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Abstract

Neural machine translation systems have be-
come state-of-the-art approaches for Gram-
matical Error Correction (GEC) task. In this
paper, we propose a copy-augmented archi-
tecture for the GEC task by copying the un-
changed words from the source sentence to
the target sentence. Since the GEC suffers
from not having enough labeled training data
to achieve high accuracy. We pre-train the
copy-augmented architecture with a denoising
auto-encoder using the unlabeled One Billion
Benchmark and make comparisons between
the fully pre-trained model and a partially pre-
trained model. It is the first time copying
words from the source context and fully pre-
training a sequence to sequence model are ex-
perimented on the GEC task. Moreover, We
add token-level and sentence-level multi-task
learning for the GEC task. The evaluation re-
sults on the CoNLL-2014 test set show that our
approach outperforms all recently published
state-of-the-art results by a large margin. The
code and pre-trained models are released at
https://github.com/zhawe01/fairseq-gec.

1 Introduction

Grammatical Error Correction (GEC) is a task
of detecting and correcting grammatical errors in
text. Due to the growing number of language
learners of English, there has been increasing at-
tention to the English GEC, in the past decade.

The following sentence is an example of the
GEC task, where the word in bold needs to be cor-
rected to its adverb form.

Nothing is [absolute→ absolutely] right or
wrong.

Although machine translation systems have be-
come state-of-the-art approaches for GEC, GEC
is different from translation since it only changes
several words of the source sentence. In Table 1,

Corpus Sent. Tok. Same %
CoNLL-2013 1,381 28,944 96.50%
JFELG 754 14,240 84.23%
Lang-8 4,936 73,705 83.22%

Table 1: The ratio of unchanged words in the target
sentence to the source sentence. “Sent.” means the
sentence number. “Tok.” means the token number of
the target sentence. “Same %” means the same word
percentage.

we list the ratio of unchanged words of the target
sentence to the source sentence in three different
datasets. We can observe that more than 80% of
the words can be copied from the source sentence.

Considering the percentage of unchanged words
is high in the GEC task, a more proper neural ar-
chitecture is needed for it. We enhance the current
neural architecture by enabling it to copy the un-
changed words and the out-of-vocabulary words
directly from the source sentence, just as what
humans do when they correct sentences. To our
knowledge, this is the first time that neural copy-
ing mechanism is used on GEC.

Progresses have been made thanks to large-
scale training corpus, including NUS Corpus
of Learner English (NUCLE) (Dahlmeier et al.,
2013) and the large-scale Lang-8 corpus(Tajiri
et al., 2012). However, even with millions of
labeled sentences, automatic GEC is challenging
due to the lack of enough labeled training data to
achieve high accuracy.

To alleviate the problem of insufficient labeled
data, we propose a method to leverage the unla-
beled data. The concrete way is to pre-train our
copy-augmented model with the unlabeled One
Billion Benchmark (Chelba et al., 2013) by lever-
aging denoising auto-encoders.

We also add two multi-tasks for the copy-
augmented architecture, including a token-level
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labeling task and a sentence-level copying task, to
further improve the performance of the GEC task.

The copying mechanism is for the first time
used on the GEC task, which was used on text
summarization tasks. On the GEC task, copy-
ing mechanism enables training a model with a
small vocabulary since it can straightly copy the
unchanged and out-of-vocabulary words from the
source input tokens. Besides, by separating the
constant part of the work from the GEC task, copy-
ing makes the generating portion of the architec-
ture more powerful. In the experiment section of
this paper, we show that copying does more than
just solving the “UNK problem”, and it can also
recall more edits for the GEC problem.

The copy-augmented architecture outperforms
all the other architectures on the GEC task, by
achieving a 56.42 F0.5 score on the CoNLL
2014 test data set. Combined with denoising
auto-encoders and multi-tasks, our architecture
achieves 61.15 F0.5 on the CoNLL-2014 test data
set, improving +4.9 F0.5 score than state-of-the-art
systems.

