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Abstract

In this paper, we deploy binary stochastic neu-
ral autoencoder networks as models of infant
language learning in two typologically unre-
lated languages (Xitsonga and English). We
show that the drive to model auditory per-
cepts leads to latent clusters that partially align
with theory-driven phonemic categories. We
further evaluate the degree to which theory-
driven phonological features are encoded in
the latent bit patterns, finding that some (e.g.
[±approximant]), are well represented by the
network in both languages, while others (e.g.
[±spread glottis]) are less so. Together, these
findings suggest that many reliable cues to
phonemic structure are immediately available
to infants from bottom-up perceptual charac-
teristics alone, but that these cues must eventu-
ally be supplemented by top-down lexical and
phonotactic information to achieve adult-like
phone discrimination. Our results also suggest
differences in degree of perceptual availabil-
ity between features, yielding testable predic-
tions as to which features might depend more
or less heavily on top-down cues during child
language acquisition.

1 Introduction

Distinctive features like [±voice] and [±sonorant]
have been a core construct of phonological the-
ory for many decades (Trubetskoy, 1939; Jakob-
son et al., 1951; Chomsky and Halle, 1968;
Clements, 1985). They have been used in au-
tomatic speech recognition (Livescu and Glass,
2004), and psycholinguistic evidence suggests that
they are cognitively available during language ac-
quisition (Kuhl, 1980; White and Morgan, 2008).
Nonetheless, distinctive features are not directly
observed by humans; they are abstractions that
must be inferred from dense perceptual infor-
mation (sound waves) during language acquisi-
tion and comprehension, which raises questions

about how they are learned and recognized. In
adults, phonological comprehension is aided by
top-down lexical and phonotactic (i.e. sound se-
quencing) constraints. For example, the classic
phonemic restoration effect (Warren, 1970) shows
that adults infer missing phonemes from context
with such ease that they often fail to notice when
acoustic cues to phone identity are erased. How-
ever, infants first learning their phonemic cate-
gories have not yet acquired reliable top-down lex-
ical and phonotactic models and must rely more
heavily on bottom-up perceptual information. To
a learner faced with the immense challenge of dis-
covering structure in dense perceptual input, do
theory-driven phonological features “stand out” or
are they swamped by noise? In this paper, we ad-
dress this question using an unsupervised compu-
tational acquisition model.

Previous models of phonological category in-
duction have emphasized the importance of top-
down information (information about the con-
texts in which phonemes occur) (Peperkamp et al.,
2006; Swingley, 2009; Feldman et al., 2009a,
2013a,b; Moreton and Pater, 2012a,b; Martin
et al., 2013; Pater and Moreton, 2014; Frank
et al., 2014; Doyle et al., 2014; Doyle and Levy,
2016). But to prevent the acquisition process
from being circular, the learner cannot operate
solely on top-down information — the acoustic
signal must provide some evidence for the phone-
mic categories. We hypothesize that the same
must be true for at least some phonological fea-
tures (e.g. [±nasal], [±lateral]), but previous work
on unsupervised speech processing has inferred
phonological structure from spoken utterances us-
ing either (1) discrete transition-based architec-
tures (Varadarajan et al., 2008; Jansen and Church,
2011; Lee and Glass, 2012), which do attempt
to discover featurally-related natural classes, or
(2) continuous deep neural (Kamper et al., 2015,
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2017a; Renshaw et al., 2015) architectures, whose
internal representations are difficult to interpret.
Furthermore, these approaches do not separate the
contributions of top-down sequential information
from bottom-up acoustic properties of segments,
making it difficult to assess the relative importance
of these information sources throughout the acqui-
sition process.

By contrast, our model attends exclusively to
phone-internal acoustic patterns using a deep neu-
ral autoencoder with a discrete embedding space
composed of binary stochastic neurons (BSNs)
(Rosenblatt, 1958; Hinton, 2012; Bengio et al.,
2013; Courbariaux et al., 2016). BSNs allow us
to exploit (1) the interpretability of discrete repre-
sentations, (2) the decomposability of phone seg-
ments into phonological features, and (3) and the
power of deep neural function approximators to
relate percepts and their representations. Since ev-
ery token is labeled with a binary latent code, it is
possible to evaluate the model’s recovery not only
of phonological categories but also of phonologi-
cal features. Featural representations can encode
distributional facts about which processes apply
to which classes of sounds in ways that cross-cut
the phonological space, rather than simply group-
ing each segment with a set of similar neighbors
(LeCun et al., 2015). By focusing on the acoustic
properties of sounds themselves rather than their
sequencing in context, our model enables explo-
ration of two questions about the data available
to young learners whose training signal must pri-
marily be extracted from bottom-up perceptual in-
formation: (1) to what extent can phoneme cat-
egories emerge from a drive to model auditory
percepts, and (2) how perceptually available are
theory-driven phonological features (that is, how
easily can they be extracted directly from low-
level acoustic percepts)?

