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Abstract

Electroencephalography (EEG) recordings of
brain activity taken while participants read or
listen to language are widely used within the
cognitive neuroscience and psycholinguistics
communities as a tool to study language com-
prehension. Several time-locked stereotyped
EEG responses to word-presentations – known
collectively as event-related potentials (ERPs)
– are thought to be markers for semantic or
syntactic processes that take place during com-
prehension. However, the characterization of
each individual ERP in terms of what features
of a stream of language trigger the response
remains controversial. Improving this char-
acterization would make ERPs a more use-
ful tool for studying language comprehension.
We take a step towards better understanding
the ERPs by fine-tuning a language model to
predict them. This new approach to analysis
shows for the first time that all of the ERPs
are predictable from embeddings of a stream
of language. Prior work has only found two
of the ERPs to be predictable. In addition to
this analysis, we examine which ERPs bene-
fit from sharing parameters during joint train-
ing. We find that two pairs of ERPs previously
identified in the literature as being related to
each other benefit from joint training, while
several other pairs of ERPs that benefit from
joint training are suggestive of potential rela-
tionships. Extensions of this analysis that fur-
ther examine what kinds of information in the
model embeddings relate to each ERP have the
potential to elucidate the processes involved in
human language comprehension.

1 Introduction

The cognitive processes involved in human lan-
guage comprehension are complex and only par-
tially identified. According to the dual-stream
model of speech comprehension (Hickok and
Poeppel, 2007), sound waves are first converted to

Figure 1: The electrodes from which each event-related
potential was recorded in the data from Frank et al.
(2015) (after figure 3 in (Frank et al., 2015)). The bot-
tom portion of the figure shows a top-down schematic
of the electrode locations with the nose facing towards
the top of the page. Each ERP is the mean poten-
tial from all of the indicated electrodes during a spe-
cific time-window, creating a single scalar value per
ERP per word. Overlapping circles indicate multiple
ERPs recorded from the same electrode. The ELAN
is measured from 125-175ms after stimulus onset, the
LAN from 300-400ms, the N400 from 300ms-500ms,
the EPNP from 400-600ms, the P600 from 500-700ms,
and the PNP from 600-700ms.

phoneme-like features and further processed by a
ventral stream that maps those features onto words
and semantic structures, and a dorsal stream that
(among other things) supports audio-short term
memory. The mapping of words onto meaning
is thought to be subserved by widely distributed
regions of the brain that specialize in particular
modalities — for example visual aspects of the
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word banana reside in the occipital lobe of the
brain and are activated when the word banana
is heard (Kemmerer, 2014) — and the different
representation modalities are thought to be inte-
grated into a single coherent latent representa-
tion in the anterior temporal lobe (Ralph et al.,
2010). While this part of meaning representa-
tion in human language comprehension is some-
what understood, much less is known about how
the meanings of words are integrated together to
form the meaning of sentences and discourses.
One tool researchers use to study the integration
of meaning across words is electroencephelogra-
phy (EEG), which measures the electrical activ-
ity of large numbers of neurons acting in con-
cert. EEG has the temporal resolution necessary to
study the processes involved in meaning integra-
tion, and certain stereotyped electrical responses
to word presentations, known as event-related po-
tentials (ERPs), have been identified with some of
the processes thought to contribute to comprehen-
sion.

In this work, we consider six ERP components
that have been associated in the cognitive neuro-
science and psycholinguistics literature with lan-
guage processing and which we analyze in the data
from Frank et al. (2015) (see Figure 1 for spa-
tial and temporal definitions of these ERP com-
ponents). Three of these — the N400, EPNP, and
PNP responses — are primarily considered mark-
ers for semantic processing, while the other three
— the P600, ELAN, and LAN responses — are
primarily considered markers for syntactic pro-
cessing. However, the neat division of the ERP
responses into either semantic or syntactic cate-
gories is controversial. The N400 response has
been very well studied (for an overview see (Ku-
tas and Federmeier, 2011)) and it is well estab-
lished that it is associated with semantic complex-
ity, but the features of language that trigger the
other ERP responses we consider here are poorly
understood. We propose to use a neural network
pretrained as a language model to probe what fea-
tures of language drive these ERP responses, and
in turn to probe what features of language mediate
the cognitive processes that underlie human lan-
guage comprehension, and especially the integra-
tion of meaning across words.

