
Proceedings of NAACL-HLT 2019, pages 228–239
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

228

CCG Parsing Algorithm with Incremental Tree Rotation
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Abstract

The main obstacle to incremental sentence
processing arises from right-branching con-
stituent structures, which are present in the
majority of English sentences, as well as from
optional constituents that adjoin on the right,
such as right adjuncts and right conjuncts. In
CCG, many right-branching derivations can
be replaced by semantically equivalent left-
branching incremental derivations.

The problem of right-adjunction is more resis-
tant to solution, and has been tackled in the
past using revealing-based approaches that of-
ten rely either on the higher-order unification
over lambda terms (Pareschi and Steedman,
1987) or heuristics over dependency represen-
tations that do not cover the whole CCGbank
(Ambati et al., 2015).

We propose a new incremental parsing algo-
rithm for CCG following the same revealing
tradition of work but having a purely syntactic
approach that does not depend on access to a
distinct level of semantic representation. This
algorithm can cover the whole CCGbank, with
greater incrementality and accuracy than pre-
vious proposals.

1 Introduction

Combinatory Categorial Grammar (CCG) (Ades
and Steedman, 1982; Steedman, 2000) is a mildly
context sensitive grammar formalism that is at-
tractive both from a cognitive and an engineer-
ing perspective. Compared to other grammar for-
malisms, the aspect in which CCG excels is incre-
mental sentence processing. CCG has a very flex-
ible notion of constituent structure which allows
(mostly) left-branching derivation trees that are
easier to process incrementally. Take for instance
the derivation tree in Figure 1a. If we use a non-
incremental shift-reduce parser (as done in the ma-
jority of transition-based parsers for CCG (Zhang

and Clark, 2011; Xu et al., 2014; Xu, 2016)) we
will be able to establish the semantic connection
between the subject “Nada” and the verb “eats”
only when we reach the end of the sentence. This
is undesirable for several reasons. First, human
sentence processing is much more incremental, so
that the meaning of the prefix “Nada eats” is avail-
able as soon as it is read (Marslen-Wilson, 1973).
Second, if we want a predictive model—either for
better parsing or language modelling—it is crucial
to establish relations between the words in the pre-
fix as early as possible.

To address this problem, a syntactic theory
needs to be able to represent partial constituents
like “Nada eats” and have mechanisms to build
them just by observing the prefix. In CCG solu-
tions for these problems come out of the theory
naturally. CCG categories can represent partial
structures and these partial structures can combine
into bigger (partial) structures using CCG com-
binators recursively. Figure 1b shows how CCG
can incrementally process the example sentence
via a different derivation tree that generates the
same semantics more incrementally by being left-
branching.

This way of doing incremental processing
seems straightforward except for one obstacle: op-
tional constituents that attach from the right, i.e.
right adjuncts. Because they are optional, it is im-
possible to predict them with certainty. This forces
an eager incremental processor to make an unin-
formed decision very early and, if later that deci-
sion turns out to be wrong, to backtrack to repair
the mistake. This behaviour would imply that hu-
man processors have difficulty in processing right
adjuncts, but that does not seem to be the case.
For instance, let’s say that after incrementally pro-
cessing “Nada eats apples” we encounter right ad-
junct “regularly” as in Figure 2a. The parser will
be stuck at this point because there is no way to at-
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Nada eats apples

NP S\NP/NP NP
>

S\NP
<

S

(a) Right-branching derivation.

Nada eats apples

NP S\NP/NP NP
>T

S/(S\NP)
>B

S/NP
>

S

(b) Left-branching derivation.

Figure 1: Semantically equivalent CCG derivations.

Nada eats apples regularly

NP S\NP/NP NP S\NP\(S\NP)
>T

S/(S\NP)
>B

S/NP
>

S

(a) Problem – S\NP that needs to be modified was never
built.

Nada eats apples regularly

NP S\NP/NP NP S\NP\(S\NP)
>T >

S/(S\NP) S\NP
>

S

(b) Incremental tree rotation reveals S\NP.

Nada eats apples regularly

NP S\NP/NP NP S\NP\(S\NP)
>T >

S/(S\NP) S\NP
<

S\NP
>

S

(c) Right adjunct is attached to the revealed node.

