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Abstract

Disfluencies in spontaneous speech are known
to be associated with prosodic disruptions.
However, most algorithms for disfluency de-
tection use only word transcripts. Integrating
prosodic cues has proved difficult because of
the many sources of variability affecting the
acoustic correlates. This paper introduces a
new approach to extracting acoustic-prosodic
cues using text-based distributional prediction
of acoustic cues to derive vector z-score fea-
tures (innovations). We explore both early and
late fusion techniques for integrating text and
prosody, showing gains over a high-accuracy
text-only model.

1 Introduction

Speech disfluencies are frequent events in sponta-
neous speech. The rate of disfluencies varies with
the speaker and context; one study observed dis-
fluencies once in every 20 words, affecting up to
one third of utterances (Shriberg, 1994). Disflu-
encies are important to account for, both because
of the challenge that the disrupted grammatical
flow poses for natural language processing of spo-
ken transcripts and because of the information that
they provide about the speaker.

Most work on disfluency detection builds on the
framework that annotates a disfluency in terms of a
reparandum followed by an interruption point (+),
an optional interregnum ({ }), and then the repair,
if any. A few simple examples are given below:
[ it’s + {uh} it’s] almost...
[ was it, + {I mean} , did you ] put...
[I just + I] enjoy working...
[By + ] it was attached to...

Based on the similarity/differences between the
reparandum and the repair, disfluencies are often
categorized into three types: repetition (the first
example), rephrase (the next example), and restart
(the last example).

The interruption point is associated with a dis-
ruption in the realization of a prosodic phrase,
which could involve cutting words off or elon-
gation associated with hesitation, followed by a
prosodic reset at the start of the repair. There may
also be emphasis in the repair to highlight the cor-
rection.

Researchers have been working on automatic
disfluency detection for many years (Lickley,
1994; Shriberg et al., 1997; Charniak and Johnson,
2001; Johnson and Charniak, 2004; Lease et al.,
2006; Qian and Liu, 2013; Zayats et al., 2016),
motivated in part by early work on parsing speech
that assumed reliable detection of the interruption
point (Nakatani and Hirschberg, 1994; Shriberg
and Stolcke, 1997; Liu et al., 2006). The first ef-
forts to integrate prosody with word cues for dis-
fluency detection (Baron et al., 2002; Snover et al.,
2004) found gains from using prosody, but word
cues played the primary role. In subsequent work
(Qian and Liu, 2013; Honnibal and Johnson, 2014;
Wang et al., 2017), more effective models of word
transcripts have been the main source of perfor-
mance gains. The success of recent neural network
systems raises the question of what the role is for
prosody in future work. In the next section, we
hypothesize where prosody might help and look at
the relative frequency of these cases and the per-
formance of a high accuracy disfluency detection
algorithm in these contexts.

With the premise that there is a potential for
prosody to benefit disfluency detection, we then
propose a new approach to extracting prosodic fea-
tures. A major challenge for all efforts to incor-
porate prosodic cues in spoken language under-
standing is the substantial variability in the acous-
tic correlates of prosody. For example, dura-
tion cues are expected to be useful – disfluencies
are often associated with duration lengthening re-
lated to hesitation. However, duration varies with
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phonetic context, word function, prosodic phrase
structure, speaking rate, etc. To account for some
of this variability, various feature normalization
techniques are used, but typically these account
for only limited contexts, e.g. phonetic context
for duration or speaker pitch range for fundamen-
tal frequency. In our work, we introduce a mech-
anism for normalization using the full sentence
context. We train a sequential neural prediction
model to estimate distributions of acoustic fea-
tures for each word, given the word sequence of a
sentence. Then, the actual observed acoustic fea-
ture is used to find the prediction error, normalized
by the estimated variance. We refer to the result-
ing features as innovations, which can be thought
of as a non-linear version of the innovations in
a Kalman filter. The innovations will be large
when the acoustic cues do not reflect the expected
prosodic structure, such as during hesitations, dis-
fluencies, and contrastive or emphatic stress. The
idea is to provide prosodic cues that are less re-
dundant with the textual cues. We assess the new
prosodic features in experiments on disfluency de-
tection using the Switchboard corpus, exploring
both early and late fusion techniques to integrate
innovations with text features. Our analysis shows
that prosody does help with detecting some of the
more difficult types of disfluencies.

