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1 Objectives

Spoken Dialogue Systems (SDS) have great commercial potential as they promise to revolutionise the
way in which humans interact with machines. The advent of deep learning led to substantial developments
in this area of NLP research, and the goal of this tutorial is to familiarise the research community with the
recent advances in what some call the most difficult problem in NLP.

From a research perspective, the design of spoken dialogue systems provides a number of significant
challenges, as these systems depend on: a) solving several difficult NLP and decision-making tasks; and
b) combining these into a functional dialogue system pipeline. A key long-term goal of dialogue system
research is to enable open-domain systems that can converse about arbitrary topics and assist humans
with completing a wide range of tasks. Furthermore, such systems need to autonomously learn on-line to
improve their performance and recover from errors using both signals from their environment and from
implicit and explicit user feedback. While the design of such systems has traditionally been modular,
domain and language-specific, advances in deep learning have alleviated many of the design problems.

The main purpose of this tutorial is to encourage dialogue research in the NLP community by providing
the research background, a survey of available resources, and giving key insights to application of
state-of-the-art SDS methodology into industry-scale systems. We plan to introduce researchers to the
pipeline framework for modelling goal-oriented dialogue systems, which includes three key components:
1) Language Understanding; 2) Dialogue Management; and 3) Language Generation. The differences
between goal-oriented dialogue systems and chat-bot style conversational agents will be explained in order
to show the motivation behind the design of both, with the main focus on the pipeline SDS framework. For
each key component, we will define the research problem, provide a brief literature review and introduce
the current state-of-the-art approaches. Complementary resources (e.g. available datasets and toolkits)
will also be discussed. Finally, future work, outstanding challenges, and current industry practices will be
presented. All of the presented material will be made available online for future reference.

2 Tutorial Overview

2.1 Part I: Introduction to Statistical Dialogue Systems

The modular architecture of a goal-oriented spoken dialogue system will be introduced and the range
of approaches available for each component, from rule-based to (increasingly) statistical methods will
be discussed. The key architectural requirements of goal-oriented spoken dialogue systems will be
emphasised and the differences to chat-bot style systems will be explained. Based on this introduction,
the key challenges for machine learning will be identified and the options available for moving from
the current generation of limited domain systems to fully open-domain conversational agents will be
presented. A particular focus will be on learning techniques which enable a system to incrementally
increase its naturalness, robustness and coverage over time by interaction on-line with real users.

2.2 Part II: Language Understanding and Dialogue State Tracking

In this part, we will present the language understanding module, which is the first component of the SDS
pipeline. This module takes as input the users’ spoken/written utterances and converts them to an abstract
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representation that the downstream dialogue management component can (learn to) operate and reason
with. We plan to give an overview of: a) rule-based systems; b) conventional approaches which split
the language understanding problem into Spoken Language Understanding (SLU) and Belief Tracking
(BT); and c) the most recent models which learn to perform the two tasks jointly. In presenting these
approaches, we will focus on two key challenges: 1) mitigating the effect of automatic speech recognition
(ASR) errors; and 2) dealing with the ambiguity introduced by the linguistic variations available to users
in expressing their intentions in various dialogue contexts. Finally, the impact that recent advances in
representation learning have had on language understanding will be discussed: these very recent fully
statistical approaches hold promise to drive progress in domain adaptation for dialogue systems, both
across different dialogue domains and across different languages.

2.3 Part III: Dialogue Management and Reinforcement Learning

This part will focus on how the turn-taking process is managed in an SDS. The role of the dialogue
manager is to map the inferred belief state into a meaningful system action, accounting for the uncertainty
propagated from the upstream components. The basics of reinforcement learning (RL) will first be
introduced, followed by its practical application to the dialogue management task. We will cover: a)
tabular-based RL, which is only tractable for simplified problems; b) Gaussian process-based RL, which
enables fast policy learning; and c) deep (neural network-based) RL which has the potential to eliminate
the explicit need for hand-crafted feature engineering. We will also show how a dialogue policy can be
trained off-line on corpora via supervised learning, and on-line with a user simulator or through direct
interaction with human users using RL. When learning with human users, task success can be hard to
measure and user feedback is often unreliable and difficult to obtain. To deal with this, a literature review
will be covered, and especially Gaussian Process estimators will be presented which minimise the burden
on users of providing explicit feedback and mitigate the problems of noisy user feedback.

