pratt. 2012. Learning to
learn. Springer Science & Business Media.
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A Appendix

A.1 Performance on the whole testing data
over time

(a) FewRel

(b) SimpleQuestions

Figure 3: This figure shows the accuracy on the whole
testing data on the benchmark of lifelong FewRel and
lifelong SimpleQuestions during the lifelong learning
process. The average performance of 5 runs is reported,
and the average running time is shown in the brackets.

The performance on the whole testing data over
time is shown in Figure 3.

A.2 Experiment setting for MNIST and
CIFAR

Following the setting in (Lopez-Paz and Ranzato,
2017), the size of memory for each task is set to be
256. The learning rate is set to be 0.1. The epoch
for training the model on each task is set to be 1.
Plain SGD and minibatch of 10 samples are used.
For the MNIST dataset, each task has 1000 sam-
ples of 10 classes. For the CIFAR dataset, each
task has 2500 samples of 5 classes.


