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Abstract

In a corpus of data, outliers are either errors:
mistakes in the data that are counterproduc-
tive, or are unique: informative samples that
improve model robustness. Identifying out-
liers can lead to better datasets by (1) remov-
ing noise in datasets and (2) guiding collection
of additional data to fill gaps. However, the
problem of detecting both outlier types has re-
ceived relatively little attention in NLP, partic-
ularly for dialog systems. We introduce a sim-
ple and effective technique for detecting both
erroneous and unique samples in a corpus of
short texts using neural sentence embeddings
combined with distance-based outlier detec-
tion. We also present a novel data collection
pipeline built atop our detection technique to
automatically and iteratively mine unique data
samples while discarding erroneous samples.
Experiments show that our outlier detection
technique is effective at finding errors while
our data collection pipeline yields highly di-
verse corpora that in turn produce more robust
intent classification and slot-filling models.

1 Introduction

High-quality annotated data is one of the fun-
damental drivers of progress in Natural Lan-
guage Processing (e.g. Marcus et al., 1993; Koehn,
2005). In order to be effective at producing an
accurate and robust model, a dataset needs to be
correct while also diverse enough to cover the full
range of ways in which the phenomena it targets
occur. Substantial research effort has considered
dataset correctness (Eskin, 2000; Dickinson and
Meurers, 2003; Rehbein and Ruppenhofer, 2017),
particularly for crowdsourcing (Snow et al., 2008;
Jiang et al., 2017), but addressing diversity in data
has received less attention, with the exception of
using data from diverse domains (Hovy et al.,
2006). Outlier detection, the task of finding ex-

amples in a dataset that are atypical, provides a
means of approaching the questions of correctness
and diversity, but has mainly been studied at the
document level (Guthrie et al., 2008; Zhuang et al.,
2017), whereas texts in dialog systems are often no
more than a few sentences in length.

We propose a novel approach that uses sen-
tence embeddings to detect outliers in a corpus of
short texts. We rank samples based on their dis-
tance from the mean embedding of the corpus and
consider samples farthest from the mean outliers.
Outliers come in two varieties: (1) errors, sen-
tences that have been mislabeled whose inclusion
in the dataset would be detrimental to model per-
formance, and (2) unique samples, sentences that
differ in structure or content from most in the data
and whose inclusion would be helpful for model
robustness. Building upon this approach, we pro-
pose a novel crowdsourcing pipeline that distin-
guishes errors from unique samples and uses the
unique samples to guide workers to give more di-
verse samples.

Experimentally, we find that our outlier detec-
tion technique leads to efficient detection of both
artificial and real errors in our datasets. We also
use the proposed crowdsourcing pipeline to collect
new datasets and build models for the dialog sys-
tem tasks of intent classification and slot-filling.
We find that the proposed pipeline produces more
diverse data, which in turn results in models that
are more robust.

2 Background and Related Work

2.1 Outlier Detection

Outlier detection (Rousseeuw and Leroy, 1987),
also called outlier analysis (Aggarwal, 2015) or
anomaly detection (Chandola et al., 2009), is the
task of identifying examples in a dataset that dif-
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fer substantially from the rest of the data.

For almost two decades, a body of work in NLP
has investigated applying these ideas to data in
order to identify annotation errors (Abney et al.,
1999). Approaches have included the use of
scores from trained models for POS tagging (Ab-
ney et al., 1999; Eskin, 2000; van Halteren, 2000;
Dligach and Palmer, 2011; Fukumoto and Suzuki,
2004), count-based methods that compare exam-
ples from across the corpus (Nakagawa and Mat-
sumoto, 2002; Hollenstein et al., 2016), charac-
terizing data based on feature vectors projected
down into a low-dimensional space (Guthrie et al.,
2008), and tracking the difficulty of learning each
example during training (Amiri et al., 2018). One
particularly effective approach has been to find
n-grams that match but have different labels, as
shown for annotations including POS tags (Dick-
inson and Meurers, 2003), syntactic parses (Dick-
inson and Meurers, 2005; Dickinson, 2010; Dick-
inson and Smith, 2011), and predicate-argument
relations (Dickinson and Lee, 2008). Our work
instead uses continuous representations of text de-
rived from neural networks.