2 Background

While a full discussion of each ERP component
and the features of language thought to trigger

each are beyond the scope of this document (for
reviews see e.g. Frank et al. (2015), Kemmerer
(2014), Kutas and Federmeier (2011), Kuperberg
et al. (2003), and Van Petten and Luka (2012)),
we introduce some basic features of ERP compo-
nents to help in the discussion later. ERP compo-
nents are electrical potential responses measured
with respect to a baseline that are triggered by an
event (in our case the presentation of a new word
to a participant in an experiment). The name of
each ERP component reflects whether the poten-
tial is positive or negative relative to the baseline.
The N400 is so-named because it is Negative rela-
tive to a baseline (the baseline is typically recorded
just before a word is presented at an electrode
that is not affected by the ERP response) and be-
cause it peaks in magnitude at about 400ms after
a word is presented to a participant in an exper-
iment. The P600 is Positive relative to a base-
line and peaks around 600ms after a word is pre-
sented to a participant (though its overall duration
is much longer and less specific in time than the
N400). The post-N400 positivity is so-named be-
cause it is part of a biphasic response; it is a pos-
itivity that occurs after the negativity associated
with the N400. The early post-N400 positivity
(EPNP) is also part of a biphasic response, but
the positivity has an eariler onset than the stan-
dard PNP. Finally, the LAN and ELAN are the left-
anterior negativity and early left-anterior negativ-
ity respectively. These are named for their timing,
spatial distribution on the scalp, and direction of
difference from the baseline. It is important to note
that ERP components can potentially cancel and
mask each other, and that it is difficult to precisely
localize the neural activity that causes the changes
in electrical potential at the electrodes where those
changes are measured.

3 Related Work

This work is most closely related to the paper from
which we get the ERP data: Frank et al. (2015).
In that work, the authors relate the surprisal of
a word, i.e. the (negative log) probability of the
word appearing in its context, to each of the ERP
signals we consider here. The authors do not di-
rectly train a model to predict ERPs. Instead, mod-
els of the probability distribution of each word
in context are used to compute a surprisal for
each word, which is input into a mixed effects re-
gression along with word frequency, word length,
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word position in the sentence, and sentence posi-
tion in the experiment. The effect of the surprisal
is assessed using a likelihood-ratio test. In Hale
et al. (2018), the authors take an approach simi-
lar to Frank et al. (2015). The authors compare the
explanatory power of surprisal (as computed by an
LSTM or a Recurrent Neural Network Grammar
(RNNG) language model) to a measure of syntac-
tic complexity they call “distance” that counts the
number of parser actions in the RNNG language
model. The authors find that surprisal (as pre-
dicted by the RNNG) and distance are both signif-
icant factors in a mixed effects regression which
predicts the P600, while the surprisal as computed
by an LSTM is not. Unlike Frank et al. (2015) and
Hale et al. (2018), we do not use a linking func-
tion (e.g. surprisal) to relate a language model to
ERPs. We thus lose the interpretability provided
by the linking function, but we are able to pre-
dict a significant proportion of the variance for all
of the ERP components, where prior work could
not. We interpret our results through character-
ization of the ERPs in terms of how they relate
to each other and to eye-tracking data rather than
through a linking function. The authors in Wehbe
et al. (2014) also use a recurrent neural network
to predict neural activity directly. In that work the
authors predict magnetoencephalography (MEG)
activity, a close cousin to EEG, recorded while
participants read a chapter of Harry Potter and
the Sorcerers Stone (Rowling, 1999). Their ap-
proach to characterization of processing at each
MEG sensor location is to determine whether it
is best predicted by the context vector of the re-
current network (prior to the current word being
processed), the embedding of the current word, or
the probability of the current word given the con-
text. In future work we also intend to add these
types of studies to the ERP predictions.

4 Method

Data. We use two sources of data for this analy-
sis. The primary dataset we use is the ERP data
collected and computed by Frank et al. (2015),
and we also use behavioral data (eye-tracking data
and self-paced reading times) from Frank et al.
(2013) which were collected on the same set of
205 sentences. In brief, the sentences were se-
lected from sources using British English with a
criterion that they be understandable out of con-
text. We use the ERP component values as com-

puted by Frank et al. (2015) which have been high-
pass filtered at 0.5 Hz to reduce correlation be-
tween ERP components and modulus transformed
(John and Draper, 1980) to make the distribution
of component values more normal. We do not use
the 100ms pre-trial baseline which is made avail-
able by Frank et al. (2015) and which they use as
a separate input to the mixed effects regression.
For more information about the ERP datasets and
data collection procedures we refer the reader to
the original papers. For the behavioral data, we
use self-paced reading times and four eye-tracking
measures. Self-paced reading time is considered a
signal of integration difficulty (i.e. as it becomes
more difficult to integrate the meaning of the cur-
rent word into the context, the amount of time a
reader spends on the current word increases). The
eye-tracking measures are intended to capture both
early effects (effects modulated primarily by prop-
erties of the word independent of its context, such
as word frequency and word length) and late ef-
fects (effects modulated by the context in which
the word is found, i.e. comprehension difficulty)
in word processing (Rayner and Pollatsek, 2006).
In both cases, the eye-tracking measures provide
a signal of overt visual attention, which is thought
to strongly correlate with covert perceptual atten-
tion in normal reading (Rayner, 2009). We log-
transform the self-paced reading time and the eye-
tracking measures.