In summary, our main contributions are as
follows. (1) We propose a more proper neu-
ral architecture for the GEC problem, which en-
ables copying the unchanged words and out-of-
vocabulary words directly from the source in-
put tokens. (2) We pre-train the copy-augmented
model with large-scale unlabeled data using de-
noising auto-encoders, alleviating the problem of
the insufficient labeled training corpus. (3) We
evaluate the architecture on the CoNLL-2014 test
set, which shows that our approach outperforms
all recently published state-of-the-art approaches
by a large margin.

2 Our Approach

2.1 Base Architecture

Neural machine translation systems have become
the state-of-the-art approaches for Grammatical
Error Correction (GEC), by treating the sentence
written by the second language learners as the
source sentence and the grammatically corrected
one as the target sentence. Translation models
learn the mapping from the source sentence to the
target sentence.

We use the attention based Transformer
(Vaswani et al., 2017) architecture as our baseline.
The Transformer encodes the source sentence with
a stack of L identical blocks, and each of them

applies a multi-head self-attention over the source
tokens followed by position-wise feedforward lay-
ers to produce its context-aware hidden state. The
decoder has the same architecture as the encoder,
stacking L identical blocks of multi-head attention
with feed-forward networks for the target hidden
states. However, the decoder block has an extra
attention layer over the encoder’s hidden states.

The goal is to predict the next word indexed by
t in a sequence of word tokens (y1, ..., yT ), given
the source word tokens (x1, ..., xN ), as follows:

hsrc1...N = encoder(Lsrcx1...N ) (1)

ht = decoder(Ltrgyt−1...1, h
src
1...N ) (2)

Pt(w) = softmax(Ltrght) (3)

The matrix L ∈ Rdx×|V | is the word embedding
matrix, where dx is the word embedding dimen-
sion and |V | is the size of the vocabulary. hsrc1...N

is the encoder’s hidden states and ht is the target
hidden state for the next word. Applying softmax
operation on the inner product between the tar-
get hidden state and the embedding matrix, we get
the generation probability distribution of the next
word.

lce = −
T∑
t=1

log(pt(yt)) (4)

The loss lce of each training example is an accu-
mulation of the cross-entropy loss of each position
during decoding.

2.2 Copying Mechanism

Copying mechanism was proved effective on text
summarization tasks (See et al., 2017; Gu et al.,
2016) and semantic parsing tasks (Jia and Liang,
2016). In this paper, we apply the copying mecha-
nism on GEC task, for the first time, enabling the
model to copy tokens from the source sentence.

As illustrated in Figure 1, besides generat-
ing words from a fixed vocabulary, our copy-
augmented network allows copying words from
the source input tokens. Defined in Equation 5,
the final probability distribution Pt is a mix of
the generation distribution P gen

t and the copy dis-
tribution P copy

t . As a result, the fixed vocabu-
lary is extended by all the words appearing in the
source sentence. The balance between the copying
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Figure 1: Copy-Augmented Architecture.

and generating is controlled by a balancing factor
αcopy
t ∈ [0, 1] at each time step t.

pt(w) = (1−αcopy
t )∗pgent (w)+(αcopy

t )∗pcopyt (w)
(5)

The new architecture outputs the generation
probability distribution as the base model, by gen-
erating the target hidden state. The copying score
over the source input tokens is calculated with a
new attention distribution between the decoder’s
current hidden state htrg and the encoder’s hidden
states Hsrc (same as hsrc1...N ). The copy attention is
calculated the same as the encoder-decoder atten-
tions, listed in Equation 6, 7, 8 :

qt,K, V = htrgt W T
q , H

srcW T
k , H

srcW T
v (6)

At = qTt K (7)

P copy
t (w) = softmax(At) (8)

The qt, K and V are the query, key, and value
that needed to calculate the attention distribution
and the copy hidden state. We use the normalized
attention distribution as the copy scores and use
the copy hidden states to estimate the balancing
factor αcopy

t .

αcopy
t = sigmoid(W T

∑
(AT

t · V )) (9)

The loss function is as described in Equation 4,
but with respect to our mixed probability distribu-
tion yt given in Equation 5.