While finding errors is an extremely useful ap-
plication of outlier detection, also of interest are
examples that are correct even though they are out-
liers, as these can be the most interesting and in-
formative examples in a dataset. We term these
examples unique. The problems of detecting and
leveraging the unique examples in a dataset has
received less attention, and the work that does ex-
ist focuses on identifying complete documents or
segments of documents that are outliers out of a
broader set of documents: Guthrie et al. (2007)
used manually defined feature vectors to iden-
tify segments of documents with anomalous style,
topic, or tone, and Kumaraswamy et al. (2015) and
Zhuang et al. (2017) construct statistical models,
identifying complete documents that are outliers
within a set based on semantic variation.

Finally, a related but distinct topic is novelty de-
tection (Soboroff and Harman, 2005; Lee, 2015;
Ghosal et al., 2018), in which two sets of doc-
uments are provided, one that is assumed to be
known, and one that may contain new content.
The task is to identify novel content in the second
set. While outlier detection methods are often ap-
plied to this problem, the inclusion of the known
document set makes the task fundamentally differ-
ent from the problem we consider in this work.

2.2 Data Collection
We build on prior work employing online crowd
workers to create data by paraphrasing. In par-
ticular, we refine the idea of iteratively asking for
paraphrases, where each round prompts workers
with sentences from the previous round, leading to
more diverse data (Negri et al., 2012; Jiang et al.,
2017; Kang et al., 2018). We also apply the idea
of a multi-stage process, in which a second set
of workers check paraphrases to ensure they are
correct (Buzek et al., 2010; Burrows et al., 2013;
Coucke et al., 2018). Most notably, by incorpo-
rating our outlier detection method, we are able to
automate detecting detrimental data points while
also prompting workers in subsequent rounds to
paraphrase more unique examples.

3 Outlier Detection

We propose a new outlier detection approach us-
ing continuous representations of sentences. Us-
ing that approach, we explored two applications:
(1) identifying errors in crowdsourced data, and
(2) guiding data collection in an iterative pipeline.

3.1 Method
We detect outliers in a dataset as follows:

1. Generate a vector representation of each in-
stance.

2. Average vectors to get a mean representation.

3. Calculate the distance of each instance from
the mean.

4. Rank by distance in ascending order.

5. (Cut off the list, keeping only the top k% as
outliers.)

The final step is parenthesized as in practice we
use a dynamic threshold approach, allowing the
user to go through as much or as little of the list
as they like.

The intuition behind this approach is that we
expect our representations to capture the seman-
tic structure of the space for each class. An ex-
ample that is far away from other examples in the
set is therefore less semantically similar in some
sense, making it an outlier. Importantly, it may be
an outlier for two distinct reasons: (1) it is not a
valid instance of this class (i.e., an error), or (2) it
is an unusual example of the class (i.e., unique).

This approach is applied independently to each
class of data. As example applications we consider
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two dialog system tasks: intent classification and
slot-filling. For classification, data for each possi-
ble intent label is considered separately, meaning
we find outliers in the data by considering one in-
tent class at a time. For slot-filling, we group the
data into classes based on combinations of slots.

This outlier detection method is rather simple as
it relies only on a sentence embedding method, a
distance metric, and a threshold k; no other hyper-
parameters are involved. Moreover, the method
requires no training. We shall see in Section 4
that this method performs well compared to base-
line methods, no matter what sentence embedding
method is used. We use Euclidean distance as our
distance metric.1

3.1.1 Sentence Representations
Vector representation of sentences is an active area
of research and we leverage the following ap-
proaches, each of which has been shown to have
state of the art results in different use cases:

Universal Sentence Encoder (USE; Cer et al.,
2018) A Deep Averaging Network method,
which averages word embeddings and passes the
result through a feedforward network. The USE is
trained using a range of supervised and unsuper-
vised tasks.

Smooth Inverse Frequency (SIF; Arora et al.,
2017) A weighted average of word embed-
dings, with weights determined by word frequency
within a corpus. We consider word embeddings
from GloVe (Pennington et al., 2014) and ELMo
(Peters et al., 2018).