This paper has three main contributions. First,
our analysis of a high performance disfluency de-
tection algorithm confirms hypotheses about con-
texts where text-only models have high error rates.
Second, we introduce a novel representation of
prosodic cues, i.e. the innovation vector result-
ing from predicting prosodic cues given the whole
sentence context. Analyses of the innovation
distributions show expected patterns of prosodic
cues at interruption points. Finally, we demon-
strate improved disfluency detection performance
on Switchboard by integrating prosody and text-
based features in a neural network architecture,
while comparing early and late fusion approaches.

2 How Might Prosody Help?

Disfluency detection algorithms based on text
alone rely on the fact that disfluencies often in-
volve parallel syntactic structure in the reparan-
dum and the repair, as illustrated in the previous
examples. In these cases, pattern match provides a
strong cue to the disfluency. In addition, ungram-
matical function word sequences are frequently

Reparandum Length % in
Type 1-2 3-5 6-8 8+ type
repetition 1894 419 12 1 46%
rephrase 794 585 66 – 28%
restart 196 14 – – 4%
nested* 149 262 158 118 13%

Table 1: Total word counts associated with reparanda
of different lengths and types of disfluencies. *Counts
for nested disfluencies exclude repetition tokens.

Reparandum Length
Type 1-2 3-5 6-8 8+ overall
repetition 0.99 0.99 1 1 0.99
rephrase 0.75 0.66 0.44 – 0.70
restart 0.41 0 – – 0.39
nested∗ 0.79 0.66 0.62 0.21 0.62

Table 2: Percent of reparandum tokens that were cor-
rectly predicted as disfluent. *Statistics for nested dis-
fluencies exclude repetition tokens.

associated with disfluencies, and these are rela-
tively easy for a text-based model to learn. In some
cases, an interregnum word (or words) provides a
word cue to the interruption point. In the Switch-
board corpus, only 15% of interruption points are
followed by an interregnum, but it can provide a
good cue when present. Prosody mainly serves to
help identify the interruption point. Thus, for these
types of disfluencies, it makes sense that prosodic
cues would not really be needed.

Because disfluencies with a parallel syntactic
structure do represent a substantial fraction of dis-
fluencies in spontaneous speech, text-based algo-
rithms have been relatively effective. The best
models achieve F-scores of 86-91%1 (Lou and
Johnson, 2017; Zayats and Ostendorf, 2018; Wang
et al., 2017, 2018). We hypothesize that many er-

1It is difficult to directly compare published results, be-
cause there are different approaches to tokenization that have
a non-trivial impact on performance but are not well docu-
mented in the literature. Those differences include handling
of fragment words, turn boundaries, and tokenization. For
example, some studies use fragment features explicitly, while
others omit them because speech recognition systems often
miss them. Turn boundaries that do not end with a slash unit
pose an ambiguity during speaker overlap: cross-turn ’sen-
tences’ can either be combined into a longer sentence or sep-
arated based on the turn boundary, which impacts what can
be detected. Lastly, there are differences in whether contrac-
tions and possessives are split into two tokens, and whether
conversational terms such as “you know” are combined into
a single token.
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Reparandum Length
Type 1-2 3-5
content-content 0.61 (30%) 0.58 (52%)
content-function 0.77 (20%) 0.66 (17%)
function-function 0.83 (50%) 0.80 (32%)

Table 3: Relative frequency of rephrases correctly pre-
dicted as disfluent for disfluencies that contain a con-
tent word in both the reparandum and repair (content-
content), either the reparandum or repair (content-
function) or in neither. Percentages in parentheses
show the fraction of tokens belong to each category.

rors are associated with contexts where we expect
that prosodic cues are useful, specifically the five
cases below, with examples from the development
set.
Restarts: Some disfluencies have no repair; the
speaker simply restarts the sentence with no obvi-
ous parallel phrase.
[ it would be + ] I think it’s clear...
well [the +] uh i think what changed...