Figure 2: Right adjunction.

tach the right adjunct of a verb phrase to a sentence
constituent. A simple solution would be some sort
of limited back-tracking where we would look if
we could extract the verb-phrase, attach its right
adjunct, and then put the derivation back together.
But how do we do the extraction of the verb-phrase
“eats apples” when that constituent was never built
during the incremental left-branching derivation?

Pareschi and Steedman (1987) proposed to re-
veal the constituent that is needed, the verb-phrase
in our example, by having an elegant way of re-
analysing the derivation. This reanalysis does not
repeat parsing from scratch but instead runs a sin-
gle CCG combinatory rule backwards. In the ex-
ample at hand, first we recognise that right adjunc-
tion needs to take place because we have a cat-
egory of shape X\X (concretely (S\NP)\(S\NP)
but in the present CCG notation slashes “associate
to the left”, so we drop the first pair of brackets).
Thanks to the type of the adjunct we know that the

constituent that needs to be revealed is of type X,
in our case S\NP. Now, we take the constituent on
the left of the right adjunct, in our example con-
stituent S, and look for CCG category Y and com-
binatory rule C that satisfies the following relation:
C(Y, S\NP) = S. The solution to this type equation
is Y=NP and C=<.

To confine revealing to delivering constituents
that the parser could have built if it had been less
greedy for incrementality, and exclude revelation
of unsupported types, such as PP in Figure 2a, the
process must be constrained by the actual deriva-
tion. Pareschi and Steedman proposed to do so by
accessing the semantic representation in parallel,
using higher-order unification, which is in general
undecidable and may be unsound unless defined
over a specific semantic representation.

Ambati et al. (2015) propose an alternative
method for revealing where dependencies are used
as a semantic representation (instead of first-order
logic) and special heuristics are used for reveal-
ing (instead of higher order unification). This is
computationally a much more efficient approach
and appears sound, but requires distinct revealing
rules for each constituent type and has specific dif-
ficulties with punctuation.

In this paper we propose a method of reveal-
ing that does not depend on any specific choice
of semantic representation, can discover multi-
ple possible revealing options if they are avail-
able, is sound and complete and computation-
ally efficient, and gives state-of-the-art parsing
results. The algorithm works by building left-
branching derivations incrementally, but, follow-
ing Niv (1993, 1994), as soon as a left branching
derivation is built, its derivation tree is rebalanced
to be right-branching. When all such constituents’
derivation trees are right-branching, revealing be-
comes a trivial operation where we just traverse
the right spine looking for the constituent(s) of the
right type to be modified by the right adjunct.

We call this rebalancing operation tree rota-
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tion since it is a technical term established in
the field of data structures for similar operation
of balanced binary search trees (Adelson-Velskii
and Landis, 1962; Guibas and Sedgewick, 1978;
Okasaki, 1999; Cormen et al., 2009). Figure 2b
shows the right rotated derivation “Nada eats ap-
ples” next to the adjunct. Here we can just look up
the required S\NP and attach the right adjunct to
it as in Figure 2c.

2 Combinatory Categorial Grammar

CCG is a lexicalized grammar formalism where
each lexical item in a derivation has a category as-
signed to it which expresses the ways in which
the lexical item can be used in the derivation.
These categories are put together using combina-
tory rules.
The binary combinatory rules we use are:
X/Y Y ⇒ X (>)
Y X\Y ⇒ X (<)
X/Y Y/Z ⇒ X/Z (>B)
Y \Z X\Y ⇒ X\Z (<B)
Y/Z X\Y ⇒ X/Z (<B×)
Y/Z|W X\Y ⇒ X/Z|W (<B2

×)
X/Y Y/Z|W ⇒ X/Z|W (>B2)

Each binary combinatory rule has one primary and
one secondary category as its inputs. The primary
functor is the one that selects; while the secondary
category is the one that is selected. In forward
combinatory rules the primary functor is always
the left argument, while in the backward combina-
tory rules it is always the right.