2.4 Part IV: Response Generation and End-to-End Dialogue Modelling

In this part of the tutorial, methods of statistical language generation will be presented, which map abstract
system dialogue acts back into natural language. We will first explain how Recurrent Neural Network
language models can be used to generate sentences, and how a structured meaning representation such
as a dialogue act can be used to condition the generation process. We will also show that attention and
gating mechanisms can be used to better model internal content selection and prevent semantic repetitions,
which leads to more coherent and natural responses. Next, we will frame the response generation task in a
broader context by treating end-to-end dialogue modelling as a conditional response generation task. We
will draw connections between this approach and other chat-bot style conversational agents, showing that
explicit language grounding is crucial for goal-oriented dialogue response generation. Finally, we will
address the difficulty of collecting corpora for training the SDS systems in general and the generation
module in particular. We will also discuss how a pipelined Wizard-of-Oz data collection framework can
be used to collect significant amounts of data at acceptably low cost.

2.5 Part V: SDS Systems in Conversational AI Applications and Current Challenges

The conversational interfaces hold promise to construct a fully natural way of communication between
the human and the machine. In the final part of the tutorial, we will frame modern dialogue research
sub-problems in the context of broader NLP research: we will outline once more recent trends in the
development of modular dialogue systems, explaining how these complement the long-term goals of
broader AI research. We will also discuss the current status of deploying SDS systems beyond the core
academic research: we will analyse their impact and usefulness in industry-scale applications and their
potential for conversational AI. We will place special emphasis on the key challenges and open questions
in our pursuit of creating open-domain statistical dialogue systems across different languages.

We will conclude by listing publicly available software packages and implementations, available
training datasets and evaluation protocols, and sketching future research avenues in this domain.
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3 Structure and Summary

Part I: Introduction to Statistical Dialogue Systems (30 minutes)

• Overview of statistical dialogue systems: related work, current trends.

• Pipeline approaches vs. chat-bot style conversational agents.

• Long-term SDS goals and its relation to conversational AI.

Part II: Language Understanding and Dialogue State Tracking (40 minutes)

• Survey of approaches for performing language understanding in spoken dialogue systems.

• The impact of advances in semantic representation learning on understanding in dialogue systems.

• Fully statistical language understanding: towards open-domain SDS systems across languages.

Part III: Dialogue Management and Reinforcement Learning (40 minutes)

• Reinforcement learning approaches for managing the turn-taking dialogue task.

• Dialogue evaluation and reward estimation for practical policy learning.

Part IV: Response Generation and End-to-End Dialogue Modelling (40 minutes)

• Response generation from structured meaning representations.

• End-to-End dialogue modelling: Models, evaluations, and data collection.

Part V: SDS Systems in Conversational AI Applications and Current Challenges (30 minutes)

• Publicly available software packages and implementations, available training datasets and evaluation
protocols.

• SDS systems and conversational interfaces: research vs. industry demands.

• Key challenges and open questions in the pursuit of creating open-domain statistical dialogue systems
across different languages.
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5 Other Information

• Previous tutorial editions: N/A

• Audience size (estimate): 100-120

• Special requirements: None
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venue)
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Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky. 2017. Adversarial learning for
neural dialogue generation. In Proceedings of EMNLP, pages 2157–2169.

Bing Liu and Ian Lane. 2016. Joint online spoken language understanding and language modeling with recurrent
neural networks. In Proceedings of SIGDIAL, pages 22–30.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How NOT
to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response
generation. In Proceedings of EMNLP, pages 2122–2132.
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