Model. To predict the ERP signals in the data,
we start with a 3-layer bidirectional LSTM-based
language model encoder using the architecture
found in Merity et al. (2017) and pretrained on
the WikiText-103 dataset (Merity et al., 2016) (we
use the pretrained model from Howard and Ruder
(2018)). The pretraining objective is to minimize
the negative log-likelihood of the next word for
the forward LSTM and the previous word for the
reverse LSTM. The word-embeddings (input em-
beddings) in the encoder have 400 components,
the hidden layer outputs have 1150 components
each, and the context-embeddings output from
the encoder have 400 components. The forward-
encoder and backward-encoder are independently
fine-tuned on the baby version of the British Na-
tional Corpus (Consortium, 2005) to help with
prediction of British English (both the ERP data
and eye-tracking data use British English). During
task training the two encoders’ output embeddings
are concatenated together and fed into a causal-
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convolution layer which combines each pair of
adjacent timepoints into a single pair-embedding
with 10 components. The causal-convolution (i.e.
convolution which is left padded) ensures that the
pair-embeddings are aligned so that the prediction
targets correspond to the later word in the pair.
In other words the pair can be thought of as rep-
resenting the ‘current’ and ‘previous’ words to-
gether. A ReLU is applied to the pair-embedding
before it, along with the word length and the log
probability of the word, is fed into a linear output
layer to predict each ERP and behavioral measure
(see Figure 2). The convolution and linear layers
are initialized using the default PyTorch (Paszke
et al., 2017) initialization, i.e. the initialization
proposed in He et al. (2015). The encoder por-
tion of the model includes dropout as applied in
Merity et al. (2017), but we use different dropout
probabilities when we fit the neural and behavioral
data (the dropout probability on the input embed-
dings was 0.05, 0.4 on the input to the LSTM, 0.4
on LSTM hidden layers, 0.5 on the output of the
LSTM, and 0.5 on the recurrent weights). We did
not find dropout in the decoder to be helpful. We
use the Adam optimizer (Kingma and Ba, 2014)
with β1 = 0.95, β2 = 0.999 for training and we
use mean squared error as the loss.

Procedure. We begin our training procedure by
fine-tuning the forward- and backward-encoders
independently on the baby version of the British
National Corpus (Consortium, 2005). This cor-
pus has British English that may help in modeling
the University College London corpus, while not
overlapping with it.

After the model fine-tuning, we estimate how
well the model predicts each of the ERP signals
and eye-tracking measures by training the model
100 times with different train/test splits and de-
coder parameter initializations. We use 10% of
the data for testing and the remainder for training.
The sentences in the ERP data are split at random.
After we split the data, we compute the mean and
standard deviation of each ERP signal (and each
eye-tracking measure and the self-paced reading
time) within participant on the training data. We
use these values to standardize the training data
within participant, and then average the data from
all of the participants together. After we average,
we again compute the mean and standard devia-
tion to standardize the average. We follow a simi-
lar procedure for the test data, but we use the mean

Figure 2: The model uses an encoder based on the
architecture and regularization in Merity et al. (2017)
and pretrained by Howard and Ruder (2018). Within
this architecture 2 independent 3-layer LSTM mod-
els encode a sentence. The context-embeddings out-
put from each encoder are then concatenated together
to give a single representation to each word in the
sentence. These concatenated context-embeddings are
fed into a causal-convolution, which learns a func-
tion to combine each pair of context-representations
into a pair-embedding. A rectified linear unit (ReLU)
non-linearity is applied to the pair-embedding, af-
ter which independent linear layers map the pair-
embedding along with the log-probability of a word
and the word-length to a prediction of each ERP or be-
havioral signal.

and standard deviation from the training data when
standardizing. Note that we use the log of the be-
havior measures, and the log is taken before the
data-standardization.

In the loss function (and when we evaluate
model performance) we only consider content
words. We mark as a content word any word that
is an adjective, adverb, auxiliary verb, noun, pro-
noun, proper noun, or verb (including to-be verbs).
All other words are considered function words.

During the first 20 epochs of training, only the
parameters of the decoder are modified. Follow-
ing this, we train the model for an additional 15
epochs during which the parameters of the decoder
and the final layer of the encoder (the final LSTM
layer in both the forward and backward encoder)
can be modified. We also experimented with addi-
tional training epochs and allowing all parameters
of the model to be modified, but we found that this
caused overfitting.
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Comparing models trained with different loss
functions. To better understand the relationship
between ERP signals, and between ERP signals
and behavioral data, we train the model with dif-
ferent loss functions that include mean squared er-
ror terms corresponding to various combinations
of the ERP signals and behavioral data. For ex-
ample, one of the training variations includes a
mean squared error term for the P600 and a mean
squared error term for the N400 in the loss, but
does not use the other signals during training. In
this variation, for a mini-batch of size B, where
example b has Tb content tokens and the super-
scripts p and a denote the predicted and actual val-
ues for a measure respectively, the loss function
can be written as:

1∑B
b=1 Tb

B∑
b=1

Tb∑
t=1

(P600pb,t − P600ab,t)
2

+ (N400pb,t −N400ab,t)
2

(1)

For each of the training variations, we repeat
the training procedure described above (but fine-
tuning the language model on the British National
Corpus is done only once). We use a consistent
train/test split procedure, such that the split for the
ith run of the 100 runs is the same across all train-
ing variations, but the split changes between run i
and run j. This enables us to use paired statistical
testing when we test for significance.