It is useful to look at the mentioned combina-
tory rules in a generalised way. For instance, if
we look at forward combinatory rules we can see
that they all follow the same pattern of combin-
ing X/Y with a category that starts with Y . The
only difference among them is how many subcate-
gories follow Y in the secondary category. In case
of forward function application there will be noth-
ing following Y so we can treat forward function
application as a generalised forward composition
combinator of the zeroth order >B0. Standard
forward function composition >B will be a gener-
alised composition of first order >B1 while >B2

will be >B2. Same generalisation can be applied
to backward combinators. There is a low bound
on the order of combinatory rules, around 2 or 3.

Following Hockenmaier and Steedman (2007),
the proclitic character of conjunctions is captured
in a syncategorematic rule combining them with

the right conjunct, with the result later combining
with the left conjunct 1 :
conj X ⇒ X[conj] (>Φ)
X X[conj] ⇒ X (<Φ)

Some additional unary and binary type-changing
rules are also needed to process the derivations
in CCGbank (Hockenmaier and Steedman, 2007).
We use the same type-changing rules as those de-
scribed in (Clark and Curran, 2007).

Among the unary combinatory rules the most
important one is type-raising. The first reason for
that is that it allows CCG to handle constructions
like argument cluster coordination in a straight-
forward way. Second, it allows CCG to be much
more incremental as seen from the example in Fig-
ure 1b. Type-raising rules are expressed in the fol-
lowing way:
X ⇒ Y/(Y \X) (>T)
X ⇒ Y \(Y/X) (<T)

Type-raising, is strictly limited to applying to cat-
egory types that are arguments, such as NP, PP,
etc., making it analogous to grammatical case in
languages like Latin and Japanese, in spite of the
lack of morphological case in English.

3 Parsing

CCG derivations can be parsed with the same
shift-reduce mechanism used for CFG parsing
(Steedman, 2000). In the context of CFG parsing,
the shift-reduce algorithm is not incremental, be-
cause CFG structures are mostly right-branching,
but in CCG by changing the derivation via the
combinatory rules we also change the level of in-
crementality of the algorithm.

As usual, the shift-reduce algorithm consists of
a stack of the constituents built so far and a buffer
with words that are yet to be processed. Parsing
starts with the stack empty and the buffer contain-
ing the whole sentence. The end state is a stack
with only one element and an empty buffer. Tran-
sitions between parser states are:
• shift(X) – moves the first word from the buffer

to the stack and labels it with category X,
• reduceUnary(C) – applies a unary combina-

tory rule C to the topmost constituent on the
stack,
• reduceBinary(C) – applies a binary combina-

tory rule C to the two topmost constituents on

1This notation differs unimportantly from Steedman
(2000) who uses a ternary coordination rule, and more recent
work in which conjunctions are X\X/X .
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the stack.
CCG shift-reduce parsers are often built over

right-branching derivations that obey Eisner nor-
mal form (Eisner, 1996). Processing left-
branching derivations is not any different except
that it requires an opposite normal form.

Our revealing algorithm adds a couple of mod-
ifications to this default shift-reduce algorithm.
First, it guarantees that all the trees stored on the
stack are right-branching – this still allows left-
branching parsing and only adds the requirement
of adjusting newly reduced trees on the stack to be
right leaning. Second, it adds revealing transitions
that exploit the right-branching guarantee to apply
right adjunction. Both tree rotation and revealing
are performed efficiently as described in the fol-
lowing subsections.

3.1 Tree rotation

A naı̈ve way of enforcing right-branching guaran-
tee is to do a complete transformation of the sub-
tree on the stack into a right-branching one. How-
ever, that would be unnecessarily expensive. In-
stead we do incremental tree rotation to right. If
we assume that all the elements on the stack are re-
specting this right-branching form (our inductive
case), this state can be disturbed only by reduceBi-
nary transition (shift just adds a single word which
is trivially right-branching and reduceUnary does
not influence the direction of branching). The re-
duceBinary transition will take two topmost ele-
ments on the stack that are already right-branching
and put them as children of some new binary node.
We need to repair that potential “imperfection” on
top of the tree. This is done by recursively rotating
the nodes as in Figure 3a.2

This figure shows one of the sources of CCG’s
spurious ambiguity: parent-child relation of the
combinatory rules with the same directionality.
Here we concentrate on forward combinators be-
cause they are the most frequent in our data—
most backward combinators disappear with the
addition of forward type-raising and the addition
of special right adjunct transitions—but the same
method can be applied to backward combinatory
rules as a mirror image. Having two combina-
tory rules of the same directionality is necessary

2Although we do not discuss the operations on the se-
mantic predicate-argument structure that correspond to tree-
rotation, the combinatory semantics of the rules themselves
guarantees that such operations can be done uniformly and in
parallel.