3 Pre-training

Pre-training is shown to be useful in many tasks
when lacking vast amounts of training data. In
this section, we propose denoising auto-encoders,
which enables pre-training our models with large-
scale unlabeled corpus. We also introduce a par-
tially pre-training method to make a comparison
with the denoising auto-encoder.

3.1 Denoising Auto-encoder

Denoising auto-encoders (Vincent et al., 2008) are
commonly used for model initialization to extract
and select features from inputs. BERT (Devlin
et al., 2018) used a pre-trained bi-directional trans-
former model and outperformed existing systems
by a wide margin on many NLP tasks. In contrast
to denoising auto-encoders, BERT only predicts
the 15% masked words rather than reconstructing
the entire input. BERT denoise the 15% of the
tokens at random by replacing 80% of them with
[MASK], 10% of them with a random word and
10% of them unchanged.

Inspired by BERT and denoising auto-encoders,
we pre-traine our copy-augmented sequence to se-
quence model by noising the One Billion Word
Benchmark (Chelba et al., 2013), which is a large
sentence-level English corpus. In our experiments,
the corrupted sentence pairs are generated by the
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following procedures.

• Delete a token with a probability of 10%.

• Add a token with a probability of 10%.

• Replace a word with a randomly picked word
from the vocabulary with a probability of
10%.

• Shuffle the words by adding a normal distri-
bution bias to the positions of the words and
re-sort the words by the rectified positions
with a standard deviation 0.5.

With a large amount of the artificial training
data, the sequence to sequence model learns to re-
construct the input sentence, by trusting most of
the input tokens but not always. A sentence pair
generated by the corruption process is a GEC sen-
tence pair to some degree, since both of them are
translating a not “perfect” sentence to a “perfect”
sentence by deleting, adding, replacing or shuf-
fling some tokens.

3.2 Pre-training Decoder
In nature language processing (NLP), pre-training
part of the model also improves many tasks’ per-
formance. Word2Vec and GloVe (Pennington
et al., 2014; Mikolov et al., 2013) pre-trained word
embeddings. CoVe (McCann et al., 2017) pre-
trained a encoder. ELMo (Peters et al., 2018) pre-
trained a deep bidirectional architecture, and etc.
All of them are shown to be effective in many NLP
tasks.

Following (Ramachandran et al., 2016;
Junczys-Dowmunt et al., 2018), we experiment
with pre-training the decoder of the copy-
augmented sequence-to-sequence architecture
as a typical language model. We initialize the
decoder of the GEC model with the pre-trained
parameters, while initializing the other parameters
randomly. Since we use the tied word embeddings
between encoder and decoder, most parameters of
the model are pre-trained, except for those of the
encoder, the encoder-decoder’s attention and the
copy attention.

4 Multi-Task Learning

The Multi-Task Learning (MTL) solves problems
by jointly training multiple related tasks, and
has shown its advantages in many tasks, ranging
from computer vision (Zhang et al., 2014; Dai

et al., 2016) to NLP (Collobert and Weston, 2008;
Søgaard and Goldberg, 2016). In this paper, we
explore two different tasks for GEC to improve the
performance.

4.1 Token-level Labeling Task
We propose a token-level labeling task for the
source sentence, and assign each token in the
source sentence a label indicating whether this to-
ken is right/wrong.

Assuming that each source token xi can be
aligned with a target token yj , we define that the
source token is right if xi = yj , and wrong oth-
erwise. Each token’s label is predicted by pass-
ing the final state hsrci of the encoder through a
softmax after an affine transformation, as shown
in Equation 10.

p(labeli|x1...N ) = softmax(W Thsrci ) (10)

This token-level labeling task explicitly aug-
ment the input tokens’ correctness to the encoder,
which can later be used by the decoder.

4.2 Sentence-level Copying Task
The primary motivation behind the sentence-level
copying task is to make the model do more copy-
ing when the input sentence looks entirely correct.