We test for whether the proportion of variance
explained (computed as 1 − MSE

variance on the vali-
dation set) on each ERP and behavioral measure
is significantly different from 0 using the single
sample t-test controlled for false discovery rate us-
ing the Benjamini-Hochberg-Yekutieli procedure
(Benjamini and Yekutieli, 2001) with a false dis-
covery rate of 0.01.

To test whether the proportion of variance ex-
plained is different between different training vari-
ations (for example training with just the N400
signal included in the loss vs. training with both
the N400 and the LAN included in the loss), we
use a paired t-test. We then adjust for the false
discovery rate again with a rate of 0.01.

5 Results

All ERP components are predictable. In the
original study on this dataset, the investigators
found that when surprisal was used as a link-
ing function between the language model and the

mixed effects regression, the only ERP for which
the surprisal showed a significant effect in the re-
gression was the N400 (Frank et al., 2015). In
contrast, we find that when we directly predict the
ERP signals we are able to predict a significant
proportion of the variance for all of them (see Ta-
ble 1).

Joint training benefits ERP component predic-
tion. To explore the relationship between ERP
components, we train 63 =

(
6
1

)
+
(
6
2

)
+ · · ·+

(
6
6

)
different models using all of the possible combina-
tions of which of the six ERP signals are included
in the loss function during training. For each of
the six ERP components, we look for the best per-
forming models (see Table 1). The N400 is best
predicted when the model is trained on that com-
ponent independently, but every other ERP com-
ponent prediction can be improved by including a
second ERP component in the training. Thus mul-
titask learning has a clear benefit when applied to
the ERP data and some information is shared be-
tween ERP component predictions via the model
parameters. We also note that it is not the case
that training with more ERP components is always
better, or that the signals which are most corre-
lated benefit each other most (see Appendix A).
The relationship between components clearly im-
pacts whether the prediction of one ERP compo-
nent benefits from the inclusion of others in model
training. The results suggest that 8 pairs of ERP
signals are related to each other: the LAN is paired
with the P600, EPNP, and PNP, the ELAN with
the N400, EPNP, PNP, and P600, and the EPNP is
paired with the P600. We discuss these relation-
ships in the Discussion section.

In an additional analysis, we modified our train-
ing procedure slightly to probe how jointly train-
ing on multiple ERP components compares to
training individually on each ERP component. In
this analysis we compare only training on each
ERP component individually to training on all six
ERP components together. We also train for a total
of 60 epochs (rather than the 35 epochs used else-
where). During the first 20 epochs we allow only
the parameters of the decoder to be modified. Dur-
ing the next 20 epochs, we allow the parameters of
the decoder and the final layer of the encoder (i.e.
the final recurrent layer) to be modified. During
the last 20 epochs, we allow all of the parameters
of the model to be modified. The mean squared er-
ror for each of the ERP components from this anal-
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Target Additional POVE Target Additional POVE Target Additional POVE

ELAN 0.20 LAN 0.30 N400 0.26
ELAN + EPNP 0.22 LAN + EPNP 0.31
ELAN + N400 0.22 LAN + PNP 0.32
ELAN + PNP 0.22 LAN + P600 0.32
ELAN + P600 0.22 LAN + PNP, N400 0.33

EPNP 0.34 P600 0.27 PNP 0.33
EPNP + LAN 0.35 P600 + EPNP 0.30 PNP + LAN 0.36
EPNP + GROUP A 0.36 P600 + LAN 0.30 PNP + GROUP B 0.36

Table 1: Proportion of variance explained (POVE) for each of the ERP components (mean of 100 training runs).
The second column in each cell shows which ERP components in addition to the target ERP component were
included in training. All combinations of training signals were explored. Shown is the best combination for each
ERP target as well as every combination which is (i) significantly different from training on the target component
alone, (ii) not significantly different from the best training combination, and (iii) uses no more than the number
of signals used by the best combination. The N400 is predicted best when only the N400 signal is included in
training. All values are significantly different from 0. GROUP A refers to (PNP, ELAN, LAN, P600) and GROUP
B refers to (EPNP, ELAN, LAN, P600).

ysis is shown for each epoch in Figure 3. From the
loss curves, we make a few observations. First, we
see inflection points at epochs 20 and 40, when we
allow more parameters of the model to be modi-
fied. The first inflection point indicates that allow-
ing the recurrent layer to be modified benefits the
prediction, while the second inflection point shows
that overfitting becomes more severe if we allow
all parameters of the model to be modified. We
also see from these curves that part of the benefit
of joint training is that it helps reduce overfitting –
we see less of a climb in the validation loss after
the minimum point in the joint training. Beyond
this reduction in overfitting severity, we note that
for some of the ERP components (the LAN, EPNP
and PNP components) joint training actually gives
a better overall minimum in prediction error.