Our results show (a) that phonemic categories
emerge naturally but imperfectly from perceptual
reconstruction and (b) that theory-driven features
differ in their degree of perceptual availability. To-
gether, these findings suggest that many reliable
cues to phonemic structure are immediately avail-
able to infants from bottom-up perceptual char-
acteristics alone, but that these cues may eventu-
ally need to be supplemented by top-down lexical
and phonotactic information to achieve adult-like
phone discrimination (Feldman et al., 2013a; Pater
and Moreton, 2014). Our findings also suggest hy-

potheses as to precisely which kinds of phonologi-
cal features are more or less perceptually available
and therefore might depend more or less heav-
ily on top-down cues for acquisition. Such dif-
ferences might suggest relative timelines at which
different features might be appropriated in support
of phonemic, phonotactic, and lexical generaliza-
tion, providing a rich set of testable hypotheses
about child language acquisition.

2 Background and Related Work

2.1 Unsupervised Speech Processing

The present paper has a strong connection to re-
cent work on unsupervised speech processing, es-
pecially the Zerospeech 2015 (Versteegh et al.,
2015) and 2017 (Dunbar et al., 2017) shared tasks.
Participating systems (Badino et al., 2015; Ren-
shaw et al., 2015; Agenbag and Niesler, 2015;
Chen et al., 2015; Baljekar et al., 2015; Räsänen
et al., 2015; Lyzinski et al., 2015; Zeghidour et al.,
2016; Heck et al., 2016; Srivastava and Shrivas-
tava, 2016; Kamper et al., 2017b; Chen et al.,
2017; Yuan et al., 2017; Heck et al., 2017; Shi-
bata et al., 2017; Ansari et al., 2017a,b) perform
unsupervised ABX discrimination and/or spoken
term discovery on the basis of unlabeled speech
alone. The design and evaluation of these and
related systems (Kamper et al., 2015, 2017a; El-
sner and Shain, 2017; Räsänen et al., 2018) are
oriented toward word-level modeling. As such,
our focus on the perceptual availability of phono-
logical features is orthogonal to but complemen-
tary with this line of research. Since distinctive
features are important for indexing lexical con-
trasts, especially between highly confusable words
(e.g. onset voicing alone distinguishes sap and zap
in English), studying the perceptual availability
of distinctive features to an unsupervised learner
may help improve the design and analysis of low-
resource speech processing systems.

To our knowledge, the task most closely re-
lated to the current paper is unsupervised phone
discovery. Some studies in this tradition seg-
ment speech into phone-like units without cluster-
ing them (Dusan and Rabiner, 2006; Qiao et al.,
2008), while others cluster small subsets of pre-
segmented sounds (usually vowels) using para-
metric models (mixture-of-Gaussians) (Vallabha
et al., 2007; Feldman et al., 2013a; Antetomaso
et al., 2017). Further work combines these tasks
and extends the approach to cover the entire acous-
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tic space (Lee and Glass, 2012). However, for
a variety of reasons, the Lee and Glass (2012)
model does not straightforwardly support evalu-
ation of the perceptual availability of phonologi-
cal features. First, they do not quantitatively eval-
uate the discovered phoneme clusters. Second,
the model incorporates phonotactics through tran-
sition probabilities, making it difficult to disentan-
gle the contributions of top-down and bottom-up
information to the learning process. Third, the
clustering model is not feature-based, but instead
consists of atomic categories, each defining a dis-
tinct generative process for acoustics. This design
is at odds with the widely held view in linguis-
tic theory that phonemes are not inscrutable atoms
of the phonological grammar, but instead labels
for bundles of features that define natural classes
(Clements, 1985). Our approach is therefore more
appropriate to the question at hand.

2.2 Distinctive Features and Phonology
Acquisition

There is a great deal of evidence that many phono-
logical contrasts are perceptually available from a
very early stage (Eimas et al., 1971; Moffitt, 1971;
Trehub, 1973; Jusczyk and Derrah, 1987; Eimas
et al., 1987). However, studies of infant phone
discrimination typically use carefully-enunciated
laboratory stimuli, which have been shown to be
substantially easier to discriminate than phones in
naturalistic utterances (Feldman et al., 2013a; An-
tetomaso et al., 2017). It is thus likely that infer-
ring phone categories from acoustic evidence is
a persistently challenging task, and studies have
found language-specific tuning of the speech per-
ception system from fetal stages (Moon et al.,
2013) through the first year (Kuhl et al., 1992;
Werker and Tees, 1984) and even all the way into
the preteen years (Hazan and Barrett, 2000).

Experiments show that these contrasts are ex-
pressed, not simply as oppositions between par-
ticular categories, but as a featural system, even
in early infancy. Evidence of featural effects has
been found in the phone discrimination patterns of
both adults (Chládková et al., 2015) and infants
(Kuhl, 1980; Hillenbrand, 1985; White and Mor-
gan, 2008). Studies have also shown that infants
generalize new distinctions along featural dimen-
sions (Maye et al., 2008b; Cristià et al., 2011).
Given infants’ early detection and use of some fea-
tural contrasts, we hypothesize that there is strong

evidence in the acoustic signal for these distinc-
tions, which may then bootstrap the acquisition
of phonotactic and lexical patterns (Beckman and
Edwards, 2000).