During training, we send equal number of sam-
pled correct sentence pairs and the edited sentence
pairs to the model. When inputting the right sen-
tences, we remove the decoder’s attention over
the outputs of the encoder. Without the encoder-
decoder attention, the generating work gets hard.
As a result, the copying part of the model will be
boosted for the correct sentences.

5 Evaluations

5.1 Datasets
As previous studies, we use the public NUCLE
(Dahlmeier et al., 2013), Lang-8 (Tajiri et al.,
2012) and FCE (Yannakoudakis et al., 2011)
corpus as our parrallel training data. The un-
labeled dataset we use is the well-known One
Billion Word Benchmark (Chelba et al., 2013).
We choose the test set of CoNLL-2014 shared
task as our test set and CoNLL-2013 test data
set (Dahlmeier et al., 2013) as our development
benchmark. For the CoNLL data sets, the Max-
Match (M2) scores (Dahlmeier and Ng, 2012)
were reported, and for the JFLEG (Napoles et al.,
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Corpus Sent. Public Type
Lang-8 1,097,274 Yes Labeled
NUCLE 57,119 Yes Labeled
FCE 32,073 Yes Labeled
One-Billion 30,178,573 Yes Unlabeled

Table 2: Training Corpus

Corpus Sent. Annot. Metric
CoNLL-2013 1,381 1 M2

CoNLL-2014 1,312 2 M2

JFLEG 747 4 GLEU

Table 3: Evaluation Corpus

2017) test set, the GLEU metric (Sakaguchi et al.,
2016) were reported.

To make our results comparable to state-of-the-
art results in the field of GEC, we limit our training
data strictly to public resources. Table 2 and Table
3 list all the data sets that we use in this paper.

We build a statistical-based spell error correc-
tion system and correct the spell errors in our train-
ing data. Following (Ge et al., 2018; Junczys-
Dowmunt et al., 2018; Chollampatt and Ng, 2018)
and etc., we apply spell correction before evalua-
tion for our dev/test datasets. A 50,000-word dic-
tionary is extracted from the spell-corrected Lang-
8 data corpus. Like previous works, we remove
the unchanged sentence pairs in the Lang-8 corpus
before training.

5.2 Model and Training Settings

In this paper, we use the Transformer implemen-
tation in the public FAIR Sequence-to-Sequence
Toolkit 1 (Gehring et al., 2017) codebase.

For the transformer model, we use token em-
beddings and hidden size of dimension 512, and
the encoder and decoder have 6 layers and 8 at-
tention heads. For the inner layer in the position-
wise feed-forward network, we use 4096. Similar
to previous models we set the dropout to 0.2. A
50,000 vocabulary for the input and output tokens
are collected from the training data. In total, this
model has 97M parameters.

Models are optimized with Nesterovs Acceler-
ated Gradient (Nesterov, 1983). We set the learn-
ing rate with 0.002, the weight decay 0.5, the pa-
tience 0, the momentum 0.99 and minimum learn-

1https://github.com/pytorch/fairseq

ing rate 10-4. During training, we evaluate the per-
formance on the development set for every epoch.

We also use edit-weighted MLE objective as
(Junczys-Dowmunt et al., 2018), by scaling the
loss of the changed words with a balancing factor
Λ.

Almost the same architecture and hyper-
parameters are used when pre-training using un-
labeled data, except the Λ parameter for edit-
weighted loss. We set Λ = 3 when we train the
denoising auto-encoder, and set Λ ∈ [1, 1.8] when
we train GEC models.

During decoding, we use a beam-size of 12 and
normalize model scores by length. We do not use
reranking when evaluating the CoNLL-2014 data
sets. But we rerank the top 12 hypothesizes us-
ing the language model trained on Common Crawl
(Junczys-Dowmunt and Grundkiewicz, 2016) for
the JFLEG test sets.