Behavioral data benefits the prediction of ERP
components. We are also interested in whether
behavioral data can be used to improve ERP pre-
diction since it should signal both the amount of
overt attention required at various points in a sen-
tence as well as integration difficulty. To study
this question, we again train models using differ-
ent combinations of training signals that include
or do not include the behavioral data predictions
in the loss function (see Table 2). We see that self-
paced reading time indeed can improve predic-
tion of a target ERP component relative to train-
ing on the target ERP component alone by about
the same amount as the best combination of ERP

components for all but the N400. Eye-tracking
data can also improve the prediction accuracy of
the ELAN, P600, and PNP components.

Insensitivity to choice of architecture. One po-
tential concern about our results is the degree to
which the relationships we see between ERP com-
ponents and between ERP components and be-
havioral data is an artefact of our rather arbitrary
choice of network architecture. We partially ad-
dress this by running the same analysis using (i)
only the forward direction of the encoder, and (ii)
only the word-embeddings (the input embeddings)
and not the context-embeddings (the output em-
beddings) of the encoder. The proportion of vari-
ance explained for each ERP component is lower
using these variants of the analysis than using the
bidirectional variant (see Appendix A), but quali-
tatively the relationships are similar. We leave fur-
ther analysis of the sensitivity of our qualitative
results to choice of architecture for future work.

6 Discussion

In this work we find that all six of the ERP com-
ponents from Frank et al. (2015) can be predicted
above chance by a model which has been pre-
trained using a language modeling objective and
then directly trained to predict the components.
This is in contrast to prior work which has success-
fully linked language models to the N400 (Frank
et al., 2015) and P600 (Hale et al., 2018) but not
the other ERP components. We also note that con-



49

(a) Independently trained (b) Jointly trained (c) Joint - Indep.

Figure 3: The mean squared error (MSE) for prediction of each of the ERP signals during each epoch of training
(mean of 100 training runs). The first 2 epochs have been omitted for clarity. During the first 20 epochs (lavender
background), only the decoder parameters are modified. During the next 20 epochs (light blue background), the
parameters in the final layer of the encoder are also modified. During the last 20 epochs (pink background), all of
the parameters are modified. Note that in this model architecture, information can be shared between ERP signals
even when only the decoder is modified. The figure shows the MSE when separate models are trained for each
ERP independently (a), the MSE when a single model is trained on all ERPs jointly (b), and the difference between
these two scenarios (c). The top row in each column shows the MSE on the training data while the bottom row
shows the MSE on the validation data. In the bottom row right, the dotted vertical lines indicate the epoch at which
the minimum MSE is reached in the lower of the independent or joint training. The LAN, EPNP, and PNP all
show modest benefits from joint training before overfitting sets in (the minimum value occurs in the joint training
scenario), while all ERP signals other than the N400 show reduced overfitting in joint training.

Target Additional POVE Target Additional POVE Target Additional POVE

ELAN 0.20 LAN 0.30 N400 0.26
ELAN + ERP 0.22 LAN + ERP 0.33 N400 + ERP 0.26
ELAN + READ 0.22 LAN + READ 0.31 N400 + READ 0.27
ELAN + EYE 0.22 LAN + EYE 0.30 N400 + EYE 0.25

EPNP 0.34 P600 0.27 PNP 0.33
EPNP + ERP 0.36 P600 + ERP 0.30 PNP + ERP 0.36
EPNP + READ 0.35 P600 + READ 0.29 PNP + READ 0.34
EPNP + EYE 0.34 P600 + EYE 0.29 PNP + EYE 0.34

Table 2: Proportion of variance explained (POVE) for each of the ERP components (mean of 100 training runs).
+ERP indicates the best combination of ERP training signals for the target ERP component, + READ indicates the
inclusion of self-paced reading times, +EYE indicates the inclusion of eye-tracking data, and bold font indicates a
significant difference from training on the target component alone.
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trary to Hale et al. (2018), we find that an LSTM
does contain information that can be used to pre-
dict EEG data, and in particular that it can pre-
dict the P600. We speculate that the analysis used
in Hale et al. (2018) did not find reliable effects
because the language models were related to the
EEG data through functions chosen a priori (the
surprisal, and the ‘distance’ metric). These func-
tions, though interpretable, might be interpretable
at the cost of losing much of the information in the
representations learned by the network.