Experiments also suggest asymmetries in the
perceptual availability of features. For example, a
consonant-vowel distinction appears to be an im-
portant early foothold in phonology acquisition:
vowel/consonant discrimination emerges early in
infant speech processing (Dehaene-Lambertz and
Dehaene, 1994), language-specificity in percep-
tion follows different timecourses for consonants
(Werker and Tees, 1984) and vowels (Kuhl et al.,
1992), and vowels and consonants play dis-
tinct roles in lexical access vs. rule discovery
in children (Nazzi, 2005; Pons and Toro, 2010;
Hochmann et al., 2011). Young infants have
also been shown to be sensitive to voicing con-
trasts (Lasky et al., 1975; Aslin et al., 1981; Maye
et al., 2008b). Features that distinguish consonant-
like from vowel-like segments or voiced from un-
voiced segments may thus be highly available to
young learners. Infants struggle by comparison
with other kinds of phone discrimination tasks,
including certain stop-fricative contrasts (Polka
et al., 2001) and certain place distinctions within
nasal (Narayan et al., 2010) and sibilant (Nit-
trouer, 2001; Cristià et al., 2011) segments. Even
adults struggle with fricative place discrimination
from strictly acoustic cues (McGuire and Babel,
2012). Similar asymmetries emerge from our un-
supervised learner, as shown in Section 4.2.

Our computational acquisition model comple-
ments this experimental research in several ways.
First, its internal representations, unlike those of
human infants, are open to detailed analysis, even
when exposed to naturalistic language stimuli.
Second, we can perform cross-linguistic compar-
isons using readily available corpora without re-
quiring access to a pool of human subjects in
each language community. Third, our model pro-
vides global and graded quantification of the per-
ceptual availability of distinctive features in natu-
ral speech, permitting us to explore relationships
between features in a way that is difficult to do
through experiments on infants, which are gener-
ally constrained to same-different contrasts over a
small set of manipulations.
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2.3 Cognition and the BSN Autoencoder

The reconstruction objective used here is not
merely a convenient supervision signal. There
is reason to believe that people actively model
their perceptual worlds (Mamassian et al., 2002;
Feldman, 2012; Singer et al., 2018; Yan et al.,
2018), and autoassociative structures have been
found in several brain areas (Treves and Rolls,
1991; Rolls and Treves, 1998). There is also ev-
idence that phonetic comprehension and produc-
tion can be acquired symbiotically through a sen-
sorimotor loop relating acoustic perception and
articulator movements (Houde and Jordan, 1998;
Fadiga et al., 2002; Watkins et al., 2003; Wil-
son et al., 2004; Pulvermüller et al., 2006; Kröger
et al., 2009; Bolhuis et al., 2010; Kröger and Cao,
2015; Bekolay, 2016). Finally, evidence suggests
that working memory limitations impose compres-
sion pressures on the perceptual system that favor
sparse representations of dense acoustic percepts
(Baddeley and Hitch, 1974) and may guide infant
language acquisition (Baddeley et al., 1998; El-
sner and Shain, 2017). It is thus reasonable to sup-
pose that perceptual reconstruction — such as that
implemented by an autoencoder architecture — is
immediately available as a learning signal to in-
fants who still lack reliable guidance from phono-
tactics or the lexicon.

Our use of BSNs follows the spirit of the ear-
liest work on artificial neural networks (Rosen-
blatt, 1958). Rosenblatt’s perceptron was de-
signed to study learning and decision-making in
the brain and therefore used binary neurons to
model the discrete firing behavior of their bio-
logical counterparts. This tradition has been re-
placed in deep learning research with differen-
tiable activation functions that support supervised
learning through backpropagation of error but are
less biologically plausible. Our work takes advan-
tage of the development of effective estimators for
the gradients of discrete neurons (Williams, 1992;
Hinton, 2012; Bengio et al., 2013; Courbariaux
et al., 2016; Chung et al., 2017) to wed these two
traditions, exploiting BSNs to encode the learner’s
latent representation of auditory percepts and deep
networks to map between percepts and their latent
representations. In addition to the greater similar-
ity of BSNs to biological neurons, the use of dis-
crete featural representations is motivated by ex-
perimental evidence that human phone perception
(including that of infants) is both featural (White

and Morgan, 2008; Chládková et al., 2015) and
categorical (Liberman et al., 1961; Eimas et al.,
1987; Harnad, 2003; Feldman et al., 2009b).