>Bx

>By if y 6= 0
=⇒

>B(x + y − 1)

>Bx

α β

γ α

β γ

(a) Rotate to right.

>Bx

>By if x > y
=⇒

>By

>B(x− y + 1)

α

β γ α β

γ

(b) Rotate to left.

Figure 3: Tree rotation operations. The red square sig-
nifies recursion. Variables x and y represent the orders
of the combinatory rules.

but not sufficient condition for spurious ambigu-
ity. As visible on the Figure 3a side condition, the
lower combinator must not be>B0. The tree rota-
tion function assumes that both of the children are
“perfect”—meaning right-branching3— and that
the only imperfection is on the root node. The
method repairs this imperfection on the root by ap-
plying the tree rotation transformation, but it also
creates a new node as a right child and that node
might be imperfect. That is why the method goes
down the right node recursively until all the imper-
fections are removed and the whole tree becomes
fully right-branching. In the worst case the method
will reach the bottom of the tree, but often only
3 or 4 nodes need to be transformed to make the
tree perfectly the right branching The worst case
complexity of repairing the imperfection is O(n)
which makes the complexity of the whole parsing
algorithm O(n2) for building a single derivation.

As a running example we will use a derivation
tree in Figure 4a for which a transition sequence
is given in Figure 4b. Here tree rotation is used
in transitions 6 and 8 that introduce imperfections.
In transition 6 a single tree rotation at the top was
enough to correct the imperfection, while in tran-
sition 8 recursive tree rotation function went to
depth two.

If the upper and lower combinators are both
>B2 the topmost combinator on the right will be-

3By right branching we mean as right branching as it is al-
lowed by CCG formalism and predicate-argument structure.
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Mary might find happiness and forget me

NP S\NP/(S\NP) S\NP/NP NP conj S\NP/NP NP
>T >B0 >B0

S/(S\NP) S\NP S\NP
>B1 >Φ

S/(S\NP) S\NP [conj ]
<Φ

S\NP
>B0

S

(a) Derivation tree.

transition stack
1 shift =⇒ � Mary
2 reduceUnary(>T) =⇒ � >T Mary
3 shift =⇒ � >T Mary � might
4 reduceBinary(>B1) =⇒ � >B1 (>T Mary) might
5 shift =⇒ � >B1 (>T Mary) might � find
6 reduceBinary(>B1) =⇒ � >B1 (>B1 (>T Mary) might) find

rotate to right =⇒ � >B1 (>T Mary) (>B1 might find)
7 shift =⇒ � >B1 (>T Mary) (>B1 might find) � happiness
8 reduceBinary(>B1) =⇒ � >B0 (>B1 (>T Mary) (>B1 might find)) happiness

rotate to right =⇒ � >B0 (>T Mary) (>B0 (>B1 might find) happiness)
rotate to right =⇒ � >B0 (>T Mary) (>B0 might (>B0 find happiness))

9 shift =⇒ � >B0 (>T Mary) (>B0 might (>B0 find happiness)) � and
10 shift =⇒ � >B0 (>T Mary) (>B0 might (>B0 find happiness)) � and � forget
11 shift =⇒ � >B0 (>T Mary) (>B0 might (>B0 find happiness)) � and � forget � me
12 reduceBinary(>B0) =⇒ � >B0 (>T Mary) (>B0 might (>B0 find happiness)) � and � >B0 forget me
13 reduceBinary(>Φ) =⇒ � >B0 (>T Mary) (>B0 might (>B0 find happiness)) � >Φ and (>B0 forget me)
14 reveal =⇒ � two options for right adjunction and both with <Φ combinator:

option 1: >B0 might (>B0 find happiness)
option 2: >B0 find happiness

15 pick option 2 =⇒ � >B0 (>T Mary) (>B0 might (<Φ (>B0 find happiness) (>Φ and (>B0 forget me) ) ) )

(b) Transition sequence for the derivation tree.