In addition, we show through our multitask
learning analysis that information is shared be-
tween ERP components, and between ERP com-
ponents and behavioral data. Although these rela-
tionships must be viewed with caution until they
can be verified across multiple datasets and with
more variation in neural network architectures,
here we consider some potential reasons for our
findings. The broad point we wish to make is that
by better understanding which ERP components
share information with each other and with behav-
ioral data through the type of analysis we present
here (multitask learning) or other means, we can
better understand what drives each ERP compo-
nent and in turn the processes involved in human
language comprehension.

Relationship between ERPs. Our findings that
the LAN and P600 are related, and that the ELAN
and P600 are related are expected from both a the-
oretical perspective and from previous work exam-
ining the interactions of ERP components (Gunter
et al., 1997; Hagoort et al., 2003a; Hahne and
Friederici, 1999; Kutas et al., 2006; Palolahti et al.,
2005). Since the ELAN and LAN have been the-
orized by some to mark word-category (i.e. part-
of-speech) or morpho-syntactic (e.g. subject-verb
number agreement) violations (Friederici, 2011;
Hahne and Friederici, 2002; Hagoort et al., 2003b)
and the P600 is considered a marker for syntactic
effort (Coulson et al., 1998; Huettig, 2015; Kem-
merer, 2014; Kuperberg, 2007; Kuperberg et al.,
2003; Van Petten and Luka, 2012), these signals
would naturally be related to each other.

The other relationships we find are more sur-
prising. Some researchers have speculated that the
LAN and ELAN are markers for working mem-
ory demands (King and Kutas, 1995; Kutas et al.,
2006), and that indeed these might be part of sus-
tained negativities that are frequently masked by
the P600 (Kemmerer, 2014). If we take this view,

then we would expect to find them in the pres-
ence of semantic and syntactic complexity, and
this might explain why they seem to benefit from
joint training with the other ERP component sig-
nals (and benefit prediction of other ERP signals
with which they are trained). However, it is no-
table that predictions of the LAN and ELAN do
not benefit each other in our analysis, and that the
N400 (a marker for semantic complexity) is not
benefited by the prediction of any other ERP com-
ponent. This absence is by no means definitive,
but it undermines the argument that all of these
relationships can be explained by complexity and
working memory demands alone.

The relative isolation of the N400 from other
ERP components in our analysis is interesting. If
the N400 is a marker for semantic memory re-
trieval (Kutas and Federmeier, 2011), then it might
be expected to be somewhat isolated from the
other components, which may involve syntactic
processing or later integration effects.

Alternatively, the relationships we find in our
analysis might be an artefact of the way the ERPs
are operationalized in Frank et al. (2015). Several
of the pairings we find overlap spatially and are
near to each other in time, so the ERP components
might spill over into each other. Further work is
required to disambiguate between these possibili-
ties.

Relationship between behavioral data and
ERPs. It is reassuring to see that jointly training
models to predict behavioral data along with a tar-
get ERP component benefits the prediction of the
ERP component compared to training on the tar-
get ERP component alone. The benefit to predic-
tion in this case cannot be explained as an artefact
of how the ERP components are operationalized in
the datasetes we use for analysis.

Self-paced reading times widely benefit ERP
prediction, while eye-tracking data seems to have
more limited benefit to just the ELAN, LAN, and
PNP ERP components. It’s difficult to know why
this might be the case, but perhaps it is not a co-
incidence that these three ERP components also
show up frequently in the pairs of components
that benefit from joint training. If indeed the PNP
marks semantic role irregularities (Van Petten and
Luka, 2012) and the ELAN and LAN mark work-
ing memory or look-forward or look-back oper-
ations (Kutas et al., 2006), then its possible that
eye-movements might be more related to these
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types of operations than to general semantic and
syntactic complexities marked by other ERP com-
ponents. Self-paced reading might better cap-
ture these generic difficulties. This explanation is
highly speculative, and further work is required to
determine whether the relationships between the
ERP components and behavioral data are consis-
tent across datasets, and if so, what the explanation
is for these relationships.

Choice of bidirectional architecture. We em-
phasize that the neural network architecture we
chose for these analyses was motivated primar-
ily by its success on downstream NLP tasks, pub-
lic availability of pre-trained models and code,
and prior work studying how best to fine-tune the
model (Howard and Ruder, 2018; Merity et al.,
2017). We do not claim that this architecture re-
flects human processing. We experimented with
a forward-only model variant of our analysis, and
found that the bidirectional model predicts brain
activity better than the forward-only version (see
Appendix A). Although the bidirectional model
has access to ‘future’ language input, it does not
have access to future brain-activity, so the bidirec-
tional model is not ‘cheating’ when it makes pre-
dictions. There are at least three possible expla-
nations for why the bidirectional model performs
better than the forward-only model. First, it is pos-
sible that when a human reads a sentence, he or she
predicts the upcoming language input. Under this
hypothesis, a model with access to the future lan-
guage input can do a better job of predicting the
current brain activity because the future language
is reflected in that brain activity. Second, it is pos-
sible that a bidirectional model is simply able to
produce better embeddings for each word in the
input because it has more context than a forward-
only model. For example, the bidirectional model
might be (implicitly) better at anaphora resolu-
tion given more context. Under this hypothesis,
the additional context given to the model partially
compensates for its relative deficit of real-world
knowledge compared to a human. Where a hu-
man can in many cases solve the anaphora resolu-
tion problem by using background knowledge and
does not need to see the future language input, a
model benefits from additional context. Finally,
in our setup, the bidirectional model has more pa-
rameters than the forward-only model, and the ad-
ditional degrees of freedom might give the model
an advantage in predicting brain activity. Explo-