Experiments reported here use an 8-bit binary
segment encoding. Eight bits is the the lower
bound on binary encodings that are sufficiently
expressive to capture all segmental contrasts in
any known language (Mielke, 2009). Although
theory-driven taxonomies generally contain more
than eight distinctive features, these taxonomies
are known to be highly redundant (Cherry et al.,
1953). For example, the phonological featuriza-
tion of the Xitsonga segments analyzed in our
experiments contains 26 theory-driven features
(Hayes, 2011; Hall et al., 2016), yielding up to
226 = 67108864 distinct segment categories, far
more than the number of known segment types in
Xitsonga or even the number of training instances
in our data. By entailment, any representation that
can identify all segment types in a language can
also identify all featural contrasts that discriminate
those types, regardless of how the feature space is
factored. For this reason, we consider a phono-
logical feature to be represented if it can be de-
tected by an arbitrary function of the latent bits
(Section 4.2), without assuming that the true and
discovered feature spaces will factor identically.

2.4 Supervised Acoustic Feature Learning

Our study shares an interest in phonological fea-
tures with previous work in automatic speech
recognition attempting to discover mappings be-
tween acoustics and hand-labeled featural rep-
resentations (Liu, 1996; Bitar and Espy-Wilson,
1996; Frankel and King, 2001; Kirchhoff et al.,
2002; Livescu and Glass, 2004; Mitra et al., 2011,
inter alia). While these results provide evidence
that such a mapping is indeed learnable in an ora-
cle setting, they rely on a supervision signal (direct
annotation of the target representations) to which
children do not have access. Our unsupervised
approach measures perceptual availability of fea-
tures in a more realistic learning scenario.

3 Experimental Setup

3.1 Model

The simulated learner used in this study is a deep
neural autoencoder with an 8-bit layer of BSNs
as its principle information bottleneck, depicted in
Figure 1. The model processes a given phone seg-
ment by encoding the segment’s acoustic informa-
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Figure 1: The binary stochastic neural autoencoder ar-
chitecture with encoder layers E1,...,e and decoder lay-
ers D1,...,d. For expository purposes, acoustics are rep-
resented as pressure waves. In reality, the system uses
frames of Mel frequency cepstral coefficients.

tion into a bit pattern and then reconstructing the
acoustic information from the encoded bit pattern.
It is thus incentivized to use the latent bits in a
systematic featural manner, encoding similar seg-
ments in similar ways.

The encoder and decoder are both deep feed-
foward residual networks (He et al., 2016).1 To
enable feedforward autoencoding of sequential
data, phone segments are clipped at 50 timesteps
(500ms), providing complete coverage of over
99% of the phone segments in each corpus. Given
F -dimensional input acoustic frames and a maxi-
mum input length of M timesteps, the weight ma-
trix of each encoder layer is ∈ RFM×FM except
the final layer (∈ RFM×8). Given R-dimensional
reconstructed acoustic frames and a maximum
output length of N timesteps, the weight matrix
of each decoder layer is ∈ RRN×RN except the
first layer (∈ R8×RN ). Both the encoder and de-
coder contain initial and final dense transforma-
tion layers, with three residual layers in between.
Each residual layer contains two dense layers. All
internal layers use tanh activations and are batch-
normalized with a decay rate of 0.9 (Ioffe and
Szegedy, 2015).

Given that the capacity for speaker adaptation
— short-term accommodation of idiosyncrasies in
individuals’ productions — has been shown for

1Feedforward networks are used both for computational
reasons and because they dramatically outperformed recur-
rent networks in initial experiments, especially when RNN’s
were used for decoding. We hypothesize that this is due to
the lack of direct access to the encoder timesteps, such as
that permitted by sequence to sequence models with attention
(Bahdanau et al., 2015). Attention is not viable for our goals
because it defeats the purposes of an autoencoder by allowing
the decoder to bypass the encoder’s latent representation.

both adults (Clarke and Garrett, 2004; Maye et al.,
2008a) and children (Kuhl, 1979; van Heugten
and Johnson, 2014), we equip the models with a
16-dimensional speaker embedding, which is con-
catenated both to the acoustic input frames and to
the latent bit vector.

Each BSN of the latent encoding is associated
with a firing probability ∈ [0, 1] parameterized by
the encoder network. The neural activation can
be discretized either deterministically or by sam-
pling. The use of BSNs to encode segments is
a problem for gradient-based optimization since
it introduces a non-differentiable discrete deci-
sion into the network’s latent structure. We over-
come this problem by approximating missing gra-
dients using the straight-through estimator (Hin-
ton, 2012; Bengio et al., 2013; Courbariaux et al.,
2016) with slope-annealing (Chung et al., 2017).
Slope annealing multiplies the pre-activations a by
a monotonically increasing function of the training
iteration t, incrementally decreasing the bias of the
straight-through estimator. We use the following
annealing function:

a← a(1 + 0.1t)

We discretize the latent dimensions using
Bernoulli sampling during training and threshold-
ing at 0.5 during evaluation.