Figure 4: Example of the algorithm run over a sentence with tensed VP coordination.

come >B3, a combinatory rule that may be un-
necessary for defining the competence grammar of
human languages, but which is required if pars-
ing performance is to be as incremental as possi-
ble. Fortunately, the configuration with two con-
nected>B2 combinatory rules appears very rarely
in CCGbank.

Many papers have been published on using left-
branching CCG derivations but, to the best of our
knowledge, none of them explains how are they
constructed from right-branching CCGbank trees.
A very simple algorithm for that can be made us-
ing our tree rotation function. Here we use rotation
in the opposite direction i.e. rotation to left (Fig-
ure 3b). We cannot apply this operation from the
top node of the CCGbank tree because that tree
does not satisfy the assumption of the algorithm:
immediate children are not “perfect” (here perfect
means being left-branching). That is why we start
from the bottom of the tree with terminal nodes
that are trivially “perfect” and apply tree transfor-
mation to each node in post-order traversal.

This incremental tree rotation algorithm is in-

spired by the AVL self-balancing binary search
trees (Adelson-Velskii and Landis, 1962) and
Red-Black trees (Guibas and Sedgewick, 1978;
Okasaki, 1999). The main difference is that here
we are trying to do the opposite of AVLs: instead
of making the tree perfectly balanced we are trying
to make it perfectly unbalanced, i.e. leaning to the
right (or left). Also, our imperfections start at the
top and are pushed to the bottom of the tree which
is in contrast to AVLs trees where imperfections
start at the bottom and get pushed to the top.

The last important point about tree rotation con-
cerns punctuation rules. All punctuation is at-
tached to the left of the highest possible node in
case of left-branching derivations (Hockenmaier
and Bisk, 2010), while in the right-branching
derivations we lower the punctuation to the bot-
tom left neighbouring node. Punctuation has no
influence on the predicate-argument structure so it
is safe to apply this transformation.
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3.2 Revealing transitions

If the topmost element on the stack is of the form
X\X and the second topmost element on the stack
has on its right edge one or more constituents of
a type X|$ we allow reveal transition.4 This is a
more general way of revealing than approaches of
Pareschi and Steedman (1987) and Ambati et al.
(2015) who attempt to reveal only constituents of
type X while we reveal any type that has X as its
prime element (that is the meaning of X|$ nota-
tion).

We also treat X[conj] as right adjuncts of the left
conjunct. Similarly to the previous case, if the top-
most element on the stack is X[conj] and the right
edge of the second topmost element on the stack
has constituent(s) of type X, they are revealed for
possible combination via <Φ combinator.

If reveal transition is selected, as in transition
14 in Figure 4b, the parser enters into a mode
of choosing among different constituents labelled
X|$ that could be modified by the right adjunct
X\X. After particular X|$ node is chosen X\X is
combined with it and the rest of the tree above
X node is rebuilt in the same way. This rebuild
is fully deterministic and is done quickly even
though in principle it could take O(n) to com-
pute. Even in the worst case scenario, it does not
make the complexity of the algorithm go higher
than O(n2).

The ability of our algorithm to choose among
different possible revealing options is unique
among all the proposals for revealing. For transi-
tion 15 in Figure 4b the parser can choose whether
to adjoin (coordinate) to a verb phrase that already
contains a left modifier or without. This is simi-
lar to Selective Modifier Placement strategy from
older Augmented Transition Network (ATN) sys-
tems (Woods, 1973) which finds all the attachment
options that are syntactically legal and then allows
the parser to choose among those using some cri-
teria. Woods (1973) suggests using lexical seman-
tic information for this selection, but in his ATN
system only handwritten semantic selection rules
were used. Here we will also use selection based
on the lexical content but it will be broad coverage
and learned from the data. This ability to seman-
tically select the modifier’s attachment point is es-
sential for good parsing results as will be shown.

4The “$ notation” is from (Steedman, 2000) where $ is
used as a (potentially empty) placeholder variable ranging
over multiple arguments.

4 Neural Model

The neural probabilistic model that chooses which
transition should be taken next conditions on the
whole state of the configuration in a similar way
to RNNG parser (Dyer et al., 2016). The words in
the sentence are first embedded using the concate-
nation of top layers of ELMo embeddings (Peters
et al., 2018) that are normalised to L2 norm and
then refined with two layers of bi-LSTM (Graves
et al., 2005). The neural representation of the ter-
minal is composed of concatenated ELMo embed-
ding and supertag embedding.