5.3 Experimental Results

We compare our results with the well-known GEC
systems, as shown in Table 4. Rule, classification,
statistical machine translation (SMT), and neural
machine translation (NMT) based systems were
built for the GEC task. We list the well-known
models on the top section of Table 4 and our re-
sults in the middle. Almost all the previous sys-
tems reranked their top 12 results using a big lan-
guage model and some of them used partially pre-
trained parameters, which improve their results by
1.5 to 5 F0.5 score. Our copy-augmented archi-
tecture achieve a 56.42 F0.5 score on the CoNLL-
2014 dataset and outperforms all the previous ar-
chitectures even without reranking or pre-training.

Combined with denoising auto-encoders and
multi-tasks, our model achieve a 61.15 F0.5 score
on the CoNLL-2014 data set. This result ex-
ceeds the previous state-of-the-art system +4.9
F0.5 points.

In the bottom section of Table 4, we list the
results of (Ge et al., 2018). No direct compari-
son can be made between us, because they used
the non-public Cambridge Learner Corpus (CLC)
(Nicholls, 2003) and their own collected non-
public Lang-8 corpus, making their labeled train-
ing data set 3.6 times larger than ours. Even so,
our results on the CoNLL 2014 test data set and
JFLEG test data set are very close to theirs.

In Table 4, “SMT (with LM)” refers to
(Junczys-Dowmunt and Grundkiewicz, 2014);
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Model Year CoNLL-14 JFELEG DictPre. Rec. F0.5 GLEU
SMT (with LM) 2014 41.72 22.00 35.38 - word
SMT Rule-Based Hybird (with LM) 2014 39.71 30.10 37.33 - word
SMT Classification Hybird (with LM) 2016 60.17 25.64 47.40 - word
Neural Hybird MT (with LM) 2017 - - 45.15 53.41 char/word
CNN + EO (4 ens. with LM) 2018 65.49 33.14 54.79 57.47 bpe
Transformer + MIMs (4 ens. with LM) 2018 63.00 38.90 56.10 59.90 bpe
NMT SMT Hybrid (4 ens. with LM) 2018 66.77 34.49 56.25 61.50 bpe
Our Model
Copy-augmented Model (4 ens.) - 68.48 33.10 56.42 59.48∗ word
+ DA, Multi-tasks (4 ens.) - 71.57 38.65 61.15 61.00∗ word
Model Trained with Large Non-public Training Data
CNN + FB Learning (4 ens. with LM) 2018 74.12 36.30 61.34 61.41 bpe

Table 4: Comparison of GEC systems on CoNLL-2014 and JFLEG test set. The M2 score for CoNLL-2014 test
dataset and the GLEU for the JFLEG test set are reported. DA refers to the ”Denoising Auto-encoder”. (with LM)
refers to the usage of an extra language model. (4 ens.) refers to the ensemble decoding of 4 independently trained
models. We re-rank the results of the top 12 hypothesizes for the JFLEG test set with an extra language model and
marked them with ∗.

“SMT Rule-Based Hybird” refers to (Felice et al.,
2014); “SMT Classification Hybird” refers to (Ro-
zovskaya and Roth, 2016); “Neural Hybird MT”
refers to (Ji et al., 2017); “CNN + EO” refers
to (Chollampatt and Ng, 2018) and “EO” means
rerank with edit-operation features; “Transformer
+ MIMs” refers to (Junczys-Dowmunt et al., 2018)
and “MIMs” means model indepent methods;
“NMT SMT Hybrid” refers to (Grundkiewicz and
Junczys-Dowmunt, 2018); “CNN + FB Learning”
refers to (Ge et al., 2018).

5.4 Ablation Study

5.4.1 Copying Ablation Results

In this section, we compare the Transformer archi-
tecture’s results with and without copying mech-
anism on the GEC task. As illustrated in Table
5, copy-augmented model increases the F0.5 score
from 48.07 to 54.67, with a +6.6 absolute increase.
Most of the improvements come from the words
that are out of the fixed vocabulary, which will
be predicted as a UNK word in the base model
but will be copied as the word itself in the copy-
augmented model.