Average An unweighted average of word em-
beddings. While simple, this approach has been
shown to be effective for classification (Zhang
and Wallace, 2017) and other downstream tasks
(Zhu et al., 2018). Again, we consider GloVe and
ELMo word embeddings as inputs.

3.1.2 Model Combination
In addition to ranked lists produced by using
these core sentence embeddings, we also investi-
gated aggregating the ranked lists using the Borda
count, a rank aggregation technique that has previ-
ously been used for combining web search results
(Dwork et al., 2001).

The Borda count aggregates multiple ranked
lists of the same set of items into a single ranked

1 We found similar results in experiments with a density-
based metric, Local Outlier Factor (Breunig et al., 2000).

list. First, points are assigned to each item in each
list, with an item in position i in a ranked list
of length N receiving N– i points. Next, points
for items are summed across all of the lists. Fi-
nally, the items are ranked by their total number of
points, producing a final ranking.

3.2 Application: Error Detection

Our proposed use of outlier detection to identify
errors requires no further processing. When used
in practice, a user looks through the sorted list of
examples, either stopping at a given fraction, or
when errors become infrequent enough.

3.3 Application: Uniqueness-driven Data
Collection

One core insight in this work is that outlier de-
tection can be used for more than just finding er-
rors. The outliers that are not errors are likely to be
the most interesting and informative examples in
our dataset. We propose to use these examples to
guide data collection in an iterative process, with
the goal of yielding more diverse data.

To demonstrate this idea, we developed a novel
crowdsourcing pipeline for data collection. Fol-
lowing prior work in crowdsourcing for dialog
(Kang et al., 2018; Jiang et al., 2017), we ask
crowd workers to write paraphrases of seed sen-
tences with known intents and slot values. This
provides linguistic diversity in our data in a way
that is easily explained to workers. For instance,
given the seed sentence “What is my savings ac-
count balance?” a worker might write “How much
money do I have in my savings account?”.

Figure 1a shows a common crowdsourcing
pipeline. The task designer writes seed sentences
that target an intent (for classification) or a slot
(for slot-filling). Crowd workers read the seed
and write paraphrases. These paraphrases are then
passed to another set of workers who validate if
they are in fact accurate paraphrases.

There are two major downsides to this stan-
dard pipeline. First, the validation step increases
the cost-per-example. Second, the diversity of
paraphrases depends on the given seed sentences
(Jiang et al., 2017), creating a challenge for the
task designer to think creatively.

We introduce a new pipeline, shown in Fig-
ure 1b that uses outlier detection to (1) reduce the
number of sentences being checked, and (2) col-
lect more diverse examples. Our new approach
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(b) Our Uniqueness-driven Pipeline

Figure 1: Data collection pipelines. Our outlier detection method is incorporated into the uniqueness-driven data
collection pipeline to guide crowd workers to write more diverse paraphrases. Boxes with rounded corners are
manual processes performed by crowd workers, boxes with curved bases are data, and the box with square corners
is our outlier detection method. In (b), r is the number of outliers detected from n samples.

uses outlier detection to select only a subset of sen-
tences to be checked: namely, the ones ranked as
most likely to be outliers. This reduces effort by
focusing on the sentences most likely to be incor-
rect.

To try to increase diversity, we also introduce
a process with several rounds of data collection.
Outlier paraphrases collected in one round are
used to seed the next round of data collection. We
could directly use the sentences labeled as correct
in the validation step, but while these sentences
are correct, they may have diverged from the de-
sired semantics (e.g. diverged from the desired in-
tent class). To avoid confusion in the next round,
we add a step in which workers are shown the
most similar sentence from another intent (based
on sentence embedding distance) and asked if the
new seed is more similar to its intended intent
or the alternative example. Only seeds judged as
closer to their intended intent are retained.

This iterative process is intended to collect more
diverse data by priming workers to think about
ways of phrasing the intent that are not well cov-
ered in the current data. At the same time, we
avoid the correctness issues Jiang et al. (2017) ob-
served by incorporating the validation step.

4 Experiments

We perform two sets of experiments to probe
the effectiveness of our outlier detection method.

First, we consider error detection, comparing var-
ious ranking methods in artificial and real data
scenarios. Second, we use our uniqueness-driven
pipeline to collect data, measuring the impact on
data diversity and model robustness. All experi-
ments were conducted on English language data.

