
Proceedings of NAACL-HLT 2018: Demonstrations, pages 1–5
New Orleans, Louisiana, June 2 - 4, 2018. c©2018 Association for Computational Linguistics

NLP Lean Programming Framework: Developing NLP Applications
More Effectively

Marc Schreiber
FH Aachen

Jülich, Germany
marc.schreiber@fh-aachen.de

Bodo Kraft
FH Aachen

Jülich, Germany
kraft@fh-aachen.de

Albert Zündorf
University of Kassel

Kassel, Germany
zuendorf@uni-kassel.de

Abstract

This paper presents NLP Lean Program-
ming framework (NLPf), a new framework
for creating custom natural language process-
ing (NLP) models and pipelines by utilizing
common software development build systems.
This approach allows developers to train and
integrate domain-specific NLP pipelines into
their applications seamlessly. Additionally,
NLPf provides an annotation tool which im-
proves the annotation process significantly by
providing a well-designed GUI and sophisti-
cated way of using input devices. Due to
NLPf’s properties developers and domain ex-
perts are able to build domain-specific NLP
applications more efficiently. NLPf is Open-
source software and available at https://
gitlab.com/schrieveslaach/NLPf.

1 Introduction

Nowadays more and more business models rely
on the processing of natural language data, e. g.
companies extract relevant eCommerce data from
domain-specific documents. The required eCom-
merce data could be related to various domains,
e. g. life-science, public utilities, or social media,
depending on the companies’ business models.

Furthermore, the World Wide Web (WWW)
provides a huge amount of natural language data
that provides a wide variety of knowledge to hu-
man readers. This amount of knowledge is un-
manageable for humans and applications try to
make this knowledge more accessible to humans,
e. g. Treude and Robillard (2016) make natural
language text about software programming more
accessible through a natural language processing
(NLP) application.

All these approaches have in common that they
require domain-specific NLP models that have
been trained on a domain-specific and annotated
corpus. These models will be trained by using dif-

ferent NLP frameworks and these models have to
be evaluated for every annotation layer. For exam-
ple, named entity recognition (NER) of Stanford
CoreNLP (Manning et al., 2014) might work bet-
ter than NER of OpenNLP (Reese, 2015, Chap-
ter 1); the chosen segmentation tool, e. g. UD-
Pipe (Straka and Straková, 2017), might work bet-
ter than Stanford CoreNLP’s segmentation tool,
and so on. Existing studies show that domain
specific training and evaluation is a common ap-
proach in the NLP community to determine the
best-performing NLP pipeline (Buyko et al., 2006;
Giesbrecht and Evert, 2009; Neunerdt et al., 2013;
Omran and Treude, 2017).

Developers of NLP applications are forced to
create domain-specific corpora to determine the
best-performing NLP pipeline among many NLP
frameworks. During this process they face various
obstacles:

• The training and evaluation of different NLP
frameworks requires a lot of effort of script-
ing or programming because of incompatible
APIs.

• Domain experts who annotate domain-
specific documents with a GUI tool struggle
with an insufficient user experience.

• There are too many combinations how devel-
opers can combine these NLP tools into NLP
pipelines.

• The generated NLP models as a build artifact
have to be integrated manually into the appli-
cation code.

NLP Lean Programming framework (NLPf) ad-
dresses these issues. NLPf provides a standardized
project structure for domain-specific corpora (see
Section 2), an improved user experience for an-
notators (see Section 3), a common build pro-
cess to train and evaluate NLP models in conjunc-

1



tion with the determination of the best-performing
NLP pipeline (see Section 4), and a convenient
API to integrate the best-performing NLP pipeline
into the application code (see Section 5).

2 Annotated Corpus Project Structure

Maven as a build management tool has standard-
ized the development process of Java applications
by standardizing the build life-cycle, standardiz-
ing the project layout, and standardizing the de-
pendency management. These standardization are
evolved by utilizing convention over configuration
(CoC) as much as possible and developers have to
make less decisions while developing software.

Such conventions are missing for the develop-
ment of domain-specific NLP applications and de-
velopers have to make many decisions and have
to write many scripts to build their applications.
NLPf provides conventions by utilizing Maven
and its project object model (POM). Listing 1
shows the basic project configuration to train and
evaluate domain-specific NLP models with NLPf.

<project>
<modelVersion>4.0.0</modelVersion>

<groupId>your.company</groupId>
<artifactId>domain-specific-corpus</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>nlp-models</packaging>

<build>
<plugins>

<plugin>
<groupId>de.schrieveslaach.nlpf</groupId>
<artifactId>nlp-maven-plugin</artifactId>
<version>1.0.0</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

Listing 1: POM of Annotated Corpus

Unlike standard Java projects this project uses
the custom packaging method nlp-models which
configures Maven to use NLPf’s plugin (see
nlp-maven-plugin) which trains and evaluates the
domain-specific models. By convention, each doc-
ument stored in src/main/corpus will be used as an
input document for the training process and each
document stored in src/test/corpus will used to
evaluate the derived NLP models.

