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Abstract

Most current approaches to metaphor identi-
fication use restricted linguistic contexts, e.g.
by considering only a verb’s arguments or the
sentence containing a phrase. Inspired by
pragmatic accounts of metaphor, we argue that
broader discourse features are crucial for bet-
ter metaphor identification. We train simple
gradient boosting classifiers on representations
of an utterance and its surrounding discourse
learned with a variety of document embedding
methods, obtaining near state-of-the-art results
on the 2018 VU Amsterdam metaphor iden-
tification task without the complex metaphor-
specific features or deep neural architectures
employed by other systems. A qualitative
analysis further confirms the need for broader
context in metaphor processing.

1 Introduction

From bottled up anger to the world is your oys-
ter, metaphor is a defining component of lan-
guage, adding poetry and humor to communica-
tion (Glucksberg and McGlone, 2001) and serv-
ing as a tool for reasoning about relations between
concepts (Lakoff and Johnson, 1980). Designing
metaphor processing systems has thus seen signif-
icant interest in the NLP community, with appli-
cations from information retrieval (Korkontzelos
etal., 2013) to machine translation (Saygin, 2001).

An important first step in any metaphor process-
ing pipeline is metaphor identification. To date,
most approaches to its identification operate in re-
stricted contexts, for instance, by only considering
isolated verb—argument pairs (e.g. deflate econ-
omy) (Rei et al., 2017) or the sentence containing
an utterance (Gao et al., 2018). However, wider
context is crucial for understanding metaphor: for
instance, the phrase drowning students can be in-
terpreted as literal (in the context of water) or
metaphorical (in the context of homework). Of-
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“You can’t steal their ideas.” “No,
idiot—not so I can steal them.”

Britain still can’t decide when to play the
mandarinate game of of silence [...] interests
and concern of the Chinese government.

Table 1: Metaphorical examples from the VUA dataset
in context. Verb is bolded, arguments underlined. Im-
mediate sentence in black, with further context in gray.

ten the context required extends beyond the im-
mediate sentence; in Table 1, coreferences (them)
must be resolved to understand the arguments of
a verb, and a game is metaphorical in a political
context. Indeed, a rich linguistic tradition (Grice,
1975; Searle, 1979; Sperber and Wilson, 1986) ex-
plains metaphor as arising from violations of ex-
pectations in a conversational context.

Following these theories, in this paper we argue
that metaphor processing models should expand
beyond restricted contexts to use representations
of wider discourse. We support this claim with two
contributions: (1) we develop metaphor identifica-
tion models which take as input an utterance, its
immediate lexico—syntactic context, and broader
discourse representations, and demonstrate that
incorporating discourse features improves perfor-
mance; (2) we perform a qualitative analysis and
show that broader context is often required to cor-
rectly interpret metaphors. To the best of our
knowledge, this is the first work to investigate the
effects of broader discourse on metaphor identifi-
cation.!

2 Related work

Metaphor identification is typically framed as a bi-
nary classification task, either with (1) word tu-

!Code and data available at https://github.com/
jayelm/broader—-metaphor.
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ples such as SVO triples (car drinks gasoline)
or (2) whole sentences as input, where the goal
is to predict the metaphoricity of a token in the
sentence. Recent work has used a variety of
features extracted from these two types of con-
texts, including selectional preferences (Shutova,
2013; Beigman Klebanov et al., 2016), concrete-
ness/imageability (Turney et al., 2011; Tsvetkov
et al., 2014), multi-modal (Tekiroglu et al., 2015;
Shutova et al., 2016) and neural features (Do Dinh
and Gurevych, 2016; Rei et al., 2017).

At the recent VU Amsterdam (VUA) metaphor
identification shared task (Leong et al., 2018),
neural approaches dominated, with most teams
using LSTMs trained on word embeddings and
additional linguistic features, such as semantic
classes and part of speech tags (Wu et al., 2018;
Stemle and Onysko, 2018; Mykowiecka et al.,
2018; Swarnkar and Singh, 2018). Most recently,
Gao et al. (2018) revisited this task, reporting
state-of-the-art results with BiLSTMs and contex-
tualized word embeddings (Peters et al., 2018). To
the best of our knowledge, none of the existing
approaches have utilized information from wider
discourse context in metaphor identification, nor
investigated its effects.

3 Data

Following past work, we use the Verbs subset of
the VUA metaphor corpus (Steen et al., 2010) used
in the above shared task. The data consists of
17240 training and 5873 test examples, equally
distributed across 4 genres of the British National
Corpus: Academic, Conversation, News, and Fic-
tion. All verbs are annotated as metaphorical or
literal in these texts. We sample 500 examples ran-
domly from the training set as a development set.

4 Models

For each utterance, our models learn generic rep-
resentations of a verb lemma,? its syntactic argu-
ments, and its broader discourse context. We con-
catenate these features into a single feature vec-
tor and feed them into a gradient boosting deci-
sion tree classifier (Chen and Guestrin, 2016).?
By observing performance differences when using
the lemma only (L), lemma + arguments (LA), or

The lemmatized form of the verb has improved general-
ization in other systems (Beigman Klebanov et al., 2016).