Long disfluencies: These include distant pattern
match or substantial rephrasing.
[there is + for people who don’t want

to do the military service it would be
neat if there were]
[what they’re basically trying to do +

i don’t know up here in massachusetts
anyhow what they’re basically trying to
do]

Complex (nested) disfluencies: Disfluencies can
occur within other disfluencies.
[really + [[i + i] + we were really]...
[[to + to try to] + for two people who

don’t really have a budget to] ]...

Non-trivial rephrasing: Rephrasing does not al-
ways involve a simple “rough copy” of a repair.
[can + still has the option of]...
to keep them [in + uh quiet ]...

Fluent repetitions: Contexts with fluent repeti-
tions often include expressing a strong stance.
a long long time ago...
she has very very black and white...

In order to confirm that there is potential for
prosody to help in these contexts, we first cate-
gorize the disfluencies. To avoid hand-labeling
of categories, we distinguished disfluencies based
on surface forms (repetition, rephrase, restart) and
length of the disfluency reparandum. Word counts
for the different categories are given in Table 1.

Conditioning on the different contexts, we an-
alyze errors in the development set made by the

high accuracy text-based disfluency detection sys-
tem that is the baseline for this study (Zayats
and Ostendorf, 2018). For this model, trained
on Switchboard, the performance is 87.4 F-score
(P=93.3, R=82.2) on the development set and 87.5
(P=93.1, R=82.5) on the test set. For each class,
we measured the disfluency detection recall (rel-
ative frequency of reparandum tokens that were
predicted correctly), as well as the percentage of
tokens associated with each class. The results
in Table 2 confirm that error rates are higher for
restarts, longer rephrasings, and complex disflu-
encies.

Rephrase disfluencies include both short lexi-
cal access errors, as well as non-trivial reword-
ings, which tend to be longer and involve content
words. Table 3 breaks down performance for dif-
ferent lengths and word class to explore this dif-
ference. We found that rephrase disfluencies that
contain content words are harder for the model to
detect, compared to rephrases with function words
only, and error increases for longer disfluencies.

Finally, the relative frequency of false positives
in fluent repetitions is 0.35. Since fluent repeti-
tions account for only 4% of all repetitions, the
impact on overall performance is small.

The ultimate goal of a disfluency detection sys-
tem is to perform well in domains other than
Switchboard. Other datasets are likely to have
different distributions of disfluencies, often with
a higher frequency of those that are hard to detect,
such as restarts and repairs (Zayats et al., 2014). In
addition, due to the differences in vocabulary, dis-
fluencies with content words are more likely to get
misdetected if there is a domain mismatch. Thus,
we hypothesize that prosody features can have a
greater impact in a domain transfer scenario.

3 Method

Integrating prosodic cues has proved difficult be-
cause of the many sources of variability affecting
the acoustic correlates, while systems that only use
text achieve high performance. In this work, we
propose a new approach that operates on differ-
ences in information found in text and prosody. In
order to calculate such differences, we introduce
innovation features, similar to the concept of in-
novations in Kalman filters. The key idea is to
predict prosodic features based on text informa-
tion, and then use the difference between the pre-
dicted and observed prosodic signal (innovations)
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(a) Prosody prediction model (b) Late fusion model

Figure 1: Prosody prediction (left) and late fusion (right) models. xi is a contcatenation of token, POS and identity
features embeddings at time i; ri, j is a concatenation of stress and phone embeddings for phone j in token i; p̃i is
a vector of prosodic cues; gi and hi are hidden states of token level and phone level LSTMs, correspondingly.

as a new feature that is additionally used to predict
disfluencies.

Let a prosody cue, pi at time i be an observa-
tion associated with a sentence transcript contain-
ing n word tokens, x0 . . . xn. This observation
can be modeled as a function of the sentence con-
text H(x0 . . . xn) perturbed with Gaussian noise
vi ∼ N (0, σ2i ):

pi = H(x0 . . . xn) + vi (1)

vi can be viewed as a difference in information
found between text and prosody. This difference
can be measured using a z-score, which is a mea-
sure of how many standard deviations below or
above the population mean an observation is. This
framework can be viewed as a non-linear exten-
sion of a Kalman filter, where both H and σ2i are
parametrized using a neural network. Since disflu-
encies are irregularities in spoken language, they
can be considered anomalies to fluent speech flow.
A prosody flow that is unusual for a given word
sequence, such as one that happens at interrup-
tion points, will likely have higher deviation from
the predicted distribution. This anomaly in speech
flow provides a strong signal when extracted using
innovations, which is complementary to the text
cues. In the next sections we give more details
about the neural network architecture for text en-
coding, prosodic cues and innovation features, as
well as an overview of the whole system.