The representation of a subtree combines:
• span representation – we subtract representa-

tion of the leftmost terminal from the repre-
sentation of the rightmost terminal as done in
LSTM-Minus architecture (Wang and Chang,
2016),
• combinator and category embeddings,
• head words encoding – because each con-

stituent can have a set of heads, for instance
arising from coordination, we model repre-
sentation of heads with DeepSet architecture
(Zaheer et al., 2017) over representations of
head terminals.

We do not use recursive neural networks like Tree-
LSTM (Tai et al., 2015) to encode subtrees be-
cause of the frequency of tree rotation. These op-
erations are fast, but they would trigger frequent
recomputation of the neural tree representation, so
we opted for a mechanism that is invariant to re-
branching.

The stack representation is encoded using
Stack-LSTM (Dyer et al., 2015). The configu-
ration representation is the concatenation of the
stack representation and the representation of the
rightmost terminal in the stack. The next non-
revealing transition is chosen by a two-layer feed-
forward network.

If the reveal transition is triggered, the system
needs to choose which among the candidate nodes
X|$ to adjoin the right modifier X\X to. The num-
ber of these modifiers can vary so we cannot use
a simple feed-forward network to choose among
them. Instead, we use the mechanism of Pointer
networks (Vinyals et al., 2015), which works in a
similar way to attention (Bahdanau et al., 2014)
except that attention weights are interpreted as
probabilities of selecting any particular node. At-
tention is computed over representations of each
candidate node. Because we expect that there
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Waiting
time

Connect-
edness

Right-branching 4.29 5.01
Left-branching 2.32 3.15
Ambati et al. (2015)* 0.69 2.15
Revealing our 0.46 1.72

Table 1: Train set measure of incrementality. *: taken
from (Ambati et al., 2015)

could be some preference for attaching adjuncts
high or low in the tree we add to the context rep-
resentation of each node two position embeddings
(Vaswani et al., 2017) that encode the candidate
node’s height and depth in the current tree.

We optimize for maximum log-likelihood on
the training set, using only the most frequent su-
pertags and the most important combinators. To
avoid discarding sentences with rare supertags
and type-changing rules we use all supertags and
combinatory rules during training but do not add
their probability to the loss function. The num-
ber of supertags used is 425, as in the Easy-
CCG parser, and the combinatory rules that are
used are the same as in C&C parser. The loss
is minimised for 15 epochs on the training por-
tion of CCGbank (Hockenmaier and Steedman,
2007) using Adam with learning rate 0.001. Di-
mensionality is set to 128 in all cases, except
for ELMo set at 300. Dropout is applied only
to the ELMo input with a rate of 0.2. The
parser is implemented in Scala using the DyNet
toolkit (Neubig et al., 2017) and is available at
https://github.com/stanojevic/Rotating-CCG.

5 Experiments

5.1 How incremental is the Revealing
algorithm?

To measure the incrementality of the proposed al-
gorithm we use two evaluation metrics: waiting
time and connectedness. Waiting time is the aver-
age number of nodes that need to be shifted before
the dependency between two nodes is established.
The minimal value for a fully incremental algo-
rithm is 0 (the single shift that is always necessary
is not counted). Connectedness is defined as the
average stack size before a shift operation is per-
formed (the initial two shifts are forced so they are
not taken in the average). The minimal value for
connectedness is 1. We have computed these mea-
sures on the training portion of the CCGbank for
standard non-incremental right-branching deriva-

heads SMP LF UF
Sup.
Tag

Left yes — 89.2 95.1 95.0
Right yes — 89.1 95.0 95.1
Revealing no yes 89.3 95.2 94.9
Revealing yes no 88.8 94.9 94.9
Revealing yes yes 89.5 95.4 95.1

Table 2: Development set F1 results with greedy de-
coding for CCG dependencies.

tions, the more incremental left-branching deriva-
tions and our revealing derivations. We also put
in the results numbers for the previous proposal of
revealing by Ambati et al. (2015) taken from their
paper but these numbers should be taken with cau-
tion, because it is not clear from the paper whether
the authors computed them in the same way and
on the same portion of the dataset as we did. Ta-
ble 1 results shows that our revealing derivations
are significantly more incremental even in com-
parison to previous revealing proposals, and barely
use more than the minimal amount of stack mem-
ory.