3We use the default parameters of the XGBoost package:
a maximum tree depth of 3, 100 trees, and n = 0.1.

lemma + arguments + context (LAC), we can in-
vestigate the effects of including broader context.

To obtain arguments for verbs, we extract sub-
jects and direct objects with Stanford CoreNLP
(Manning et al., 2014). 67.4% of verb usages in
the dataset have at least one argument; absent ar-
guments are represented as zero vectors. To obtain
the broader context of a verb, we take its surround-
ing paragraph as defined by the BNC; the aver-
age number of tokens in a context is 97.3. Fig-
ure 1 depicts the feature extraction and classifica-
tion pipeline of our approach.

To learn representations, we use several widely-
used embedding methods:*

GloVe We use 300-dimensional pre-trained
GloVe embeddings (Pennington et al., 2014)
trained on the Common Crawl corpus as represen-
tations of a lemma and its arguments. To learn a
context embedding, we simply average the vectors
of the tokens in the context. Out-of-vocabulary
words are represented as a mean across all vectors.

doc2vec We use pretrained 300-dimensional
paragraph vectors learned with the distributed bag-
of-words method of Le and Mikolov (2014) (col-
loquially, doc2vec), trained on Wikipedia (Lau
and Baldwin, 2016). Here, paragraph vectors are
learned to predict randomly sampled words from
the paragraph, ignoring word order. To extract
representations for verbs and arguments, we em-
bed one-word “documents” consisting of only the
word itself.> We use a learning rate o = 0.01 and
1000 epochs to infer vectors.

Skip-thought We use pretrained skip-thought
vectors (Kiros et al., 2015) learned from training
an encoder—decoder model to reconstruct the sur-
rounding sentences of an input sentence from the
Toronto BooksCorpus (Zhu et al., 2015). From
this model, we extract 4800-dimensional represen-
tations for verb lemma, arguments, and contexts.

ELMo Finally, we use ELMo, a model of deep
contextualized word embeddings (Peters et al.,
2018). We extract 1024-dimensional representa-
tions from the last layer of a stacked BiLSTM

“These methods differ significantly in dimensionality and
training data. Our intent is not to exhaustively compare these
methods, but rather claim generally that many embeddings
give good performance on this task.

3Since some methods provide only document embeddings
and not word embeddings, for consistency, in all methods we
use the same embedding process even for single-word verbs
and arguments.
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Figure 1: The general feature extraction and classification pipeline of our approach.

trained on Wikipedia and monolingual news data
from WMT 2008-2012. To learn embeddings for
verbs and arguments, we extract representations
for sentences containing only the word itself. To
learn context embeddings, we again average the
constituent word embeddings.

5 Evaluation

For each embedding method, we evaluate the three
configurations of features—L, LA, and LAC—on
the VUA shared task train/test split, reporting pre-
cision, recall and F1 score. Since we are interested
in whether incorporating broader context signif-
icantly improves identification performance, we
compare successive model predictions (LAC vs.
LA; LA vs. L) using the mid-p variant of McNe-
mar’s test for paired binary data (Fagerland et al.,
2013).

5.1 Comparison Systems

We first compare our models to the baselines of the
VUA shared task (Leong et al., 2018): Baseline 1,
a logistic regression classifier trained only on one-
hot encodings of verb lemmas; and Baseline 2, the
same classifier with additional WordNet class and
concreteness features. We also compare to the best
systems submitted to the VUA shared task: Wu
et al. (2018), an ensemble of 20 CNN-BiLSTMs
trained on word2vec embeddings, part-of-speech
tags, and word embedding clusters; and Stemle
and Onysko (2018), a BILSTM trained on embed-
dings from English language learner corpora.

5.2 Results

Results for our models are presented in Table 2.
Interestingly, most of the simple lemma models
(L) already perform at Baseline 2 level, obtaining
F1 scores in the range 60-62. This is likely due
to the generalization made possible by dense rep-
resentations of lemmas (vs. one-hot encodings)
and the more powerful statistical classifier used.
As expected, the addition of argument information
consistently enhances performance.
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Model P R F1
Baseline 1 (lemma) 51.0 654 573
Baseline 2 (+WN, concrete) 52.7 69.8 60.0
Stemle and Onysko (2018) 547 719 642
Wu et al. (2018) 60.0 763 67.2
GloVe L (lemma) 51.6 74.1 608
LA (+args) 540 744 6267
LAC (+ctx) 56.7 76.8 652"
doc2vec L 488 72.1 582
LA 505 714 5917
LAC 527 722 60.9
skip-thought L 535 761 628
LA 570 740 643
LAC 595 754 665
ELMo L 513 749 609
LA 560 735 63.6
LAC 589 771 668

" Significant improvement over
(p < 0.01,0.001).

previous model
Table 2: Metaphor identification results.