Copying is generally known as good at handling
the UNK words. To verify if copying is more than
copying UNK words, we do experiments by ig-
noring all UNK edits. From Table 5, we can see
that even ignoring the UNK benefits, the copy-
augmented model is still 1.62 F0.5 points higher

than the baseline model, and most of the benefit
comes from the increased recall.

5.4.2 Pre-training Ablation Results
From Table 5, we can observe that by partially pre-
training the decoder, the F0.5 score is improved
from 54.67 to 57.21 (+2.54). It is an evident
improvment compared to the un-pre-trained ones.
However, the denoising auto-encoder improves
the single model from 54.67 to 58.8 (+4.13). We
can also see that both the precision and recall are
improved after pre-training.

To further investigate how good the pre-trained
parameters are, we show the results of the
early stage with and without the denoising auto-
encoder’s pre-trained parameters in Table 6. The
results show, if we finetune the model for 1 epoch
with the labeled training data, the pre-trained
model beats the un-pretrained one with a big gap
(48.89 vs 17.19). Even without finetune, the pre-
trained model can get a F0.5 score of 31.33. This
proves that pre-training gives the models much
better initial parameters than the randomly picked
ones.

5.4.3 Sentence-level Copying Task Ablation
Results

We add the sentence-level copying task to encour-
age the model outputs no edits when we input a
correct sentence. To verify this, we create a cor-
rect sentence set by sampling 500 sentences from
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Model Pre. Rec. F0.5 Imp.
Transformer 55.96 30.73 48.07 -
+ Copying 65.23 33.18 54.67 +6.60
Ignoring UNK words as edits
Transformer 65.26 30.63 53.23 -
+ Copying 65.54 33.18 54.85 +1.62
+ Pre-training
Copy-Augmented Transformer 65.23 33.18 54.67 -
+ Pre-training Decoder (partially pre-trained) 68.02 34.98 57.21 +2.54
+ Denosing Auto-encoder (fully pre-trained) 68.97 36.98 58.80 +4.13
+ Multi-tasks
Copy-Augmented Transformer 67.74 40.62 59.76 -

Table 5: Single Model Ablation Study on CoNLL 2014 Test Data Set.

Finetune Pre. Rec. F0.5

with the denoising auto-encoder
no finetune 36.61 19.87 31.33
finetune 1 epoch 68.58 22.76 48.89
without the denoising auto-encoder
finetune 1 epoch 32.55 05.96 17.19

Table 6: Denoising Auto-encoder’s Results on
CoNLL-2014 Test Data Set.

Wikipedia. Also, we generate an error sentence set
by sampling 500 sentences from CoNLL-2013 test
data set, which is an error-annotated dataset. Then
we calculate the average value of the balance fac-
tor αcopy of the two sets.

Before we add the sentence-level copying task,
the αcopy is 0.44/0.45 for the correct and error sen-
tence sets. After adding the sentence-level copy-
ing task, the value changed to 0.81/0.57. This
means that 81% of the final score comes from
copying on the correct sentence set, while only
57% on the error sentence set. By adding the
sentence-level copying task, models learn to dis-
tinguish correct sentences and error sentences.

5.5 Attention Visualization

To analyze how copying and generating divide
their work. We visualized the copying atten-
tion alignment and the encoder-decoder attention
alignment in Figure 2. In Figure 2(a), copying
focus their weights on the next word in good or-
der, while in Figure 2(b), generating moves its at-
tention more on the other words, e.g., the nearby
words, and the end of the sentence. As explained
in (Raganato et al., 2018), this means that the gen-

Error Type % Recall
Article Or Determiner 14.31% 44.54%
Wrong Collocation/Idiom 12.75% 10.38%
Spelling, Punctuation, etc. 12.47% 45.66%
Preposition 10.38% 49.03%
Noun number 9.38% 72.65%
Verb Tense 5.41% 28.15%
Subject-Verb Agreement 4.93% 61.79%
Verb form 4.69% 57.26%
Redundancy 4.65% 25.86%
Others 20.99% 23.28%

Table 7: Recall on Different Error Types. % is the
percentage of this error type in the test data set. Recall
is the percentage of the fixed errors in each error type.

erating part tries to find long dependencies and at-
tend more on global information.