ration of why the bidirectional model is better than
the forward-only model is an interesting question,
but it is left to future work. Additionally, as we
noted earlier, the qualitative results of our analysis
(e.g. how ERP components relate to each other)
should be viewed with caution until they are repli-
cated across multiple choices of architecture.

7 Conclusion

We have shown that ERP components can be pre-
dicted from neural networks pretrained as lan-
guage models and fine-tuned to directly predict
those components. To the best of our knowl-
edge, prior work has not successfully used statis-
tical models to predict all of these components.
Furthermore, we have shown that multitask learn-
ing benefits the prediction of ERP components
and can suggest how components relate to each
other. At present, these joint-training benefit re-
lationships are only suggestive, but if these rela-
tionships ultimately lead to insights about what
drives each ERP component, then the compo-
nents become more useful tools for studying hu-
man language comprehension. By using multitask
learning as a method of characterization, we have
found some expected relationships (LAN+P600
and ELAN+P600) and several more surprising re-
lationships. We believe that this is exactly the
kind of finding that makes multitask learning an
interesting exploratory technique in this area. Ad-
ditionally, we have shown that information can
be shared between heterogeneous types of data
(eye-tracking, self-paced reading, and ERP com-
ponents) in the domain of human language pro-
cessing prediction, and in particular between be-
havioral and neural data. Given the small datasets
associated with human language processing, using
heterogeneous data is a potentially major advan-
tage of a multitask approach. In future work, we
will further explore what information is encoded
into the model representations when neural and
behavioral data are used to train neural networks,
and how these representations differ from the rep-
resentations in a model trained on language alone.
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A Appendix

Here we present a visualization (Figure 4) of the
results presented in Table 1 of the main paper, and
a visualization (Figure 5) of a more complete set
of results from which the information in Table 2
of the main paper is drawn. We also show sup-
plemental results for variants of our primary anal-
ysis on multitask learning with eye-tracking, self-
paced reading time and ERP data. In the variants
we modify the input representation to our decoder
network to see whether the relationships between
the behavioral data and neural activity appear to
be consistent with different choices of encoder ar-
chitectures. Additional (and more varied) choices
or architectures are left to future work. The results
in Table 3 reflect using only the forward-encoder
(rather than the bi-LSTM) in the encoder network,
while the results in Table 4 reflect using only the
word embeddings (i.e. bypassing the LSTM en-
tirely). While the results are clearly worse for each
of these choices of architecture than for using a bi-
LSTM encoder, the relationships between the be-
havioral data and the ERP signals is qualitatively
similar. Finally, 5 shows the Pearson correlation
coefficient between different measures. We note
that the patterns of correlation are different than
the patterns of which measures benefit from joint
training with each other.
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Figure 4: The proportion of variance explained for prediction of each of the ERP signals (mean of 100 training
runs). The target ERP is indicated by color; each group of bars shows performance for a different target ERP. The
top bar in each group shows the proportion of variance explained when the model is trained using only the target
ERP. The bottom bar in each group shows the maximum proportion of variance explained over all combinations of
training ERPs (or in the case of the N400, the second best). Also shown in each group are any training combinations
that (i) used no more than the number of ERP signals used by the combination that achieved the maximum, and
(ii) which were not significantly different from the maximum. Bars are statistically different from each other if a
black dot on one bar is connected by a contiguous vertical line to a white dot on the other bar. The bars in the N400
group are not significantly different from each other. The N400 signal is best predicted when the model is trained
on just that signal. In every other group, there is at least one ERP that, when combined with the target ERP during
training, improves the prediction of the target ERP. The results suggest that these pairs are related: (LAN, P600),
(LAN, EPNP), (LAN, PNP), (ELAN, N400), (ELAN, EPNP), (ELAN, PNP), (ELAN, P600), (EPNP, P600).

