
Proceedings of NAACL-HLT 2018: Demonstrations, pages 6–10
New Orleans, Louisiana, June 2 - 4, 2018. c©2018 Association for Computational Linguistics

Pay-Per-Request Deployment of Neural Network Models
Using Serverless Architectures

Zhucheng Tu, Mengping Li, and Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo
{michael.tu, m282li, jimmylin}@uwaterloo.ca

Abstract

We demonstrate the serverless deployment of
neural networks for model inferencing in NLP
applications using Amazon’s Lambda service
for feedforward evaluation and DynamoDB
for storing word embeddings. Our architec-
ture realizes a pay-per-request pricing model,
requiring zero ongoing costs for maintaining
server instances. All virtual machine manage-
ment is handled behind the scenes by the cloud
provider without any direct developer inter-
vention. We describe a number of techniques
that allow efficient use of serverless resources,
and evaluations confirm that our design is both
scalable and inexpensive.

1 Introduction

Client–server architectures are currently the domi-
nant approach to deploying neural network models
for inferencing, both in industry and for academic
research. Once a model has been trained, deploy-
ment generally involves “wrapping” the model in
an RPC mechanism (such as Thrift) or a REST
interface (e.g., Flask in Python), or alternatively
using a dedicated framework such as TensorFlow-
Serving (Olston et al., 2017). This approach ne-
cessitates provisioning machines (whether physi-
cal or virtual) to serve the model.

Load management is an important aspect of run-
ning an inference service. As query load increases,
new server instances must be brought online, typ-
ically behind a load-balancing frontend. While
these issues are generally well understood and
industry has evolved best practices and standard
toolsets, the developer still shoulders the burden
of managing these tasks. A server-based architec-
ture, moreover, involves a minimum commitment
of resources, since some server must be running all
the time, even if it is the smallest and cheapest vir-
tual instance provided by a cloud service. Particu-
larly relevant for academic researchers, this means

that a service costs money to run even if no one is
actually using it.

As an alternative, we demonstrate a pay-per-
request serverless architecture for deploying neu-
ral network models for NLP applications. We ap-
plied our approach to two real-world CNNs: the
model of Kim (2014) for sentence classification
and the CNN of Severyn and Moschitti (2015) for
answer selection in question answering (SM CNN
for short). On Amazon Web Services, the models
cost less than a thousandth of a cent per invoca-
tion. Model inference does not require the devel-
oper to explicitly manage machines, and there are
zero ongoing costs for service deployment. We
show that our design can transparently scale to
moderate query loads without requiring any sys-
tems engineering expertise.

2 Serverless Architectures

A serverless architecture does not literally mean
that we can magically perform model inference
without requiring servers; the computation must
happen somewhere! A serverless design simply
means that the developer does not need to explic-
itly manage servers—the cloud provider shoulders
this burden behind the scenes.

Serverless architectures make use of what is
known as function as a service (FaaS), where de-
velopers specify blocks of code with well-defined
entry and exit points and the cloud provider han-
dles the invocation. Typically, function invocation
involves spinning up virtual machine instances and
bootstrapping the execution environment, but all
of these tasks are handled by the cloud provider.
The developer pays per function invocation no
matter the query load; scalability and elasticity
are the responsibility of the cloud provider. In
most cases, these invoked functions are stateless,
with state usually offloaded to another cloud ser-

6

vice. The standard design pattern begins with the
invoked function reading from a persistent store
and writing results back to the same or a differ-
ent store. The serverless paradigm meshes well
with microservice architectures that are in fash-
ion today, and multiple cloud providers (Amazon,
Google, Microsoft) have FaaS offerings.

Recently, Crane and Lin (2017) proposed a
novel search engine built using a serverless archi-
tecture on Amazon Web Services whereby post-
ings lists are stored in DynamoDB and query ex-
ecution is encapsulated in Lambda functions. We
explore how similar techniques can be applied to
neural network models for NLP applications. We
are aware of a recent blog post describing the de-
ployment of NN models using Lambda (Dietz,
2017). However, that work focuses on vision ap-
plications; the additional technical challenge we
overcome is the need to access word embeddings
for NLP applications, which requires more than
just Lambda deployment.