3.1 Text Encoding for Prosody Prediction
We use both context around a word as well as
subword information in text encoding for prosody
prediction. Our text encoding consists of two
bidirectional LSTMs: one on the token level and

another on the phone level. First, we use pre-
trained word embeddings (Levy and Goldberg,
2014), part-of-speech tags embeddings, and iden-
tity features (whether the word is a filled pause,
discourse marker, or incomplete) as inputs to a
word-level bidirectional LSTM. Then, for each
phone in a word we concatenate the phone embed-
ding, its stress embedding, and the hidden state of
the word-level LSTM for the corresponding token.
The resulting phone feature vector is used as input
to the second bidirectional LSTM. The last hid-
den state hi of this second LSTM for token i sum-
marizes the phone, stress and context information
of that token, which we use to predict word-level
prosodic cues. We use 3 categories of stress fea-
tures in our experiments: primary, secondary and
a non-stress phone.

3.2 Prosodic Cues
Our prosodic cues include:
Pause. Given a pause before a word, ri, our pause
cues are scaled as follows:

r̃i = min(1, ln (1 + ri)) (2)

Pause information is extracted on a word-level us-
ing Mississippi State (MsState) time alignments
(more details on data preprocessing in Section
4.1.) We use scaled real-valued pause informa-
tion. Scaling pause lengths this way, including the
threshold for pauses longer than 1 sec (which are
rare), makes the pause distribution less skewed.
Word Duration. Similar to pause information, we
extract word duration information using MsState
time alignments. We do not need to do the stan-
dard word-based duration normalization, since the
idea behind the innovation model is to normalize
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prosodic features using a richer context represen-
tation.
Fundamental frequency (F0) and Energy (E).
Similar to Tran et al. (2018), we use three F0 fea-
tures and three energy features. The three F0 fea-
tures include normalized cross correlation func-
tion (NCCF), log-pitch weighted by probability
of voicing (POV), and the estimated delta of log
pitch. The three energy features include the log
of total energy, the log of total energy from lower
20 mel-frequency bands and the log of total en-
ergy from higher 20 mel-frequency bands. The
contour features are extracted from 25-ms frames
with 10-ms hops using Kaldi (Povey et al., 2011).
Our model is trained to predict the mean of these
features across the frames in a word.
MFCCs. In addition to features used in Tran et al.
(2018), we also use 13 mel-frequency cepstral co-
efficients, averaged at the word level, similar to F0
and energy features as described above.

3.3 Prosody Innovation Cues
Given a word-level text encoding hi, for each to-
ken in a sentence we predict each of the k prosodic
cues p̃ik listed above. We assume that the pre-
dicted prosody cues conditioned on text have a
Gaussian distribution:

p̃i
k|hi ∼ N (µi,k, σ

2
i,k)

µi,k = f(W k
1 hi + bk1)

σ2i,k = softplus(W k
2 hi + bk2)

(3)

W k
1 , bk1 , W k

2 , bk2 are learnable parameters; the ac-
tivation function

softplus(x) = log(1 + exp(x))

ensures that the variance is always positive; f is an
activation function, which is softplus for pauses
and durations, and tanh for the rest of the prosodic
cues. The objective function is a sum of the nega-
tive log-likelihood of prosodic cues p̃ik given text
encoding. Then, given the predicted µi,k, σ2i,k
and true values of prosodic cues p̃ik, we calcu-
late z-scores for each of the cues, which should
have high absolute value for tokens with unusual
prosodic behaviour:

zki =
p̃i

k − µi,k
σi,k

(4)

The prosody prediction module is illustrated in
Figure 1a.

These z-scores, or innovations, are used as addi-
tional features in our disfluency detection model.
We train the prosody prediction model only on
sentences that do not contain any disfluencies.
Any unusual behaviours in disfluency regions,
therefore, should have large innovation values pre-
dicted by our model.

