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Abstract

Concept map-based multi-document summa-
rization has recently been proposed as a vari-
ant of the traditional summarization task with
graph-structured summaries. As shown by
previous work, the grouping of coreferent con-
cept mentions across documents is a crucial
subtask of it. However, while the current state-
of-the-art method suggested a new grouping
method that was shown to improve the sum-
mary quality, its use of pairwise comparisons
leads to polynomial runtime complexity that
prohibits the application to large document
collections. In this paper, we propose two
alternative grouping techniques based on lo-
cality sensitive hashing, approximate nearest
neighbor search and a fast clustering algo-
rithm. They exhibit linear and log-linear run-
time complexity, making them much more
scalable. We report experimental results that
confirm the improved runtime behavior while
also showing that the quality of the summary
concept maps remains comparable.!

1 Introduction

Concept maps are labeled graphs with nodes rep-
resenting concepts and edges showing relation-
ships between them (Novak and Gowin, 1984).
Following earlier work on the automatic extraction
of concept maps from text (Rajaraman and Tan,
2002; Valerio and Leake, 2006; Villalon, 2012;
Zubrinic et al., 2015), concept maps have recently
been promoted as an alternative representation for
summaries (Falke and Gurevych, 2017; Handler
and O’Connor, 2018). In the corresponding task,
concept map-based multi-document summariza-
tion (CM-MDS), a set of documents has to be
automatically summarized as a concept map that
does not exceed a pre-defined size limit.

'Code used for experiments available at https://
github.com/UKPLab/naacl2019-cmaps-1lshcw
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An important subtask of CM-MDS is concept
mention grouping, in which all mentions that refer
to a specific concept should be grouped together.
Without grouping, duplicates can appear in a sum-
mary concept map that make the map harder to
understand and that waste valuable space.

To approach the mention grouping subtask,
Falke et al. (2017) proposed to make pairwise
coreference classifications between mentions and
to induce a partitioning from those predictions.
Their experiments showed that this leads to better
summary concept maps, establishing the current
state-of-the-art for CM-MDS. However, the com-
putational costs of the approach are high, as it ex-
hibits a O(n*) worst-case time complexity. When
the number of documents that should be summa-
rized is large, applying that technique can quickly
become impractical. But exactly for those large
document sets, a summary would be most helpful.

As the first contribution of this paper, we pro-
pose two faster grouping techniques. First, we
apply locality sensitive hashing (LSH) (Charikar,
2002) to word embeddings in order to find simi-
lar mentions without making all pairwise compar-
isons. That directly leads to a simple O(n) group-
ing method. Second, we also propose a novel
grouping technique that combines the hashing ap-
proach with a fast partitioning algorithm called
Chinese Whispers (CW) (Biemann, 2006). It has
O(nlogn) time complexity and the advantage of
being more transparently controllable.

Since the reduced complexity of the two pro-
posed techniques is gained through approxima-
tions, the resulting grouping could of course be of
lower quality. As the second contribution of this
paper, we therefore carry out end-to-end experi-
ments in the context of CM-MDS to analyze this
trade-off. We compare both techniques against the
state-of-the-art approach in automatic and manual
evaluations. For both, we observe orders of mag-
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nitude faster runtimes with only small reductions
in summary quality. In the future, the techniques
could also be applied beyond CM-MDS to speed
up other similarity-based partitioning problems in
NLP and its applications.