5.2 Which algorithm gives the best parsing
results?

We have tested on the development set which of
the parsing algorithms gives best parsing accuracy.
All the algorithms use the same neural architec-
ture and training method except for the revealing
operations that require additional mechanisms to
choose the node for revealing. This allows us to
isolate machine learning factors and see which of
the parsing strategies works the best.

There are two methods that are often used for
evaluating CCG parsers. They are both based on
“deep” dependencies extracted from the derivation
trees. The first is from (Clark et al., 2002) and is
closer to categorial grammar view of dependen-
cies. The second is from (Clark and Curran, 2007)
and is meant to be more formalism independent
and closer to standard dependencies (Caroll et al.,
1998). We opt for the first option for development
as we find it more robust and reliable but we report
both types on the test set.

Table 2 shows the results on development set.
The heads column shows if the head words repre-
sentation is used for computing the representation
of the nodes in the tree. The SMP column shows if
Selective Modifier Placement is used: whether we
choose where to attach right adjunct based only

https://github.com/stanojevic/Rotating-CCG
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Figure 5: Influence of beam size on the dev results.

on the position embeddings or also on the node’s
lexical content. First we can see that Revealing
approach that uses head representation and does
selective modifier placement outperforms all the
models both on labelled and unlabelled dependen-
cies. Ablation experiments show that SMP was
the crucial component: without it the Revealing
model is much worse. This is a clear evidence
that attachment heuristics are not enough and also
that previous approaches that extract only single
revealing option are sub-optimal.

A possible reason why Revealing model works
better than Left and Right branching models is that
Left and Right models need to commit early on
whether there will be a right adjunct in the future
or not. If they make a mistake during greedy de-
coding there will be no way to repair that mistake.
This is not an issue for the Revealing model be-
cause it can attach right adjuncts at any point and
does not need to forecast them. A natural question
then is if these improvements of Revealing model
will stay if we use a bigger beam. Figure 5 shows
exactly that experiment. We see that the model
that gains the most from the biggest beam is for
the Left-branching condition, which is expected
since that is the model that commits to its predic-
tions the most — it commits with type-raising, un-
like Right model, and it commits with predicting
right adjunction, unlike Revealing model. With an
increased beam Left model equals the Revealing
greedy model. But if all the models use the same
beam the Revealing model remains the best. An
interesting result is that the small beam of size 4
is enough to get the maximal improvement. This
probably reflects the low degree of lexical ambigu-
ity that is unresolved at each point during parsing.

Tag UF LF
Lewis and Steedman (2014) 93.0 88.6 81.3
Ambati et al. (2015) 91.2 89.0 81.4
Hockenmaier (2003) 92.2 92.0 84.4
Zhang and Clark (2011) 93.1 — 85.5
Clark and Curran (2007) 94.3 93.0 87.6
Revealing (beam=1) 95.2 95.5 89.8
Revealing (beam=4) 95.4 95.8 90.2

Table 3: Test set F1 results for prediction of supertags
(Tag), unlabelled (UF) and labelled (LF) CCG de-
pendencies extracted using scripts from Hockenmaier
(2003) parser.

Dev
LF

Test
LF

Clark and Curran (2007) 83.8 85.2
Lewis and Steedman (2014) — 86.1
Yoshikawa et al. (2017) 86.8 87.7
Xu et al. (2016) 87.5 87.8
Lewis et al. (2016) tri-train 87.5 88.1
Vaswani et al. (2016) 87.8 88.3
Lee et al. (2016) tri-train 88.4 88.7
Yoshikawa et al. (2017) tri-train 87.7 88.8
Revealing (beam=1) 90.8 90.5

Table 4: F1 results for labelled dependencies extracted
with generate program of C&C parser (Clark and Cur-
ran, 2007).