4.1 Error Detection
We measure error detection effectiveness in two
settings, one artificial and the other more realistic.

Artificial First, following prior work, we con-
sider an artificial dataset in which we inject noise
by mixing data from different intents (Guthrie
et al., 2007, 2008; Zhuang et al., 2017; Amiri et al.,
2018). This provides an easy way to control the
amount and type of anomalous data, but does lead
to an easier task as the incorrect examples are gen-
erally more different than naturally collected er-
rors would be. The specific data we consider is a
set of 20 intents from an in-production dialog sys-
tem. To generate outliers for a given intent class
Xi, we randomly sample p · |Xi| sentences from
other intents (e.g. p = 0.04, or 4%).

Real We collected a new set of sentences for ten
intents. Workers were given three seed sentences
per intent and asked to write five paraphrases per
seed.2 Each seed was given to 15 crowd work-
ers, leading to 2250 samples overall, after which

2 Crowd workers were paid 20¢ per HIT.
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MAP Recall@k=10%
Method 1% 2% 4% 8% Real 1% 2% 4% 8% Real

Baseline

Random 0.02 0.04 0.07 0.09 0.06 0.06 0.09 0.12 0.09 0.04
Short 0.02 0.05 0.07 0.11 0.27 0.12 0.13 0.12 0.15 0.27
Long 0.08 0.10 0.08 0.17 0.04 0.25 0.17 0.11 0.12 0.04
BoW 0.14 0.14 0.14 0.24 0.10 0.41 0.24 0.24 0.22 0.10

Neural

Average GloVe 0.16 0.17 0.22 0.26 0.33 0.55 0.41 0.49 0.39 0.33
Average ELMo 0.20 0.19 0.23 0.32 0.32 0.48 0.48 0.45 0.42 0.32
SIF GloVe (SG) 0.35 0.29 0.41 0.45 0.21 0.75 0.64 0.62 0.54 0.20
SIF ELMo (SE) 0.30 0.37 0.48 0.52 0.20 0.87 0.74 0.70 0.65 0.19
USE (U) 0.46 0.50 0.63 0.69 0.37 0.84 0.83 0.80 0.74 0.38

Combined
U+SG 0.51 0.54 0.66 0.68 0.36 0.84 0.81 0.83 0.76 0.33
U+SE 0.58 0.62 0.68 0.72 0.34 0.89 0.87 0.86 0.81 0.38
U+SE+SG 0.51 0.57 0.67 0.69 0.36 0.87 0.84 0.84 0.78 0.34

Table 1: Outlier detection effectiveness for error detection in an artificial setting (constructed by randomly adding
content from other intents) and a real setting (manually checked utterances from a crowdsourced set). The artificial
results are represented by different values of p (1%, 2%, 4%, and 8%), where p represents different amounts of
errors injected into each intent class. Our proposed neural methods are consistently more effective, reducing the
manual effort required to identify errors.

Intent Label Example
seed what is my withdrawal limit?

withdrawal inlier how high is my withdrawal ceiling?
error How much money do I have available
seed what’s my balance?

balance inlier Let me know how much money I have.
error What can I afford?
seed what’s my bank’s phone number

phone inlier I need to call my bank
error information on my bank
seed i need to order more checks

checks inlier I need to stock up on more checks
error No checkbox, more?

Table 2: Examples from the Real dataset. The “How
much money do I have available” example was labeled
an error since it is too similar to the balance intent. The
“What can I afford?”, “information on my bank”, and
“No checkbox, more?” examples are labeled as errors
since they are too vague and ambiguous.

duplicates were discarded. To identify errors, the
authors independently checked each sentence and
discussed any disagreements to determine a con-
sensus label (either inlier or error). Examples
of seed sentences, along with inliers and errors is
shown in Table 2.