2 Problem and Reference Approach

Given a set of concept mentions M identified in
the input documents, the goal of concept mention
grouping is to derive a partitioning C' of M such
that for every set of mentions in C, the set contains
all mentions and only mentions of one unique con-
cept. Let n denote the number of mentions | M |.
Previous work on concept map mining used
stemming (Villalon, 2012), substring matches (Va-
lerio and Leake, 2006) or WordNet (Aguiar et al.,
2016) to detect coreferences between mentions.
Falke et al. (2017) combined several of those fea-
tures, including semantic similarities based on
WordNet (Miller et al., 1990), latent semantic
analysis (Deerwester et al., 1990) and word2vec
embeddings (Mikolov et al., 2013), in a log-linear
classifier to predict coreferences of mentions.
Since such pairwise predictions can be inconsis-
tent, e.g. the model might classify (mq,mso) and
(mgo, mg) as coreferent, but not (mj, mgs), Falke
et al. (2017) further induce a transitive relation
from the predictions to obtain a valid partitioning
of M. They note that simply ignoring conflicting
negative classifications by building the transitive
closure over all positive ones typically yields un-
desired partitionings in which too many mentions
are being lumped together. Following previous
work on related NLP tasks (Barzilay and Lapata,
2006; Denis and Baldridge, 2007), they instead
formulate an integer linear program (ILP) to find
the transitive relation that maximally agrees with
all pairwise predictions. However, as the result-
ing ILPs cannot be efficiently solved on the data
they work with, they propose a local search algo-
rithm that incrementally improves a greedy solu-
tion rather than finding the optimal partitioning,
This technique requires making classifications
for all pairs of mentions in O(n?) time and run-
ning the local search, which has a worst-case com-
plexity of O(n*). As we will show in Section 6,
that can quickly become prohibitively expensive.

3 Locality Sensitive Hashing

The central idea of LSH is that specific families of
hash functions can approximately preserve simi-
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larities. Charikar (2002) introduced such a family
for cosine similarity between vectors.

3.1 Approximating Cosine Similarity

Let u,v be k-dimensional vectors. First, choose
d unit random vectors r1,...,7rq of k dimensions
by sampling every dimension independently from
a standard normal distribution. Then, for a vector
u, compute a d-dimensional bit vector h(u), the
hash, with the ¢-th dimension defined as

1 tu-r,>0
h(u)[l] {0 -1y <0, .
where w - 7; is the dot product with the ¢-th random
vector. The Hamming distance ham between two
hashes h(u) and h(v), i.e. the number of differing
bits, can then be used to approximate the cosine
similarity of « and v (Charikar, 2002):

ww Cos(ham(h(s%h(“)) 7r> @)

[ul[v]

The longer the hashes are, i.e. the larger d is, the
more accurate is the estimation of the similarity.
In the past, LSH has been successfully used to
speed up a range of NLP tasks, including noun
similarity list construction (Ravichandran et al.,
2005), word sense induction (Mouton et al., 2009),
gender classification (van Durme, 2012) and text
classification (Bollegala et al., 2018).

3.2 Naive Partitioning

Given the mapping h from vectors to their bit
hashes, we can partition a set of vectors by hash
identity. Every unique hash becomes a group con-
sisting of all vectors mapped to that hash. Since
the hashes reflect similarity, the most similar vec-
tors will be grouped together. The parameter d
controls the degree of grouping: the smaller it is,
the less unique hashes and thus fewer groups exist.
In order to apply this technique to concept men-
tion grouping, every mention m € M has to be
represented by a vector in a space where the co-
sine similarity is indicative of coreference. Since
the classifier of Falke et al. (2017) already uses co-
sine similarity of word2vec embeddings as a fea-
ture, we also use those vectors for LSH.? Both the
computation of the hashes and building groups can
be done with a single pass over the mentions. As-
suming d and k to be fixed, the overall time com-
plexity of the grouping technique is thus O(n).

Following their work, we represent a mention by the
mean of the embedding vectors of the mention’s tokens.



4 Fast Nearest Neighbor Partitioning

When grouping similar elements together, one
typically wants to control the degree of group-
ing by defining a similarity threshold 4. For the
naive LSH-based partitioning, we can only set d,
which does not directly correspond to a similarity.
Therefore, we propose a second, more transparent
grouping technique with this property.

4.1 Approximate Nearest Neighbor Search

Given vectors and their LSH-based hashes, we can
use approximate nearest neighbor search (ANNS)
to find pairs with a cosine similarity of at least &
(Charikar, 2002; Ravichandran et al., 2005) with-
out making all pairwise comparisons:

1. Sample g permutations of the bit hashes.

2. For each permutation, sort all mentions M
according to their permuted hashes.

In each sorted list, estimate the cosine simi-
larity of each m € M with the next b men-
tions based on the hashes. Keep pairs with a
similarity of at least §.

Since comparing neighbors in a sorted list of bit
hashes will primarily find those that differ in the
last positions, the random permutations are the key
part of the algorithm that ensures similar hashes
differing at varying positions are found. Rather
than comparing each vector to all others in O(n?),
only ¢b comparisons are made for each. The domi-
nant part becomes the sort, resulting in O(n log n)
time complexity as g and b are constants.