5.3 Comparison to other published models

We compute test set results for our Revealing
model and compare it to most of the previous re-
sults on CCGbank using both types of dependen-
cies. Table 3 shows results with (Clark et al.,
2002) style dependencies. Here we get state-of-
the-art results by a large margin, probably mostly
thanks to the machine learning component of our
parser. An interesting comparison to be made is
against EasyCCG parser of Lewis and Steedman
(2014). This parser uses a neural supertagger of
accuracy that is not too far from ours, but the de-
pendencies extracted by our parser are much more
accurate. This shows that a richer probabilistic
model that we use contributes more to the good
results than the exact A? search that EasyCCG
does with a more simplistic model. Another com-
parison of relevance would be with the revealing
model of Ambati et al. (2015) but the compari-
son of the algorithms is difficult since the machine
learning component is very different: Ambati uses
a structured perceptron while our model is a heav-
ily parametrized neural network.
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In Table 4 we show results with the second type
of dependencies used for CCG evaluation. All
the models, except Clark and Curran (2007), are
neural and use external embeddings. From the
presented models only Revealing and Xu et al.
(2016) are transition based. All other models
have a global search either via CKY or A* search.
Our revealing-based parser that does only greedy
search is outperforming all of them including
those trained on large amounts of unlabelled data
using semi-supervised techniques like tri-training
(Lewis et al., 2016; Lee et al., 2016; Yoshikawa
et al., 2017).

In some sense, all the neural models in Table 4
are implicitly trained in semi-supervised way be-
cause they use pretrained embeddings that are es-
timated on unlabelled data. The quality of ELMo
embeddings is probably one of the reasons why
our parser achieves such good results. However,
another semi-supervised training method, namely
tri-training, is particularly attractive because, un-
like ELMo, it is trained on a CCG parsing ob-
jective which is more closely aligned to what we
want to do. All tri-training models are trained
on much larger dataset that in addition to CCG-
bank also includes 43 million word corpus auto-
matically annotated with silver CCG derivations
by Lewis et al. (2016). It is likely that incorporat-
ing tri-training into our training setup will further
increase the improvement over other models.

6 Other relevant work

Recurrent Neural Network Grammar (RNNG)
(Dyer et al., 2016) is a fully incremental top-down
parsing model. Because it is top-down it has no is-
sues with right branching structures, but right ad-
juncts would still make parsing more difficult for
RNNG because they will have to be predicted even
earlier than in Left- and Right- branching deriva-
tions in CCG.

Left-corner parsers (which can be seen as a
more constrained version of CCG Left-branching
parsing strategy) seem more psychologically re-
alistic than top-down parsers (Abney and John-
son, 1991; Resnik, 1992; Stanojević and Stabler,
2018). Some proposals about handling right ad-
junction in left-corner parsing are based on exten-
sion to generalized left-corner parsers (Demers,
1977; Hale, 2014) that can force some grammar
rules (in particular right-adjunction rules) to be
less incremental. Our approach does not decrease

incrementality of the parser in this way. On the
contrary, having a special mechanism for right ad-
junction makes parser both more incremental and
more accurate.

Revealing based on higher order unification by
Pareschi and Steedman (1987) was also proposed
by Steedman (1990) as the basis for CCG ex-
planation of gapping. The present derivation-
based mechanism for revealing does not extend
to gapping, and is targeting to model only deriva-
tions that could be explained with a standard
CCG grammar derived from CCGbank. While
that guarantees that we stay in the safe zone of
sound and complete “standard” CCG derivations,
it would be good as a future work to extend sup-
port for gapping and other types of derivations not
present in CCGbank.

Niv (1993, 1994) proposed an alternative to the
unification-based account of Pareschi and Steed-
man similar to our proposal for online tree rota-
tion. Niv’s parser is mostly a formal treatment of
left-to-right rotations evaluated against psycholin-
guistic garden paths, but lacks the wide coverage
implementation and statistical parsing model as a
basis for resolving attachment ambiguities.

7 Conclusion

We have presented a revealing-based incremental
parsing algorithm that has special transitions for
handling right-adjunction. The parser is neutral
with regard to the particular semantic represen-
tation used. It is computationally efficient, and
can reveal all possible constituents types. It is the
most incremental CCG parser yet proposed, and
has state-of-the-art results against all published
parsers trained on the CCGbank under both de-
pendency recovery measures that are in use for the
purpose.
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