The models are implemented in Tensorflow
(Abadi et al., 2015) and optimized using Adam
(Kingma and Ba, 2014) for 150 training epochs
with a constant learning rate of 0.001. The source
code is available at https://github.com/
coryshain/dnnseg.

3.2 Data

We apply our model to the Xitsonga and English
speech data from the Zerospeech 2015 shared
task. The Xitsonga data are drawn from the
NCHLT corpus (De Vries et al., 2014) and contain
2h29m07s of read speech from 24 speakers. The
English data are drawn from the Buckeye Corpus
(Pitt et al., 2005) and contain 4h59m05s of conver-
sational speech from 12 speakers. While neither
of these corpora represent child-directed speech,
they both consist of fluently produced word to-
kens in context, rather than isolated productions
as in many previous laboratory studies with infants
(Eimas et al., 1971; Werker and Tees, 1984; Kuhl
et al., 1992, inter alia). We pre-segment the audio
files using time-aligned phone transcriptions pro-
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Xitsonga English
Model H C V H C V

Baseline 0.023 0.013 0.016 0.006 0.004 0.005
Sigmoid 0.281 0.191 0.227 0.246 0.166 0.198

Sigmoid+Speaker 0.302 0.185 0.230 0.205 0.180 0.192
BSN 0.360 0.206 0.262 0.240 0.161 0.193

Our model (BSN+Speaker) 0.462 0.268 0.339 0.270 0.180 0.216

Table 1: Phone clustering scores. Homogeneity (H), completeness (C) and V-measure (V) across the Zerospeech
2015 Xitsonga and English challenge datasets.

vided in the challenge repository. The gold seg-
ment labels are used in clustering evaluation met-
rics, but the unsupervised learner never has access
to them. Data selection criteria and annotation
procedures are are described in more detail in Ver-
steegh et al. (2015).

Prior to fitting, we apply a standard spectral pre-
processing pipeline from automatic speech recog-
nition: raw acoustic signals are converted into 13-
dimensional vectors of Mel frequency cepstral co-
efficients (MFCCs) (Mermelstein, 1976) with first
and second order deltas, yielding 39-dimensional
frames sequenced in time. Each frame covers
25ms of speech, and frames are spaced 10ms
apart. The deltas are used by the encoder but
stripped from the reconstruction targets. Fol-
lowing preceding work showing improved un-
supervised clustering when segments are given
fixed-dimensional acoustic representations, thus
abstracting away from the variable temporal dila-
tion in natural speech (Kamper et al., 2017a,b), we
resample all reconstruction targets to a length of
25 frames.

This pipeline instantiates some standard as-
sumptions about the perceptual representations
underlying human speech processing. Alterna-
tive representations — for instance, articulatory
representations (Liu, 1996; Frankel and King,
2001; Kirchhoff et al., 2002; Livescu and Glass,
2004) or other spectral transforms (Zwicker, 1961;
Makhoul, 1975; Hermansky, 1990; Hermansky
et al., 1991; Coifman and Wickerhauser, 1992;
Shao et al., 2009) — have been proposed as alter-
natives to MFCCs. Our results concerning percep-
tual availability are of course tied to our input rep-
resentation, since phenomena that are poorly dis-
tinguished by MFCCs have less effect on our au-
toencoder loss function. Nonetheless, MFCCs are
known to produce high-quality supervised speech
recognizers (Zheng et al., 2001; Hinton et al.,
2012), and we therefore leave optimization of the
representation of speech features to future work.

4 Results and Discussion

4.1 Phonemic Categories Partially Emerge
from Modeling Auditory Percepts

(a) Xitsonga (b) English

Figure 2: Mean activation pattern by gold segment la-
bel from the BSN model with speaker embeddings,
with darker color indexing higher average activation.

The first research question posed in the intro-
duction was to what extent theory-driven phoneme
categories emerge from a drive to model audi-
tory percepts. We explore this question by eval-
uating the degree of correspondence between the
autoencoder hidden states and the gold phone la-
bels. Table 1 reports learning outcomes using
the information theoretic measures homogeneity
(H), completeness (C), and V-measure (V) for
unsupervised cluster evaluation (Rosenberg and
Hirschberg, 2007). All three metrics range over
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the interval [0, 1], with 1 indexing perfect perfor-
mance. As shown in the table, our model yields
dramatically better clustering performance than a
random baseline that uniformly draws cluster IDs
from a pool of 256 categories: we obtain 2118%
and 4500% relative V-measure improvements in
Xitsonga and English, respectively. At the same
time, clustering performance is far from perfect.
This result indicates that perceptual modeling —
an immediately-available learning signal in infant
language acquisition — both (1) drives the learner
a long way toward phoneme acquisition, and (2)
is insufficient to fully identify phone categories in
our learners. One likely explanation for the lat-
ter is evidence from cognitive science that phono-
tactic and lexical information (to which our learn-
ers do not have access) supplement perception as
the acquisition process unfolds (Feldman et al.,
2013a; Pater and Moreton, 2014).