By separating the copying work from the gen-
eration work, the generation part of the model can
focus more on the “creative” works.

6 Discussion

6.1 Recall on Different Error Types

Automatic grammatical error correction is a com-
plicated task since there are different kinds of er-
rors and various correction ways. In this section,
we analyze our systems’ performance on different
grammatical error types. (Ng et al., 2014) labeled
CoNLL-2014 test set with 28 error types, and we
list the recall percentage on the top 9 error types.
We summarize the other 19 types in the last line of
the table.

Our approach recalls 72.65% errors on the
“Noun number” type and 61.79% on the “Subject-
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Besides , we trycan to reduce the bad effect cause by the newtechnology . <eos>

Besides , we trycan to reduce the bad effects caused by the new technology .<bos>

(a) Copy Alignment

Besides , we trycan to reduce the bad effect cause by the newtechnology . <eos>

Besides , we trycan to reduce the bad effects caused by the new technology .<bos>

(b) Encoder-Decoder Atttention Alignment

Figure 2: An example of the different behaviors between the copy and encoder-decoder attention. In each figure,
the above line is the source sentence, where the error words are in italic. The bottom line is the corrected sentence,
where the corrected words are in bold italic. The arrow means which source token the copy and encoder-decoder
attention mainly focus on, when predicting the current word. “〈bos〉” refers to the begin of the sentence and “〈eos〉”
refers to the end of the sentence.

Verb Agreement” type. However, only 10.38%
errors are recalled on the “Wrong Colloca-
tion/Idiom” type.

Computers are good at the definite and mechan-
ical errors, but still have a big gap with humans on
the error types that are subjective and with cultural
characteristics.

7 Related Work

Early published works in GEC develop specific
classifiers for different error types and then use
them to build hybrid systems. Later, leveraging the
progress of statistical machine translation(SMT)
and large-scale error corrected data, GEC systems
are further improved treated as a translation prob-
lem. SMT systems can remember phrase-based
correction pairs, but they are hard to generalize
beyond what was seen in training. The CoNLL-
14 shared task overview paper (Ng et al., 2014)
provides a comparative evaluation of approaches.
(Rozovskaya and Roth, 2016) detailed classifica-
tion and machine translation approaches to gram-
matical error correction problems, and combined
the strengths for both methods.

Recently, neural machine translation ap-
proaches have been shown to be very powerful.
(Yannakoudakis et al., 2017) developed a neural
sequence-labeling model for error detection
to calculate the probability of each token in a
sentence as being correct or incorrect, and then
use the error detecting model’s result as a feature
to re-rank the N best hypotheses. (Ji et al., 2017)

proposed a hybrid neural model incorporating
both the word and character-level information.
(Chollampatt and Ng, 2018) used a multilayer
convolutional encoder-decoder neural network
and outperforms all prior neural and statistical
based systems on this task. (Junczys-Dowmunt
et al., 2018) tried deep RNN (Barone et al., 2017)
and transformer (Vaswani et al., 2017) encoder-
decoder models and got a higher result by using
transformer and a set of model-independent
methods for neural GEC.

The state-of-the-art system on GEC task is
achieved by (Ge et al., 2018), which are based
on the sequence-to-sequence framework and flu-
ency boost learning and inference mechanism.
However, the usage of the non-public CLC cor-
pus (Nicholls, 2003) and self-collected non-public
error-corrected sentence pairs from Lang-8 made
their training data 3.6 times larger than the others
and their results hard to compare.