3.4 Disfluency Detection System
Following (Zayats and Ostendorf, 2018), we use
a bidirectional LSTM-CRF model as our disflu-
ency detection framework. This framework uses a
BIO tagging approach, where we predict whether
each token is a part of a reparandum, repair or
both. Following previous studies, the overall per-
formance is measured in F-score of correctly pre-
dicted disfluencies in the reparandum. Previous
work used textual features only. Here, we eval-
uate the importance of innovation cues with two
types of multimodal fusion - early and late fusion.
In early fusion, we concatenate innovations and/or
prosody features with the rest of the textual fea-
tures used in the framework at the input to LSTM
layer. In late fusion, we create two separate mod-
els - one with only textual features and another
with innovations and/or prosody features. Then
we do a linear interpolation of the states of two
models just before feeding the result to the CRF
layer:

usharedi = αuprosodyi + (1− α)utexti (5)

We tune the interpolation weight α and report the
best in our experiments section. We train our
model jointly, optimizing both prosodic cues pre-
diction and disfluency detection. The schematic
view of the late fusion system is presented in Fig-
ure 1b.

4 Experiments

In our experiments we evaluate the usefulness
of innovation features, and compare it to base-
lines with text-only or raw prosodic cues. For
each model configuration, we run 10 experiments
with different random seeds. This alleviates the
potential of making wrong conclusions due to
“lucky/unlucky” random seeds. We report both the
mean and best scores among the 10 runs.

4.1 Data Preprocessing
Switchboard (Godfrey et al., 1992) is a collec-
tion of telephone conversations between strangers,
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Model dev test α
mean best mean best

si
ng

le text 86.54 86.80 86.47 86.96 –
raw 35.00 37.33 35.78 37.70 –
innovations 80.86 81.51 80.28 82.15 –

ea
rl

y text + raw 86.46 86.65 86.24 86.53 –
text + innovations 86.53 86.77 86.54 87.00 –
text + raw + innovations 86.35 86.69 86.55 86.44 –

la
te

text + raw 86.71 87.05 86.35 86.71 0.2
text + innovations 86.98 87.48 86.68 87.02 0.5
text + raw + innovations 86.95 87.30 86.60 86.87 0.5

Table 4: F1 scores on disfluency detection when using a single set of features (text-only, raw prosody features or
innovation features), with early fusion and late fusion. “Raw” indicates the usage of original prosodic features
(Section 3.2), while “innovations” indicate the usage of innovation features (Section 3.3).

but it ’s just you know leak leak leak everywhere
people should know that that ’s an option
and i think you do accomplish more after that
i mean [ it was + it ]
interesting thing [ about gas is when + i mean about battery powered cars is ]

Table 5: Examples of sentences where prosody innovations help. Words in red are correctly labeled when using
prosody but not with text only. The first three show fluent phrases; the last two have disfluencies that are missed
without prosody.

containing 1126 files hand-annotated with dis-
fluencies. Because human transcribers are im-
perfect, the original transcripts contained errors.
MsState researchers ran a clean-up project which
hand-corrected the transcripts and word align-
ments (Deshmukh et al., 1998). In this work, we
use the MsState version of the word alignments,
which allows us to extract more reliable prosodic
features. Since the corrected version of Switch-
board does not contain updated disfluency annota-
tions, we corrected the annotations using a semi-
automated approach: we used a text-based disflu-
ency detection algorithm to re-annotate tokens that
were corrected by MsState, while keeping the rest
of the original disfluency annotations. The result is
referred to as a silver annotation. Most of the cor-
rected tokens are repetitions and restarts. To assess
the quality of the automatic mapping of disfluen-
cies, we hand-annotated a subset (6.6k tokens, 453
sentences) of the test data and evaluated the per-
formance of the silver annotation against the gold
annotation, which has an F1 score of 90.1 (Prec
90.1, Rec 90.1). Comparing the performance esti-
mates from gold and silver annotations on this sub-
set, we find that the silver annotations give some-

what lower F1 scores (2-3% absolute), both due to
lower precision and recall scores.

4.2 Results

Our experiments evaluate the use of innovations
with two popular multimodal fusion approaches:
early fusion and late fusion. Our baselines include
models with text-only, prosody cues only (raw),
and innovation features only as inputs. Since
innovations require both text and raw prosodic
cues, this baseline is multimodal. In addition, for
the late fusion experiments, we show the optimal
value of α, the interpolation weight from Equation
5. All experiment results are presented in Table 4.