3 Serverless Neural Network Inference

In this work, we selected Amazon Web Services
(AWS) as our deployment platform due to its
market-dominant position, although other cloud
providers have similar offerings.

To enable serverless neural network inference
for NLP, the trained models are packaged together
with the function to be invoked and dependent
software libraries. The cloud provider is respon-
sible for creating the environment for execution.
During inference, the Lambda function takes input
text, which is supplied externally via an API gate-
way. Sentences need to be first transformed into an
embedding matrix constructed using word vectors,
in our case from word2vec (Mikolov et al., 2013).
These are fetched from DynamoDB. Finally, the
Lambda function applies feedforward evaluation
on the embedding matrix according to the supplied
model, yielding a final prediction. Figure 1 illus-
trates this architecture, described in detail below.

3.1 Lambda Deployment Package

A complete Lambda deployment package com-
prises the code of the function as well as its de-
pendencies. In this work, we use PyTorch v0.3.1
for inference. Thus, our deployment package re-
quires PyTorch as well as its dependencies, the
model definition, the model weights, and a han-
dler that specifies how the function should be ex-

Client

API Gateway

Neural Network
Inference

DynamoDB

Lambda Lambda
fetch word vectors

Prediction requests &
results

Word Vector
Uploader

Upload
word

vectors

Client

API Gateway

Neural Network
Inference

Figure 1: Serverless architecture for deploying NNs.

ecuted. Note that although an emerging deploy-
ment pattern is to use PyTorch for training models
and Caffe2 for running inference in a production
environment through the use of ONNX,1 support
for this approach remains immature and thus we
rely on PyTorch for inference as well.

There is a 250 MB limit on the size of the
Lambda deployment package. To stay within this
limit, we had to build PyTorch from source on an
AWS EC2 machine to exclude CUDA and other
unnecessary dependencies. The machines that ex-
ecute Lambda functions do not have GPU capa-
bilities, so this does not incur any performance
penalties. The deployment package is compressed
and uploaded to S3, Amazon’s object storage ser-
vice. In the Lambda execution model, an Ex-
ecution Context is initialized upon invocation of
the Lambda function, which is a runtime environ-
ment that bootstraps the dependencies in the de-
ployment package. The Execution Context may be
costly to set up (as in our case) and therefore the
Lambda API provides hooks that facilitate reuse
for subsequent invocations.

3.2 DynamoDB Storage of Word Vectors
Most neural networks for NLP use pre-trained
word vectors to build an input representation as the
first step in inference. In a serverless architecture,
these word vectors need to be stored somewhere.
Due to the size restrictions described above, the
word vectors cannot be stored in the deployment
package itself.

To overcome this issue, we adopt the solu-
tion of storing the word embedding vectors in
DynamoDB, much like how Crane and Lin (2017)
store postings lists. DynamoDB (DeCandia et al.,
2007) is a hosted “NoSQL” database service that
offers low latency access to arbitrary amounts of
data, as Amazon scales up and down capacity au-

1https://onnx.ai/

7

tomatically. We use DynamoDB as a key–value
store for holding the word vectors, where each
word is the key and its word vector is the value
stored as a List type. Kim CNN uses 300 di-
mensional word vectors from word2vec trained on
the Google News corpus and SM CNN uses 50
dimensional word vectors from word2vec trained
on English Wikipedia. Thus, we created separate
DynamoDB tables for these 50 and 300 dimen-
sional word vectors. For expediency in running
experiments, we only load the word vectors for
words in the vocabulary of the datasets we use.

3.3 Neural Network Inference

Our API for invoking the NN models comprises a
JSON request sent to the AWS API Gateway via
HTTP, which is a proxy that then forwards the re-
quest to Lambda. A request for feedforward infer-
ence using Kim CNN consists of a single sentence
in the request body, whereas for SM CNN, the re-
quest body holds a pair of sentences.