Crucially, the addition of broader discourse
context improves performance for all embedding
methods. In general, we observe consistent, sta-
tistically significant increases of 2-3 F1 points for
incorporating discourse. Overall, all LAC mod-
els except doc2vec exhibit high performance, and
would have achieved second place in the VUA
shared task. These results show a clear trend:
the incorporation of discourse information leads
to improvement of metaphor identification perfor-
mance across models.

Table 3 displays the performance breakdown by
genre in the VUA test set for our best perform-
ing model (ELMo LAC) and selected comparison
systems. Echoing Leong et al. (2018), we ob-
serve that the Conversation and Fiction genres are
consistently more difficult than the Academic and
News genres across all models. This is partially
because in this dataset, metaphors in these genres
are rarer, occuring 35% of the time in Academic
and 43% in News, but only 15% in Conversation
and 24% in Fiction. In addition, for our model
specifically, Conversation genre contexts are much



Genre Model P R F1
Academic Baseline 2 70.7 83.6 76.6
Wuetal. (2018) 74.6 763 755
ELMo LAC 654 868 74.6
Conversation  Baseline 2 30.1 82.1 44.1
Wuetal. (2018) 403 65.6 50.3
ELMo LAC 42.6 56.0 484
Fiction Baseline 2 40.7 66.7 50.6
Wuetal. (2018) 54.5 784 57.6
ELMo LAC 482 63.0 546
News Baseline 2 67.7 689 68.3
Wuetal. (2018) 694 744 71.8
ELMo LAC 652 80.0 71.8

Table 3: Performance breakdown by genre for ELMo
LAC model and comparison systems.

Args Sentence Paragraph
Overall 40 49 11
Model errors
ELMo L 37 50 13
ELMo LA 36 49 15
ELMo LAC 39 53 8
Table 4: Types of context required to interpret

metaphors in the development set, both overall (first
row) and for model errors. Each row is a separate (but
overlapping) sample from the development set.

shorter on average (23.8 vs. 97.3).

Our best performing model (ELMo LAC) is
within 0.4 F1 score of the first-place model in
the VUA shared task (Wu et al., 2018). The
GloVe LAC model would also have obtained sec-
ond place at 65.2 F1, yet is considerably simpler
than the systems used in the shared task, which
employed ensembles of deep neural architectures
and hand-engineered, metaphor-specific features.

6 Qualitative analysis

To better understand the ways in which discourse
information plays a role in metaphor processing,
we randomly sample 100 examples from our de-
velopment set and manually categorize them by
the amount of context required for their inter-
pretation. For instance, a verb may be inter-
pretable when given just its arguments (direct sub-
ject/object), it may require context from the en-
closing sentence, or it may require paragraph-level
context (or beyond). We also similarly analyze
100 sampled errors made on the development set
by the ELMo L, LA, and LAC models, to examine
whether error types vary between models.
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Our analysis in Table 4 shows that 11% of ex-
amples in the development set require paragraph-
level context for correct interpretation. Indeed,
while such examples are frequently misclassified
by the L and LA models (13%, 15%), the error
rate is halved when context is included (8%).

Table 5 further presents examples requiring at
least paragraph-level context, along with gold la-
bel and model predictions. Out of the 31 unique
such examples identified in the above analyses, we
found 11 (35%) requiring explicit coreference res-
olution of a pronoun or otherwise underspecified
noun (e.g. Table 5 row 1) and 5 (16%) which ref-
erence an entity or event implicitly (ellipsis; e.g.
Table 5 row 2). However, we also observed 4 er-
rors (13%) due to examples with non-verbs and in-
complete sentences and 11 examples (35%) where
not even paragraph-level context was sufficient for
interpretation, mostly in the Conversation genre,
demonstrating the subjective and borderline nature
of many of the annotations.

This analysis shows a priori the need for
broader context beyond sentence-level for robust
metaphor processing. Yet this is not an upper
bound on performance gains; the general improve-
ment of the LAC models over LA shows that even
when context is not strictly necessary, it can still
be a useful signal for identification.

7 Conclusion

We presented the first models which leverage rep-
resentations of discourse for metaphor identifi-
cation. The performance gains of these models
demonstrate that incorporating broader discourse
information is a powerful feature for metaphor
identification systems, aligning with our quali-
tative analysis and the theoretical and empirical
evidence suggesting metaphor comprehension is
heavily influenced by wider context.

Given the simplicity of our representations of
context in these models, we are interested in fu-
ture models which (1) use discourse in more so-
phisticated ways, e.g. by modeling discourse rela-
tions or dialog state tracking (Henderson, 2015),
and (2) leverage more sophisticated neural archi-
tectures (Gao et al., 2018).
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Sentence

Gold label LA LAC

A major complication [...] is that the environment can rarely be treated
as in a laboratory experiment. Given this, determining the nature of the 0 1 0
interactions between the variables becomes a matter of major difficulty.

For example, on high policy common opinion said that there was nothing

for it but to stay in the ERM. He stayed in, and the recession worsened.

Table 5: Examples where context helps, along with gold label (0 — literal; 1 — metaphor) and model predictions
(LA, LAC). Verb is bolded, arguments underlined. Additional context (needed for interpretation) in gray.
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