4.1.1 Evaluation Metrics

Since our core outlier detection method produces
a ranked list, we are interested in evaluating how
effective it is at ranking errors near the top. We

use Mean Average Precision (MAP) as an overall
measure of list quality. MAP is the mean over in-
tents of:

1

|errors for intent|
∑

e ∈ errors

|errors at or above e|
e

where e is the position of an error in the list.
While this gives an overall qualitative measure

for comparison, we are also interested in under-
standing the precision–recall tradeoff when choos-
ing a threshold k on the ranked lists. We consider
defining the cutoff as a percentage k of the list and
measure the percentage of errors that are covered
for each possible cutoff. This measure is equiva-
lent to Recall@k, that is,

Recall@k =
| errors above k|
|errors|

.

We average these values across intents to get an
overall value for each cutoff percentage k.

4.1.2 Baselines
For comparison, we consider four simple base-
lines: randomly ordering the samples (Random),
sorting from shortest to longest (Short), sorting
from longest to shortest (Long), and calculating
distances in the vector space defined by a bag of
words (BoW).
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(a) Artificial data.

(b) Real data.

Figure 2: Cumulative distribution of errors in ranked lists: a higher line indicates that the method places more
errors earlier in the list. Results are less smooth for the real data as there are only 51 errors in the set. For each
plot, the legend is in the same order as the lines at 20% (i.e., in (a) the top line is Borda U+SE, while in (b) it is
USE). Neural ranking methods are consistently more effective, with USE covering over 80% of errors in the first
20% of the list.

4.1.3 Results

Table 1 presents MAP and Recall@k for error de-
tection in the two settings (Artificial and Real).
The neural methods outperform the baselines in
both settings, demonstrating the effectiveness of
our proposed approach. However, the relative per-
formance of the neural methods differs substan-
tially between the two settings. Specifically, (1)
SIF performs better than an unweighted average
on artificial data, but on real data we see the op-
posite trend, (2) combining rankings with Borda
appears to help on the artificial data, but not on
the real data, (3) ranking by length is surprisingly
effective on the real data, and (4) results tend to
be lower on the real data than the artificial (even at
lower values of p). This last point suggests that the
commonly used artificial setting does not perfectly
capture the types of errors that occur in practice.

For (3), we note that the Short baseline method

show . . . . . . . .average exchange rate from ten usd to cad
::
last

::::
year

Figure 3: Example annotated sentence for the slot-
filling task. The slot names are (in order of appearance)
. . . . . . .metric, amount, currency, and

::::
date.

performs particularly well vis-à-vis other base-
lines on the real data, but not comparatively well
on the artificial data. This can be explained by ob-
serving that the length of the average error in the
real data is roughly 6 tokens, while the average in-
lier length is 8 tokens. Lengths of errors and inliers
are roughly the same (roughly 8 tokens) in the ar-
tificial dataset, due to the outlier selection scheme.

While the values in Table 1 allow an overall
comparison of the methods, they do not provide
a clear qualitative sense of the distribution of er-
rors in the lists. Figure 2 shows the distribution
for each method in the two settings. The effective-
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unique 2
random 2
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unique 3
random 3
same 3

Round 2Round 1 Round 3

Figure 4: Data collection rounds. The final datasets
combine data from all three rounds along each path.

ness of the neural methods, and USE in particular,
is again clear. In the real data, when considering
just the first 20% of the list, USE covers over 85%
of the errors on average. One easy example was
“No checkbox, more?” when the intent was to or-
der more checks. This is clearly an error, which
would at the very least need to have checkbox re-
placed by checkbook. In contrast, one hard exam-
ple for USE was “How much money do my banks”
when the intent was to request the user’s balance.
Until the last word, this example looks like it will
be a valid balance request. These examples show
that the system is qualitatively fitting our expecta-
tions for error detection.

4.2 Uniqueness-driven Data Collection
The second set of experiments evaluates our pro-
posed uniqueness-driven data collection pipeline.
We consider collecting data for two tasks used
by dialog systems: intent classification and slot-
filling. In each case, we calculate intrinsic mea-
sures of data diversity and the robustness of mod-
els trained on the data.

Tasks We consider intent classification with 10
intents related to banking, and slot-filling for
foreign exchange rate requests with four slots:
amount, currency, date, and metric. Figure 3
shows an example query with annotated slots.