8 Conclusions

We present a copy-augmented architecture for
GEC, by considering the characteristics of this
problem. Firstly, we propose an enhanced
copy-augmented architecture, which improves
the sequence-to-sequence model’s ability by di-
rectly copying the unchanged words and out-
of-vocabulary words from the source input to-
kens. Secondly, we fully pre-train the copy-
augmented architecture using large-scale unla-
beled data, leveraging denoising auto-encoders.
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Thirdly, we introduce two auxiliary tasks for
multi-task learning. Finally, we outperform the
state-of-the-art automatic grammatical error cor-
rection system by a large margin. However, due to
the complexity of the GEC problem, there is still
a long way to go to make the automatic GEC sys-
tems as reliable as humans.
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Sennrich, Barry Haddow, and Alexandra Birch.
2017. Deep architectures for neural machine trans-
lation. arXiv preprint arXiv:1707.07631.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-
layer convolutional encoder-decoder neural network
for grammatical error correction. arXiv preprint
arXiv:1801.08831.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning, pages 160–167. ACM.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572. Association for Computational Linguis-
tics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The nus corpus of learner english. In Pro-
ceedings of the eighth workshop on innovative use
of NLP for building educational applications, pages
22–31.

Jifeng Dai, Kaiming He, and Jian Sun. 2016. Instance-
aware semantic segmentation via multi-task network
cascades. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3150–3158.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Mariano Felice, Zheng Yuan, Øistein E Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In Proceedings of the Eigh-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 15–24.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Reaching
human-level performance in automatic grammatical
error correction: An empirical study. arXiv preprint
arXiv:1807.01270.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N Dauphin. 2017. Convolu-
tional sequence to sequence learning. arXiv preprint
arXiv:1705.03122.

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2018. Near human-level performance in grammati-
cal error correction with hybrid machine translation.
arXiv preprint arXiv:1804.05945.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Jianshu Ji, Qinlong Wang, Kristina Toutanova, Yon-
gen Gong, Steven Truong, and Jianfeng Gao.
2017. A nested attention neural hybrid model
for grammatical error correction. arXiv preprint
arXiv:1707.02026.

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2014. The amu system in the conll-2014 shared
task: Grammatical error correction by data-intensive
and feature-rich statistical machine translation. In
Proceedings of the Eighteenth Conference on Com-
putational Natural Language Learning: Shared
Task, pages 25–33.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Phrase-based machine translation is state-of-
the-art for automatic grammatical error correction.
arXiv preprint arXiv:1605.06353.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as
a low-resource machine translation task. arXiv
preprint arXiv:1804.05940.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6294–6305.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. Jfleg: A fluency corpus and
benchmark for grammatical error correction. arXiv
preprint arXiv:1702.04066.



165

Yurii E Nesterov. 1983. A method for solving the con-
vex programming problem with convergence rate o
(1/kˆ 2). In Dokl. Akad. Nauk SSSR, volume 269,
pages 543–547.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14.

Diane Nicholls. 2003. The cambridge learner corpus:
Error coding and analysis for lexicography and elt.
In Proceedings of the Corpus Linguistics 2003 con-
ference, volume 16, pages 572–581.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Alessandro Raganato, Jörg Tiedemann, et al. 2018. An
analysis of encoder representations in transformer-
based machine translation. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP. Associ-
ation for Computational Linguistics.

Prajit Ramachandran, Peter J Liu, and Quoc V Le.
2016. Unsupervised pretraining for sequence to se-
quence learning. arXiv preprint arXiv:1611.02683.

Alla Rozovskaya and Dan Roth. 2016. Grammatical
error correction: Machine translation and classifiers.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 2205–2215.

Keisuke Sakaguchi, Courtney Napoles, Matt Post, and
Joel Tetreault. 2016. Reassessing the goals of gram-
matical error correction: Fluency instead of gram-
maticality. Transactions of the Association of Com-
putational Linguistics, 4(1):169–182.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages
231–235.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
esl learners using global context. In Proceedings

of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2,
pages 198–202. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoen-
coders. In Proceedings of the 25th international
conference on Machine learning, pages 1096–1103.
ACM.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 180–189. Association for Computational
Linguistics.

Helen Yannakoudakis, Marek Rei, Øistein E Andersen,
and Zheng Yuan. 2017. Neural sequence-labelling
models for grammatical error correction. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2795–
2806.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and
Xiaoou Tang. 2014. Facial landmark detection by
deep multi-task learning. In European Conference
on Computer Vision, pages 94–108. Springer.