Target Additional POVE Target Additional POVE Target Additional POVE

ELAN 0.20 LAN 0.23 N400 0.20
ELAN +ERP 0.22 LAN + ERP 0.26 N400 + ERP 0.20
ELAN +READ 0.22 LAN + READ 0.25 N400 + READ 0.20
ELAN +EYE 0.21 LAN + EYE 0.24 N400 + EYE 0.18

EPNP 0.28 P600 0.24 PNP 0.28
EPNP + ERP 0.28 P600 + ERP 0.25 PNP + ERP 0.31
EPNP + READ 0.29 P600 + READ 0.25 PNP + READ 0.30
EPNP + EYE 0.29 P600 + EYE 0.24 PNP + EYE 0.29

Table 3: Proportion of variance explained for each of the ERP components when using only the forward direction
of the encoder (mean of 100 training runs). +ERP indicates the best combination of ERP training signals for the
target ERP component, + READ indicates the inclusion of self-paced reading times, +EYE indicates the inclusion
of eye-tracking data, and bold font indicates a significant difference from training on the target component alone.
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Figure 5: The proportion of variance explained for prediction of each of the ERP signals (mean of 100 training
runs). The target ERP is indicated by color; each group of bars shows performance for a different target ERP.
The top bar in each group shows the proportion of variance explained when the model is trained using only the
target ERP. Moving down, the next bar in each group, labeled ERP shows the proportion of variance explained by
the best combination of ERP signals for the target ERP. The other bars in each group moving from top to bottom
show training variations that use behavioral data with either just the target ERP, or with the best combination of
ERP signals. READ denotes self-paced reading data, and EYE denotes all four eye-tracking measures (in this
analysis we use right-bounded pass time, gaze duration, go-past time, and first-fixation duration). Pairs of bars
are significantly different from each other (paired t-test, false discovery rate ¡ 0.01) if a black dot on one bar is
connected to a white dot on the other bar by a contiguous vertical line. Self-paced reading time benefits prediction
of all target ERP components except the N400. In the case of the ELAN, LAN, and PNP, self-paced reading time
also has marginal benefit compared to the best combination of ERP training signals. Eye-tracking data benefits
prediction of the ELAN, P600, and PNP components.
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Target Additional POVE Target Additional POVE Target Additional POVE

ELAN 0.15 LAN 0.17 N400 0.05
ELAN + ERP 0.18 LAN + ERP 0.19 N400 + ERP 0.05
ELAN + READ 0.18 LAN + READ 0.19 N400 + READ 0.08
ELAN + EYE 0.19 LAN + EYE 0.19 N400 + EYE 0.10

EPNP 0.18 P600 0.10 PNP 0.20
EPNP + ERP 0.20 P600 + ERP 0.13 PNP + ERP 0.23
EPNP + READ 0.20 P600 + READ 0.13 PNP + READ 0.22
EPNP + EYE 0.21 P600 + EYE 0.14 PNP + EYE 0.23

Table 4: Proportion of variance explained for each of the ERP components when using only the word embeddings
as input to the decoder and bypassing the LSTM entirely (mean of 100 training runs). +ERP indicates the best
combination of ERP training signals for the target ERP component, + READ indicates the inclusion of self-paced
reading times, +EYE indicates the inclusion of eye-tracking data, and bold font indicates a significant difference
from training on the target component alone.

Signal ELAN EPNP LAN N400 P600 PNP FIX PASS GO RIGHT READ

ELAN 1.00 0.27 0.32 0.11 0.10 0.24 0.27 0.26 0.27 0.26 -0.04
EPNP 0.27 1.00 0.66 0.41 0.50 0.83 0.17 0.17 0.19 0.17 0.02
LAN 0.32 0.66 1.00 0.58 0.33 0.47 0.12 0.11 0.13 0.12 0.01
N400 0.11 0.41 0.58 1.00 0.47 0.33 -0.04 -0.04 -0.02 -0.03 0.11
P600 0.10 0.50 0.33 0.47 1.00 0.69 0.14 0.14 0.16 0.14 0.10
PNP 0.24 0.83 0.47 0.33 0.69 1.00 0.25 0.24 0.26 0.25 0.03
FIX 0.27 0.17 0.12 -0.04 0.14 0.25 1.00 1.00 1.00 1.00 0.04
PASS 0.26 0.17 0.11 -0.04 0.14 0.24 1.00 1.00 1.00 1.00 0.04
GO 0.27 0.19 0.13 -0.02 0.16 0.26 1.00 1.00 1.00 1.00 0.05
RIGHT 0.26 0.17 0.12 -0.03 0.14 0.25 1.00 1.00 1.00 1.00 0.04
READ -0.04 0.02 0.01 0.11 0.10 0.03 0.04 0.04 0.05 0.04 1.00

Table 5: Raw Pearson’s correlation coefficients (computed on content words after the standardization and
participant-averaging) between each neural and behavioral measure and each other measure. FIX indicates first-
fixation time, PASS indicates first-pass time, GO indicates go-past time, RIGHT indicates right-bounded reading
time, and READ indicates self-paced reading. Many of the measures are highly correlated, but the pattern of cor-
relations is different from the pattern of benefits that we find during joint-training. In particular we note that the
N400 is correlated with the other ERP signals, and yet we do not see benefit in prediction of the N400 when jointly
training a model to predict it and other signals.