Approaches As well as our proposed data col-
lection pipeline (unique), we consider a vari-
ant where the next seed is chosen randomly
(random), and one where the seeds are the same
in every round (same). The third case is equiva-
lent to the standard pipeline from Figure 1a. All
three pipelines start from the same first round and
then vary in the subsequent rounds, as depicted in
Figure 4. Each pipeline collected data for three
rounds. The final dataset for each approach com-
bines data collected from all three rounds.

In both tasks, we asked workers to rephrase
each seed sentence 5 times and showed each seed
sentence to 15 workers. For classification there
were 3 seed sentences per intent. For slot-filling

D(a, b) = 1− 1

N

N∑
n=1

|n-gramsa ∩ n-gramsb|
|n-gramsa ∪ n-gramsb|

Diversity(X) =
1

|I|

|I|∑
i=1

1

|Xi|2

[ ∑
a∈Xi

∑
b∈Xi

D(a, b)

]

Coverage(X,Y ) =
1

|I|

|I|∑
i=1

1

|Yi|
∑
b∈Yi

max
a∈Xi

(1−D(a, b))

Figure 5: Metrics for diversity and coverage from
Kang et al. (2018). X and Y are sets of utterances la-
beled with intents from I , and Xi is the data in X for
intent i. The distance metric for comparing a pair of
utterances is based on the Jaccard Index over n-grams.
We follow the work from Kang et al. (2018) and set N ,
the max n-gram length, to 3.

we defined 4 example scenarios, each correspond-
ing to a specific combination of slots. We used
Borda USE+SG with k set to 10% for the outlier
detection model.

4.2.1 Evaluation Metrics

We consider several different metrics to probe how
effectively our proposed pipeline improves data
quality. In all cases, higher values are better.

Intrinsic We measure the diversity and cover-
age of each dataset using the metrics introduced
in (Kang et al., 2018) and shown in Figure 5.

Extrinsic The main reason to increase dataset
diversity is to construct more robust models. To
directly evaluate that objective, we randomly di-
vided the datasets collected by each pipeline into
training and test sets (85-15 split). Our intuition
is that a robust model should perform fairly well
across all test sets. Training on a dataset that is
not diverse will lead to a brittle model that only
does well on data collected with the same seed
sentences. For intent classification, we measure
accuracy of two models: an SVM (Cortes and
Vapnik, 1995) using bag of words feature rep-
resentation, and FastText (Joulin et al., 2017), a
neural network that averages across sentence em-
beddings and passes the result through feedfor-
ward layers. For slot-filling, we measure the F1-
score of a bi-directional LSTM with word vectors
that are trained, but initialized with GloVe 300-
dimensional embeddings. For all models, we av-
erage results across 10 runs.
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Data Collection Round
1 2 3 All

Diversity
same 0.911 0.917 0.908 0.916
random – 0.912 0.817 0.920
unique – 0.935 0.944 0.947

Samples
same 2040 2025 2024 5648
random – 2010 2007 5747
unique – 2083 1954 5922

Table 3: Classification: Diversity scores for data col-
lected in each round (top), and the number of samples
collected (bottom). The data for the All column com-
bines the previous two sets in the row and the data from
(same round 1). The unique approach produces data
that is considerably higher diversity.

Test Set
Metric Training same random unique

SVM
Accuracy

same 0.99 0.97 0.81
random 0.98 0.98 0.81
unique 0.99 0.97 0.98

FastText
Accuracy

same 0.98 0.97 0.80
random 0.98 0.99 0.83
unique 0.98 0.98 0.98
same 0.68 0.64 0.45

Coverage random 0.67 0.66 0.44
unique 0.64 0.58 0.56

Table 4: Classifier accuracy when training on one
dataset and testing on another (top and middle), and
coverage of the test set for each training set (bottom).
As expected, the highest scores are when we train and
test on the same data, but off the diagonal the unique
test set (gray column) is considerably harder for mod-
els trained on other data while a model trained on
unique performs consistently well. This accuracy
trend is matched in coverage.

4.2.2 Results

Classification Table 3 presents the number of
examples and diversity of data collected in each
round with each approach. Diversity is consis-
tently higher with seeds chosen using our pro-
posed unique approach. Dataset sizes vary be-
cause of the removal of duplicates. The unique
approach produces a larger final set as there is less
duplication across rounds.