The middle rows of Table 1 show ablation re-
sults from using non-discrete sigmoid neurons
rather than BSNs in the encoding layer (Sigmoid
vs. BSN)2 and/or removing the speaker adapta-
tion feature (i.e. removing speaker embeddings).
As shown, the classification performance of our
model benefits substantially from the use of BSN
encodings with speaker adaptation, especially on
Xitsonga. Note that the reconstruction losses of
the sigmoid encoders are better than those of the
BSN encoders despite their degraded classification
performance. This is to be expected: sigmoid neu-
rons have greater representational capacity than
binary neurons, since they can encode information
through continuous gradations. They are therefore
more capable of memorizing idiosyncratic prop-
erties of the input and are less incentivized to dis-
cover generalizable latent classes. The ablation re-
sults thus suggest that speaker adaptation and cat-
egorical perception support the discovery of lin-
guistically relevant abstractions.

4.2 Distinctive Features Differ in Perceptual
Availability

The second research question posed in the intro-
duction was to what extent distinctive features
differ in perceptual availability. We explore this
question in two ways.

First, we qualitatively assess the linguistic plau-
sibility of the natural clustering in the latent

2To obtain class labels from the sigmoid encoder, we
rounded the activations. Rounding was only used for eval-
uation and had no impact on the fitting procedure.

bits. Figure 2 visualizes this clustering based
on correlations between the average of the bit
patterns across all instances of each gold phone
type for both datasets. If the unsupervised clas-
sifier ignored phonological structure altogether,
the plots would be roughly uniform in color, and
if the unsupervised classifier perfectly identified
phonemes, the plots would consist entirely of fully
light or fully dark cells, with unique bit patterns
associated with each phone type. As shown, the
reality falls in between: while the visualized clas-
sifications are far from perfect, they nonetheless
contain a great deal of structure and suggest the
presence of rough natural classes in both lan-
guages, especially of affricates, nasals, sibilants,
and approximants. Our learners also replicate
infants’ difficulty in discriminating some nasal
and fricative place features (Polka et al., 2001;
Nittrouer, 2001; Narayan et al., 2010), assigning
highly similar representations to many subtypes of
nasals and fricatives across places of articulation
(see e.g. similar mean bit patterns of /n/ vs. /n/ and
/s/ vs. /s/ in both languages).

Second, we quantitatively evaluate the degree
to which theory-driven features like [±voice] are
recoverable from the network’s latent represen-
tations. To do so, we map gold phone la-
bels into binary distinctive feature clusters from
Hayes (2011) using Phonological CorpusTools
(Hall et al., 2016). One possible form of analysis
would be to search for individual correspondences
between distinctive features and the model’s latent
dimensions. However, this is likely to underes-
timate the degree of feature learning because the
deep decoder can learn arbitrary logics on the la-
tent bit patterns, a necessary property for fitting
complex non-linear mappings from latent features
to acoustics. We instead evaluate distinctive fea-
ture discovery by fitting random forest classifiers
that predict theory-driven features using the latent
bit patterns as inputs. We can then use classifier
performance to assess the degree to which a given
distinctive feature can be recovered by a logical
statement on the network’s latent bits. The clas-
sifiers were fitted using 5-fold cross-validation in
Scikit-learn (Pedregosa et al., 2011) with 100 esti-
mators, balanced class weighting, and an entropy-
based split criterion.

Results are given in Tables 2 and 3. As shown,
(1) there are large differences in perceptual avail-
ability between features, and (2) relative avail-
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Feature P R F
voice 0.9767 0.9033 0.9386

sonorant 0.9249 0.9085 0.9166
continuant 0.9492 0.7936 0.8645

consonantal 0.8314 0.8915 0.8604
approximant 0.8998 0.8192 0.8576

syllabic 0.8278 0.8523 0.8398
dorsal 0.8935 0.7703 0.8273

strident 0.6991 0.9594 0.8089
low 0.7175 0.8978 0.7976

front 0.6590 0.8101 0.7268
high 0.5875 0.7882 0.6732
back 0.5352 0.8527 0.6577

round 0.5332 0.8551 0.6568
labial 0.5669 0.7725 0.6539

coronal 0.5382 0.8301 0.6530
tense 0.5208 0.8115 0.6344

delayed release 0.5468 0.7226 0.6225
anterior 0.4078 0.8355 0.5481

nasal 0.3635 0.8796 0.5144
distributed 0.2459 0.8537 0.3819

constricted glottis 0.1762 0.9007 0.2948
lateral 0.1536 0.8062 0.2581

labiodental 0.0934 0.7980 0.1672
trill 0.0809 0.7401 0.1458

spread glottis 0.0671 0.5856 0.1204
implosive 0.0041 0.4041 0.0081

Table 2: Perceptual availability by feature in Xitsonga

Feature P R F
voice 0.9244 0.8567 0.8893

sonorant 0.8544 0.8862 0.8700
approximant 0.8005 0.8370 0.8183

continuant 0.8577 0.7669 0.8098
consonantal 0.8249 0.7357 0.7777

syllabic 0.6624 0.8426 0.7417
dorsal 0.7046 0.7114 0.7080

strident 0.5505 0.9027 0.6839
coronal 0.5758 0.7066 0.6345
anterior 0.5251 0.7280 0.6101