4.2 Chinese Whispers Partitioning

Using ANNS we can obtain an undirected graph
of mentions connected with edges if their similar-
ity is at least 6. However, as Falke et al. (2017)
observed, simply taking the transitive closure over
these pairs tends to yield too big groups that lump
many mentions of different concepts together.

Rather than relying on the expensive O(n?) lo-
cal search of Falke et al. (2017) to address this
problem, we here resort to the fast graph parti-
tioning algorithm CW (Biemann, 2006). Given a
graph G = (V, E), it proceeds as follows:

1. Label nodes initially as [(v;) =i YV v; € V.

2. Iterate over V' in randomized order. For each
v € V, set [(v) to the label most frequent
among the nodes reachable via a direct edge.
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3. If at least one label changed, repeat step 2.

While it cannot be guaranteed in general, the algo-
rithm typically converges to a stable labeling after
a few iterations. Then, nodes having the same la-
bel form a group of the partitioning. In contrast to
the local search, CW does not directly optimize the
objective function proposed by Falke et al. (2017),
however, we empirically found that it yields par-
titionings that score very well with regard to that
objective. To guarantee termination, the number
of iterations is bound by a parameter ¢. Then, CW
iterates at most € times over n nodes and their at
most n — 1 edges, resulting in O(n?) complexity.

4.3 Combination

For concept mention grouping, we combine these
techniques as follows: First, we represent each
mention with a vector and compute its LSH-based
hash. Second, we use ANNS to find pairs with a
similarity of at least §. Finally, we partition the
resulting nearest neighbor graph with CW.

That grouping technique has four parameters
d,d,q and b. While § determines the degree of
grouping, d influences the quality of the similarity
estimates and ¢ and b define the size of the search
space explored to find nearest neighbors. Note
that the construction of the nearest neighbor graph
guarantees that a node has at most ¢b edges, re-
ducing the runtime of CW to O(n) in this setting.
The runtime behavior of the combination is there-
fore dominated by ANNS and thus O(n logn).

5 Experimental Setup

We evaluate the proposed concept mention group-
ing techniques for the task of CM-MDS.

Data and Metrics We use the benchmark cor-
pus introduced by Falke and Gurevych (2017), the
only existing dataset with manually created refer-
ence summary concept maps. It provides refer-
ence summaries for document sets of web pages
on 30 different topics. As metrics, we compute the
ROUGE and METEOR variants proposed with the
dataset and also perform a human evaluation fol-
lowing the protocol of Falke et al. (2017).

Implementation As the reference, we use the
state-of-the-art pipeline of Falke et al. (2017).> We
test the naive LSH-based partitioning (LSH-only)

*https://github.com/UKPLab/
ijcnlp2017-cmaps
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Average Smallest Largest
Approach ~ Count Runtime Count Runtime Count Runtime
Mentions 5299 2475 13572
Reference 4029 3h 12m 32s 1847 24m21s 10131 22h 48m 08s
LSH-only 3694 Is 1752 Is 7827 2s
LSH-CW 4085 23s 1875 11s 9861 58s

Table 1: Concept mention grouping runtimes on average and for the smallest and largest set. Count is the number
of concepts after grouping the mentions given in the first row. Runtimes are measured on the same machine.

METEOR ROUGE-2
Approach Pr Re F1 Pr Re F1
Reference 151 173 161 94 119 104
lemma-only 139 154 146 82 8.6 8.3
w2v-only 141 162 150 83 9.9 8.9
LSH-only 149 169 158 9.1 112 9.9
LSH-CW 149 17.1 159 82 109 9.3

Table 2: Evaluation results for summary concept maps.
Italics denote F1-scores that are significantly different
from Reference (exact permutation test, « = 0.05).

and the combined approach (LSH-CW) by substi-
tuting them into that pipeline. For a fair compar-
ison, we use the same 300-dimensional word2vec
embeddings (Mikolov et al., 2013) for LSH that
have also been used in the log-linear model.