Table 4 displays accuracy scores and coverage
for each combination of train and test sets. As

Data Collection Round
1 2 3 All

Diversity
same 0.916 0.911 0.893 0.909
random – 0.913 0.910 0.915
unique – 0.926 0.935 0.930

Samples
same 994 911 952 2717
random – 941 923 2808
unique – 977 988 2914

Table 5: Slot-filling: Diversity scores for data col-
lected in each round (top), and the number of samples
collected (bottom). The data for the All column com-
bines the previous two sets in the row and the data from
(same Round 1). As seen for intent classification, the
unique approach produces data that is of consider-
ably higher diversity.

Test Set
Metric Training same random unique

Slot
F1

same 96.4 96.0 93.1
random 96.4 96.8 93.6
unique 96.7 96.5 94.9
same 0.812 0.788 0.726

Coverage random 0.736 0.764 0.660
unique 0.761 0.752 0.774

Table 6: F1-scores and coverage scores for each train-
test pair for the slot-filling experiment. Training on the
unique data produces a more robust model, with con-
sistently high performance across test sets.

expected, the highest scores are on the diagonal—
training and testing on the same source data. More
importantly however, training on the unique data
produces a model that is robust, performing well
across all three test sets. In contrast, training on
the same or random data produces models that
perform substantially worse on the unique test
set. This trend is also present in the coverage
scores in the bottom section of the table.

Table 7 shows some of the seed sentences pro-
duced by the unique and random approaches.
These examples illustrate the trends in our met-
rics, with the seeds for the random approach of-
ten being very similar. Meanwhile, the unique
approach produces seeds with grammatical varia-
tion and the introduction of quite different expres-
sions, such as “ABA” instead of “routing number”.
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Intent Pipeline Round 2 Round 3

routing

random
Where can I find the routing number for my bank? what is the best routing number for my bank

Do you have my bank’s routing number? can you help find my bank routing number?
show me my banks routing number I need to see the routing number for my bank

unique
acquire my banks routing number what is the correct ABA?

how does a person find their correct routing number? How do I find the ABA?
I’m looking for the router number for my bank. Whats the router number?

hours

random
Can you tell me when my bank is open? How long is my bank open?

When does my bank open? What are the hours for my bank?
What time is the bank open What time will the bank be open

unique
display when the bank closes What hours do you carry

What is the earliest you are open? what are your operating hours?
look up the hours of operation for my bank What is the latest I can come in to a physical branch?

checks

random
i require ordering more checks. I’d like additional checks

Get me more checks. Can you get me more checks?
can you explain to me how to order additional checks Please order more checks for me.

unique
I need to stock up on more checks what is check ordering procedure?

in what manner would i get more checks what is the fastest method to order checks?
Could you rush me some more checks? I’m nearly out. Teach me how to get more checks.

Table 7: Seed sentences for selected intents for the classification task. The unique approach leads to changes
like the use of ABA for routing (top), and grammatical variations in the sentences for requesting checks (bottom).
Examples of seeds for Round 1 include “what is my bank’s routing number?”, “when does the bank close?”, and
“how do i order more checks?”.

Slot-filling Table 5 shows the number of sam-
ples collected per round for each of the data col-
lection pipelines and the diversity of the sets. As
in the classifier experiment, we observe that data
produced by the unique pipeline is of higher di-
versity than the other two pipelines.

Table 6 displays F1-scores and coverage for
each train–test combination. Again, we see the
same trends, with training on same or random
leading to low results on the unique dataset, but
not the reverse, and similarly for coverage, though
the gaps are smaller than for classification.

5 Conclusion

Outliers are often the most interesting parts of our
data, but outlier detection has received relatively
little attention in NLP beyond its application to
finding annotation errors. This paper introduces
the first neural outlier detection method for short
text and demonstrates its effectiveness across mul-
tiple metrics in multiple experiments.

We also propose a way to integrate outlier de-
tection into data collection, developing and eval-
uating a novel crowdsourcing pipeline. This
pipeline supports the creation of higher quality
datasets to yield higher quality models by both re-
ducing the number of errors and increasing the di-
versity of collected data. While the experiments
discussed herein are concerned with components
of dialog systems, we believe that similar data col-

lection strategies could yield benefits to other ar-
eas of NLP as well.
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