delayed release 0.4413 0.7374 0.5521
front 0.4322 0.7407 0.5459
high 0.3841 0.6931 0.4943

tense 0.3275 0.7101 0.4483
back 0.3128 0.7504 0.4416
nasal 0.2796 0.7544 0.4080
labial 0.2541 0.7077 0.3739

low 0.2410 0.7787 0.3680
distributed 0.2203 0.6881 0.3337
diphthong 0.2039 0.8051 0.3254

round 0.1665 0.7012 0.2692
lateral 0.1484 0.8333 0.2519

labiodental 0.0787 0.6756 0.1410
spread glottis 0.0377 0.6683 0.0714

Table 3: Perceptual availability by feature in English

ability of features is remarkably consistent be-
tween these unrelated languages, suggesting that
the models are tapping into generalized percep-
tual patterns. The best-learned feature in both lan-
guages is [±voice], which is consistent with early
evidence of voicing sensitivity in infants (see Sec-
tion 2.2). Below this, the features [±sonorant],
[±continuant], [±consonantal], [±approximant],
and [±syllabic] are faithfully recovered in both
languages. All of these features distinguish
prototypical consonants from prototypical vow-
els but differ in their treatment of edge cases
like nasals, liquids, and glides. Thus, sim-
ilarly to the infant subjects discussed in Sec-
tion 2.2, the model finds the consonant-vowel
contrast to be highly available. Like human
infants, our computational learner finds certain
consonantal place and manner features relatively
more difficult, although the features [±dorsal],
[±coronal], [±strident] and [±delayed release]
are also fairly well recovered in both languages.
By contrast, both models poorly capture features
like [±lateral], [±labiodental], [±distributed],
[±nasal], [±constricted glottis], [±spread glottis],
and [±implosive],3 suggesting that these features
are more difficult to discover bottom-up and may

3Delayed release: affricates, constricted glottis: ejectives;
spread glottis: glottal frication (e.g. aspirated stops).

therefore be more dependent on phonotactic and
lexical constraints for acquisition.4 This finding
aligns with the acquisition literature in suggesting
that there may be substantial differences in percep-
tual availability between different place and man-
ner features (see Section 2.2).

In addition to these cross-linguistic similarities,
the models also reveal important differences be-
tween Xitsonga and English. For example, the two
languages differ in the relative availability of fea-
tures that distinguish vowels vs. features that dis-
tinguish consonants. In English, vowel features
like [±front], [±high], and [±back] are substan-
tially less well learned than consonant features
like [±coronal], [±anterior], and [±delayed re-
lease], while the opposite holds in Xitsonga. We
hypothesize that this is due to the fact that there
are more vowels and fewer consonants in English
than in Xitsonga: having fewer distinctions might
reduce the degree of “crowding“ in the articula-
tory space, increasing perceptual contrast between
phone types (Liljencrants and Lindblom, 1972).

4Note that we are not suggesting that e.g. [±spread glot-
tis] cannot be detected in speech. Our claim is rather that
acoustic cues to [±spread glottis] are less pronounced and/or
less reliable than cues to e.g. [±voice] and therefore perhaps
more difficult to exploit in early infancy, since our autoen-
coder model does not find them particularly useful for per-
ceptual reconstruction.
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Finally, note that the cluster maps in Figure 2
and the feature recovery data in Tables 2 and 3 pro-
vide complementary perspectives on the learned
representations. For example, it may at first seem
surprising that the feature [±nasal] is recovered
relatively poorly in both languages, given that
nasals are well clustered in Figure 2. This discrep-
ancy indicates that nasal segments are represented
similarly to each other but also similarly enough to
other segments that they are not reliably differen-
tiated as a class. Conversely, the voicing feature is
well recovered in both languages despite the lack
of a visible cluster of voiced segments. This indi-
cates that voicing is reliably encoded in the latent
bits, even if the representation as a whole is domi-
nated by other kinds of information.