Tuning In the reference pipeline, the regulariza-
tion constant of the scoring SVM was tuned with
leave-one-out cross-validation on the training set.
For LSH-only, we use the same procedure to tune
d (together with regularization) and found d = 17
to be best (testing 10, 11, ..., 25). For LSH-CW,
where four hyper-parameters have to be set, run-
ning cross-validation for the whole grid is too ex-
pensive. We instead evaluate a grid of 130 d/q/b/)-
combinations by concept F1-score after grouping
and tune the SVM with cross-validation only for
the three best settings, leading to the parameters
d = 200,q = 20,b = 200, = .89.

6 Results

Runtime Table 1 shows the runtimes for group-
ing concept mentions.* It demonstrates two prob-
lems of the reference: First, even on the smallest
document set (37 docs, 50k tokens), the grouping
already takes hours. And second, on the biggest
set (42 docs, 220k tokens), the runtime grows to
almost a day, illustrating the analyzed time com-

*Measured on an Intel Xeon ES-2620 2.1GHz processor.
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Comparison Fo Gr Me NR
Reference vs. LSH-only 47.3 473 46.7 427
Reference vs. LSH-CW 573 580 58.0 56.7
LSH-CW vs. LSH-only  52.7 50.7 50.0 473

Table 3: Human summary preferences, shown as the
percentage of annotators preferring the first option.

plexity. Applying the technique to more docu-
ments quickly becomes infeasible. Our newly pro-
posed techniques, LSH-only and LSH-CW, are or-
ders of magnitude faster in absolute terms and also
show a more moderate runtime growth as expected
given their preferable time complexity.

Quality A crucial question is which price we
have to pay for improving runtimes through ap-
proximations. Table 2 shows the automatic eval-
uation results for the created summaries. We in-
cluded lemma-only, a baseline from previous work
using lemmatization for grouping, and w2v-only, a
variation of the reference grouping approach that
uses embeddings as the only feature in the corefer-
ence classifier. The latter is important for compar-
ison, as it uses the same information as the LSH-
based techniques. While lemma-only and w2v-
only perform significantly worse than the refer-
ence, the two LSH-based techniques come much
closer to the more expensive reference.

Table 3 shows the results of our human evalua-
tion. Following previous work, we collected pair-
wise preferences among the created summaries
via Mechanical Turk (150 per pairing) for the di-
mensions focus (Fo), grammaticality (Gr), mean-
ingfulness (Me) and non-redundancy (NR).> As
shown, the preferences we collected are almost
balanced and annotators repeatedly noted during
the study that the summaries are very similar.
None of the 12 preferences are significant at @ =

SWe payed $0.60 per comparison and anonymized worker
IDs. The study was approved by the university’s ethics com-
mittee and we obtained informed consent from participants.



0.05 (binomial test), showing that the alternative
summary concept maps are practically indistin-
guishable. In contrast, Falke et al. (2017) observed
preferences of up to 79% in their study.

Conclusion Based on the automatic and human
evaluations, we conclude that both fast grouping
techniques proposed in this paper do not substan-
tially decrease the quality of the summaries. Since
there is also no clear difference between LSH-
only and LSH-CW, we recommend both tech-
niques, which allows practitioners to choose be-
tween more transparency or even faster runtimes.

Future Work The comparison of w2v-only and
the reference in Table 2 reveals that relying only
on word2vec and dropping the other features of the
log-linear model hurts performance, suggesting
that also adding the remaining features to the LSH
techniques could lead to further improvements.
However, all other features of the reference model
are pairwise features, which makes it difficult to
incorporate them in the LSH-based techniques that
only use mention features. As an alternative di-
rection, one could instead rely on more powerful
word embeddings. While we used word2vec to en-
sure comparability to previous work, using more
recent embedding methods such as fastText (Bo-
janowski et al., 2017), InferSent (Conneau et al.,
2017) or ELMO (Peters et al., 2018) seems to be
worth exploring in the future.

7 Summary

In this paper, we proposed two fast concept men-
tion grouping techniques for CM-MDS, the direct
application of LSH and a novel combination of
LSH and Chinese Whispers. Our analysis and ex-
periments show that they are orders of magnitude
faster than previous techniques with only small ef-
fects the quality of the resulting summary concept
maps. Using these techniques, summary concept
maps can now be created for much larger docu-
ment sets than what was possible before.
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