Upon receiving a request, the Lambda handler
first tokenizes and downcases the input. It then is-
sues BatchGetItem requests to DynamoDB to
fetch the word vectors for unique words in the in-
put. These queries retrieve the word vectors in par-
allel to reduce latency. The function then blocks
until all word vectors are retrieved, after which
they are concatenated together to construct a sen-
tence embedding matrix.

In our implementation, the model is initialized
outside of the Lambda handler function scope so
that if an existing Event Context is available, a
previously-loaded model can be reused. If the
model has not been initialized, it will be loaded
from the deployment package. Note that con-
text reuse is completely opaque: unbeknownst to
us, AWS performs caching to support efficient in-
vocations as query load ramps up, but we have
no explicit control over the exact mechanisms for
eviction, warmup, etc. The sentence embeddings
are fed into the model for feedforward evaluation
(handled by PyTorch) and the result is returned as
JSON from the handler.

4 Experiments

We first provide some implementation details:
Kim CNN is a sentence classification model that
consists of convolutions over a single sentence
input matrix and pooling followed by a fully-
connected layer with dropout and softmax out-

put. We used the variant where the word embed-
dings are not fine-tuned via backpropagation dur-
ing training (called the “static” variant). SM CNN
is a model for ranking short text pairs that con-
sists of convolutions using shared filters over both
inputs, pooling, and a fully-connected layer with
one hidden layer in between. We used the variant
described by Rao et al. (2017), which excludes the
similarity matrix (found to increase accuracy) as
well as the additional features that involve inverse
document frequency. In our experiments, we are
focused only on execution performance, which is
not affected by these minor tweaks, primarily for
expediency. All of our code and experiment utili-
ties are open-sourced on GitHub.2

Before detailing our experimental procedure
and results, we need to explain Amazon’s cost
model. Lambda costs are very straightforward,
billed simply by how long each function executes
in increments of 100ms, for a particular amount
of allocated memory that the developer specifies.
DynamoDB’s cost model is more complex: it sup-
ports two modes of operation, termed manual pro-
visioning and auto scaling. In the first mode, the
developer must explicitly allocate read and write
capacity. Amazon provides the capacity, but the
downside is a fixed cost, even if the capacity is
not fully utilized (and over-utilization will result
in timeouts). Thus, this mode is not truly “pay
as you go”. The alternative is what Amazon calls
auto scaling, where the service continuously mon-
itors and adjusts capacity on the fly.

For our experiments, we opted to manually pro-
vision 500 Read Capacity Units (RCUs), which
translates into supporting a DynamoDB query
load of 1000 queries per second (fetching the word
vector for each word constitutes a query). This
choice makes our experimental results easier to in-
terpret, since we have little insight into how Ama-
zon handles auto scaling behind the scenes. Note
however, that we adopted this configuration for ex-
perimental clarity, because otherwise we would be
conflating unknown “backend knobs” in our per-
formance measurements. In production, auto scal-
ing would be the preferred solution.

To evaluate performance, we built a test harness
that dispatches requests in parallel, with a single
parameter to control the number of outstanding re-
quests allowed when issuing queries. We call this

2https://github.com/castorini/
serverless-inference

8

C tput Latency (ms) Cost
(QPS) mean p50 p99 (/106 Q)

5 7.0 700 678 1285 $1.46
10 13.0 740 722 1283 $1.66
20 23.7 802 779 1357 $1.87
30 32.3 845 817 1447 $1.87

Table 1: Latency, throughput, and cost of serverless
Kim CNN under different loads (C).

C tput Latency (ms) Cost
(QPS) mean p50 p99 (/106 Q)

5 12.1 410 381 657 $1.04
10 21.1 468 443 780 $1.04
15 30.8 467 439 827 $1.04
20 38.5 496 486 785 $1.04
25 44.4 530 519 814 $1.25

Table 2: Latency, throughput, and cost of serverless SM
CNN under different loads (C).

the concurrency parameter, which we vary to sim-
ulate different amounts of query load. With dif-
ferent concurrency settings (ramping down from
maximum load), we measured latency (mean, 50th
and 99th percentile) and throughput. For Kim
CNN, we used input sentences from the valida-
tion set of the Stanford Sentiment Treebank (1101
sentences). For SM CNN, we used input sen-
tence pairs from the validation set of the TrecQA
dataset (1148 sentences). We conducted each ex-
perimental trial multiple times before taking mea-
surements to “warm up” the backend.