5 Conclusion

In this paper, we used binary stochastic neural au-
toencoders to explore the perceptual availability
of (1) theory-driven phonemic categories and (2)
theory-driven phonological features, based only
on the acoustic properties of segments. We found
that phonemic categories exert substantial influ-
ence on a learner driven to model its auditory
percepts, but that additional information — es-
pecially phonotactic and lexical (Feldman et al.,
2013a) — is likely necessary for full adult-like
phone discrimination. We also found asymmetries
in the perceptual availability of phonological fea-
tures like [±voice] and [±nasal] and showed that
these asymmetries reflect attested patterns of in-
fant phone discrimination. Our model both repli-
cates broad trends in the child acquisition litera-
ture (successful consonant-vowel and voicing dis-
crimination, relatively less successful discrimina-
tion of various place and manner features) and
sheds new light on potential relationships between
auditory perception and language acquisition: the
overall cline of perceptual availability revealed by
the model in Tables 2 and 3 suggests a range of
testable hypotheses about the role of perception in
infant speech processing.
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A Phonological feature definitions

We adopt the phonological feature definitions pre-
sented in Hayes (2011). For full exposition of the
features and their motivations, we refer readers to
the source. However, for convenience, we provide
the following brief (and in some cases oversimpli-
fied) definitions based on Hayes (2011):

• syllabic: Vowels are [+syllabic], others are
[-syllabic]

• consonantal: Vowels and glides are
[-consonantal], others are [+consonantal]

• approximant: Vowels, liquids, and
glides are [+approximant], others are
[-approximant]
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(a) Phonemes (b) Features

Figure 3: Xitsonga phoneme and feature distributions.

• sonorant: Vowels, liquids, glides, and nasals
are [+sonorant], others are [-sonorant]

• continuant: Stops and affricates are
[-continuant], others are [+continuant]

• delayed release: Affricates and frica-
tives are [+delayed release], others are
[-delayed release]

• trill: Trills are [+trill], others are [-trill]

• front: Front vowels and fronted velars are
[+front], others are [-front]

• back: Back vowels and back velars are
[+back], others are [-back]

• high: High vowels and velars are [+high],
others are [-high]

• low: Low vowels and pharyngeals are
[+low], others are [-low]

• tense: Tense vowels are [+tense], others are
[-tense]

• round: Rounded vowels and rounded labial
consonants are [+round], others are [-round]

• nasal: Nasal consonants and (contrastively)
nasalized vowels are [+nasal], others are

[-nasal]

• labial: Sounds articulated with the lips are
[+labial], others are [-labial]

• coronal: Sounds articulated with the tongue
blade/tip are [+coronal], others are [-coronal]

• dorsal: Sounds articulated with the tongue
body are [+dorsal], others are [-dorsal]

• anterior: Coronals articulated at the alveo-
lar ridge or forward are [+anterior], others are
[-anterior]

• distributed: Coronals articulated with the
tongue blade are [+distributed], others are
[-distributed]

• strident: Sibilants (i.e. coronal fricatives
and affricates) are [+strident], others are
[-strident]

• lateral: Sounds with lateral oral closure
(open at edges, like [l]) are [+lateral], others
are [-lateral]

• labiodental: Sounds that are articulated by
touching the lower lip to the upper teeth are
[+labiodental], others are [-labiodental]
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(a) Phonemes (b) Features

Figure 4: English phoneme and feature distributions.

• voice: Voiced sounds are [+voice], others are
[-voice]

• spread glottis: [h], [h], and (contrastively)
aspirated consonants are [+spread glottis],
others are [-spread glottis]

• constricted glottis: Ejectives and glottal
stops are [+constricted glottis], others are
[-constricted glottis]

• implosive: Implosives are [+implosive], oth-
ers are [-implosive]

B Xitsonga Phoneme Featurization

To the best of our knowledge, the gold Xitsonga
phone transcriptions provided by the Zerospeech
2015 dataset use a non-standard pronunciation al-
phabet that is undocumented but isomorphic to the
NCHLT transcription convention. In order to ex-
tract distinctive features for the Xitsonga phone
labels, we hand-mapped the Zerospeech labels
onto NCHLT labels by cross-referencing the Ze-
rospeech phone sequences, the Zerospeech ortho-
graphic word sequences, and the NCHLT pronun-
ciation dictionary, searching for systematic cor-
respondences between Zerospeech and NCHLT

transcription practices. Once the Zerospeech-to-
NCHLT mapping was obtained, we used the In-
ternational Phonetic Alphabet (IPA) phone labels
provided by NCHLT to look up distinctive fea-
tures in the Phonological CorpusTools (PCT) fea-
ture maps (Hall et al., 2016). Some IPA labels
from NCHLT were not found in the PCT database,
and for those we used the following featurization
rules:

• Consonants with palatal offglides: We used
the features associated with the non-offglide
consonant and switched on the approximant,
dorsal, high, front, and tense features.

• Aspirated consonants: We used the features
associated with the non-aspirated consonant
and switched on the spread glottis feature.

• Ejective consonants: We used the features
associated with the non-ejective consonant
and switched on the constricted glottis fea-
ture.

• Voiceless alveolar lateral stops: We used
the features associated with voiceless alveo-
lar lateral affricates and switched off the de-
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layed release feature.

Our hand-made symbol correspondences and fea-
turizations are distributed with this project’s code
repository.

C Phoneme and feature distributions

For reference, counts of phonemes and features by
corpus are plotted in Figures 3 and 4. Note that the
feature counts are generally larger because multi-
ple features can be true of any one segment.