We found that innovations are helpful in both
early and late fusion frameworks, while late fu-
sion performs better on average. The interpola-
tion weight α for the late fusion experiments is
high when innovations are used, which further in-
dicates that innovation features are useful in over-
all prediction. Interestingly, innovation features
alone perform surprisingly well. We also take a
closer look at the importance of joint training of
the disfluency detection system with prosody pre-
diction. To do this, we pretrain the prosody pre-
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i like to run [about + oh about ] [two + two and a half ] miles
the old-timers even the people who are technologists do n’t know how to operate
i do n’t know whether that ’s because they you know sort of give up hope
it must be really challenging to um try to juggle a job

Table 6: Examples of the sentences where prosody innovations hurt. Words in red are incorrectly labeled when
using prosody but not with text only. The first shows a disfluency missed when using prosody; the other three are
fluent regions with false detections.

diction part of the model first. Then, we train the
full model with innovation inputs while freezing
the part of the network responsible for predicting
prosodic cues. The mean F-score of this disjointly
trained model is 49.27% on the dev set, compared
to 80.86% for the jointly trained model. This re-
sult suggests that training the system end-to-end in
a multitask setup is very important.

5 Analysis

5.1 Error analysis
In order to better understand the impact of the
prosody innovations, we perform an error analysis
where we compare the predictions of two models:
a late fusion model that uses both text and innova-
tion features, and a baseline model that uses text
only. All of the analysis is done on the dev set
with the model that has the median performance
out of 10 that were trained.

First, we extract all the sentences where the
number of disfluency detection errors using the in-
novation model is lower than when using the text-
only model (168 sentences). Examples of such
sentences are presented in Table 5. By looking
at the sentences where the model with innovations
performs better, we see fluent repetitions and other
ambiguous cases where audio is useful for cor-
rectly identifying disfluencies.

On the other hand, in Table 6, we have exam-
ples of sentences that have a higher number of er-
rors when prosody is used (143 sentences). In the
first example, the labeling of “two” as fluent by the
model with prosody is arguably correct, with the
repetition indicating a range rather than a correc-
tion. The next involves a parenthetical phrase, the
start of which may be confused with an interrup-
tion point. In the last two cases, there is a prosodic
disruption and an interegnum, but no correction.

In order to understand whether incorporating
prosody through our model supports the hypothe-
ses in Section 2, we compare the performance of
two models for different categories of disfluen-

Figure 2: Histogram of innovations for word duration
and energy features for words preceding an interruption
point vs. fluent words.

cies. We found that using prosody innovations
improves detection of: non-repetition disfluencies
(from 68.2% to 73.7%), particularly for disfluen-
cies with content words (65.2% to 71.0%); long
repairs (64.0% to 72.7% and 40.0% to 64.6% for
disfluencies with length of repair greater than 3
and 5 correspondingly); and restarts (from 36.0%
to 37.4%). Prosodic innovations also help de-
crease the rate of false positives for fluent rep-
etitions: the false positives rate decreased from
46.5% to 38.4%. However, the prosody model in-
creases the false positives in other contexts, such
as in the examples in Table 6.

5.2 Innovation Predictors

In order to understand what the model actually
learns with respect to innovations, we look at in-
novation distributions for words preceding inter-
ruption points compared to fluent words. The his-
tograms are presented in Figure 2. As expected,
we see that words preceding interruption points
have atypically longer duration and lower energy.
The intonation features did not show substantial
distribution differences, probably due to the overly
simplistic word-level averaging strategy.
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6 Related Work