Results are shown in Table 1 for Kim CNN and
Table 2 for SM CNN. Our deployment package is
bundled with OpenBLAS to take advantage of op-
timized linear algebra routines. In both cases, we
see that latency increases slightly as throughput
ramps up. This suggests that we are not achieving
perfect scale up. In theory, AWS should be propor-
tionally increasing backend resources to maintain
constant latency. It is not clear if this behavior is
due to some nuance in Lambda usage that we are
not aware of, or if there are actual bottlenecks in
our design. Note that Kim CNN is slower because
it is manipulating much larger word vectors (300
vs. 50 dimensions).

The final column in Tables 1 and 2 report
Lambda charges in US dollars per million queries
based on the mean latency. As of February 2018,

for functions allocated 128 MB of memory, the
cost is $0.000000208 for every 100ms of running
time (rounded up). Note that these costs do not in-
clude provisioning DynamoDB, which costs 0.013
cents per Read Capacity Unit per hour. We have
not probed the scalability limits of our current
architecture, but it is likely that our design can
handle even larger query loads without additional
modification.

We performed additional analyses to understand
the latency breakdown: logs show that approxi-
mately 60–70% of time inside each function in-
vocation is spent building the embedding ma-
trix, which requires fetching word vectors from
DynamoDB. In other words, inference latency
is dominated by data fetching. This is no sur-
prise since these queries involve cross-machine re-
quests. The rest of the time is spent primarily
on feedforward evaluation. The amortized cost
of loading the model is negligible since it can be
reused in subsequent invocations.

5 Future Work and Conclusions

We describe a novel serverless architecture for
the deployment of neural networks for NLP tasks.
Our design appears to be feasible, and experi-
ments show that it scales up to moderate query
loads inexpensively. For reference, a sustained
query throughput of 20 queries per second trans-
lates into 1.7 million queries per day. While there
are certainly many web-scale services that handle
larger query loads, our serverless design is able
to achieve this scale with zero engineering effort,
since the cloud provider handles all aspect of load
management without any developer intervention.

In terms of design improvements within our
control, tackling the latency of DynamoDB
queries would yield the biggest impact, since
fetching the word vectors accounts for most of
the request latency. One simple idea would be
to retain a cache of the most frequent words in
the Lambda itself. This would not improve “cold”
startup latency, but would speed up requests once
the cache has been populated. Beyond elements in
our control, further advances in cloud infrastruc-
ture “behind the scenes” will improve usability,
performance, and cost, making serverless architec-
tures increasingly attractive.

Acknowledgments. This research was supported
by the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

9

References
Matt Crane and Jimmy Lin. 2017. An exploration of

serverless architectures for information retrieval. In
Proceedings of the 3rd ACM International Confer-
ence on the Theory of Information Retrieval (IC-
TIR 2017), pages 241–244, Amsterdam, The Nether-
lands.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swami Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s
highly available key-value store. In Proceedings
of the 21st ACM Symposium on Operating Systems
Principles (SOSP 2007), pages 205–220, Stevenson,
Washington.

Michael Dietz. 2017. Serverless deep/machine
learning in production—the pythonic way.
https://blog.waya.ai/deploy-deep-machine-learning-
in-production-the-pythonic-way-a17105f1540e.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1746–
1751, Doha, Qatar.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. arXiv:1301.3781.

Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu Ra-
jashekhar, Sukriti Ramesh, and Jordan Soyke. 2017.
TensorFlow-Serving: Flexible, high-performance
ML serving. In Workshop on ML Systems at NIPS
2017.

Jinfeng Rao, Hua He, and Jimmy Lin. 2017. Experi-
ments with convolutional neural network models for
answer selection. In Proceedings of the 40th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1217–
1220. ACM.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR 2015), pages 373–382, Santiago, Chile.

10