Most work on disfluency detection falls into three
main categories: sequence tagging, noisy-channel
and parsing-based approaches. Sequence tagging
approaches rely on BIO tagging with recurrent
neural networks (Hough and Schlangen, 2015; Za-
yats et al., 2016; Wang et al., 2016; Zayats and
Ostendorf, 2018; Lou et al., 2018). Noisy chan-
nel models operate on a relationship between the
reparandum and repair for identifying disfluen-
cies (Charniak and Johnson, 2001; Zwarts et al.,
2010). Lou and Johnson (2017) used a neu-
ral language model to rerank sentences using the
noisy channel model. Another line of work com-
bined parsing and disfluency removal tasks (Ra-
sooli and Tetreault, 2013; Honnibal and Johnson,
2014; Tran et al., 2018). Recently a transition-
based neural model architecture was proposed for
disfluency detection (Wang et al., 2017). The cur-
rent state of the art in disfluency detection (Wang
et al., 2018) uses a neural machine translation
framework with a transformer architecture and ad-
ditional simulated data. All of the models men-
tioned above rely heavily on pattern match fea-
tures, hand-crafted or automatically extracted, that
help to identify repetitions and disfluencies with
parallel syntactic structure.

While prosodic features are useful for detect-
ing interruption points (Nakatani and Hirschberg,
1994; Shriberg and Stolcke, 1997; Shriberg, 1999;
Liu et al., 2006), recent methods on disfluency
detection predominantly rely on lexical informa-
tion exclusively. An exception is (Ferguson et al.,
2015), which showed some gains using a sim-
ple concatenation of pause and word duration fea-
tures. Similar to disfluency detection, parsing has
seen little use of prosody in recent studies. How-
ever, Tran et al. (2018) recently demonstrated that
that a neural model using pause, word and rhyme
duration, f0 and energy helps in spoken language
parsing, specifically in the regions that contain dis-
fluencies.

Early fusion and late fusion are the two most
popular types of modality fusion techniques. In
recent years, more interesting modality fusion ap-
proaches were introduced, most of them where
the fusion happens inside the model (Zadeh et al.,
2017; Chen et al., 2017; Zadeh et al., 2018). Those
methods usually require the model to learn interac-
tions between modalities implicitly, by backpropa-
gating the errors based on the main objective func-

tion with respect to the task. Other multimodal
representation learning approaches learn a shared
representation between multiple modalities (An-
drew et al., 2013; Ryan Kiros, 2014; Xu et al.,
2015; Suzuki et al., 2016), often targeting unsuper-
vised translation from one modality to the other.
In our work we use innovations as a novel repre-
sentation learning approach, where our emphasis
is on looking into complementary cues rather than
similarity between multiple modalities.

7 Conclusions

In this paper, we introduce a novel approach to
extracting acoustic-prosodic cues with the goal of
improving disfluency detection, but also with the
intention of impacting spoken language process-
ing more generally. Our initial analysis of a text-
only disfluency detection system shows that de-
spite high performance of such models, there ex-
ists a big gap in the performance of text-based ap-
proaches for some types of disfluencies, such as
restarts and non-trivial or long rephrases. Thus,
prosody cues, which can be indicative of interrup-
tion points, have a potential to contribute towards
detection of more difficult types of disfluencies.
Since the acoustic-prosodic cues carry informa-
tion related to multiple phenomena, it can be diffi-
cult to isolate the cues that are relevant to specific
events, such as interruption points. In this work,
we introduce a novel approach where we extract
relevant acoustic-prosodic information using text-
based distributional prediction of acoustic cues to
derive vector z-score features, or innovations. The
innovations point to irregularities in prosody flow
that are not predicted by the text, helping to bet-
ter isolate signals relevant to disfluency detection
that are not simply redundant with textual cues.
We explore both early and late fusion approaches
to combine innovations with text-based features.
Our experiments show that innovation features are
better predictors of disfluencies compared to the
original acoustic cues.

Our analysis of the errors and of the innovation
features point to a limitation of the current work,
which is in the modeling of F0 features. The cur-
rent model obtains word-based F0 (and energy)
features by simply averaging the values over the
duration of the word, which loses any distinctions
between rising and falling F0. By leveraging poly-
nomial contour models, we expect to improve both
intonation and energy features, which we hope
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will reduce some of the false detections associ-
ated with emphasis and unexpected fluent phrase
boundaries.

An important next step is to test the system us-
ing ASR rather than hand transcripts. It is pos-
sible that errors in the transcripts could hurt the
residual prediction, but if prosody is used to refine
the recognition hypothesis, this could actually lead
to improved recognition. Finally, we expect that
the innovation model of prosody can benefit other
NLP tasks, such as sarcasm and intent detection,
as well as detecting paralinguist information.
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