NLPf supports multiple document formats
which need to be configured as Maven depen-
dency (see io-odt in Listing 2). Most formats
supported by DKPro Core1 (de Castilho and

1https://dkpro.github.io/dkpro-core/

Gurevych, 2014) are supported by NLPf but we
recommend to use ODT documents because de-
velopers can just paste natural language text into
the ODT documents and then annotate them with-
out preparing specific document formats.

<dependency>
<groupId>de.schrieveslaach.nlpf</groupId>
<artifactId>io-odt</artifactId>
<version>1.0.0</version>

</dependency>

<dependency>
<groupId>de.tudarmstadt.ukp.dkpro.core</groupId>
<artifactId>
de.tudarmstadt.ukp.dkpro.core.opennlp-asl

</artifactId>
<version>1.9.0</version>

</dependency>

Listing 2: Dependencies of Annotated Corpus

Additionally, NLPf supports differ-
ent NLP frameworks which are also
provided as Maven dependency (see
de.tudarmstadt.ukp.dkpro.core.opennlp-asl in List-
ing 2). NLPf supports all NLP frameworks which
provide trainer capabilities of DKPro Core2: Stan-
ford CoreNLP, OpenNLP, and LingPipe. When
the project has been configured, the annotators
can start to annotate the documents.

3 Quick Pad Tagger: Annotate
Documents

NLPf provides the annotation tool Quick Pad Tag-
ger (QPT) which provides a well-designed GUI,
drawing the attention to the essential GUI ele-
ments of the annotation task. Figure 1 provides a
screenshot of the QPT, showing how the user an-
notates named entities (NEs) in a document. At
the bottom of the GUI the part of the document
will be displayed and at the top of the screen the
QPT shows a stream of tokens while the user can
select multiple tokens (see blue boxes) to assign a
NE type. Through the spinner on top of the stream
of tokens the user chooses a type for each of the
NEs.

This design has been implemented conse-
quently for each annotation layer and the design
draws the attention to the actual important annota-
tion task, e. g. assign NE types or part-of-speech
(POS) tags to tokens. Figure 2 compares for the
POS tag annotation layers of the state-of-the-art
tool Webanno (Eckart de Castilho et al., 2016) and
the QPT, showing that the QPT draws the attention

2More information is provided here: https://
github.com/dkpro/dkpro-core/pull/1114

2



Figure 1: QPT Screenshot: NE Tagging

to the annotation task and the document text (the
relevant parts) whereas Webanno draws the atten-
tion to all annotations at once.

The user can use a Xbox 360 controller to an-
notate the structure of natural language. This
type of input device provides a more comfort-
able and playful user experience and in conjunc-
tion with the GUI design the annotation process is
less painful and less exhausting. Additionally, the
QPT provides a semi-automatic annotation pro-
cess (Schreiber et al., 2015) which speeds up the
annotation process further. In summary, the QPT
reduces the required annotation time by half.

4 Install Best-performing NLP Pipeline
Artifact

When documents of the corpus project have been
annotated by annotators, developers can use a sin-
gle command to train all available NLP tools, de-
termine the best-performing NLP pipeline, and
create an artifact which will be used in an NLP ap-
plication (see Section 5). These steps will be per-
formed by mvn install and the custom Maven plu-
gin (see nlp-maven-plugin in Listing 1) passes fol-
lowing customized life-cycle:

• At first, the Maven plugin validates the anno-
tated documents, for example, it ensures that
every or no token of a document have been
annotated with a corresponding POS tag.

• After that, the Maven plugin looks up
all available NLP trainer classes which
are available on the classpath (c. f.
de.tudarmstadt.ukp.dkpro.core.opennlp-asl

in Listing 2). Each discovered trainer class
will be used to create a domain-specific
NLP model if the required annotations are
available and the configuration will be stored
in the target directory. The configurations

(a) Webanno Screenshot

(b) QPT Screenshot

Figure 2: Attention Map of POS Tagging Annota-
tion Tools, Obtained Using the EyeQuant Atten-
tion Analytics Software (www.eyequant.com)

are stored in a format compatible to the
Unstructured Information Management
Architecture (UIMA) framework (Ferrucci
and Lally, 2004).

• If NLP tools do not provide any training,
e. g. the segmentation tool of Stanford
CoreNLP, developers can provide engine fac-
tories which create configurations for these
tools (see Listing 3) which will be stored in
the target directory.

• All available configurations will be used
to create all possible domain-specific NLP
pipeline configurations and each NLP
pipeline will be evaluated with F1 score by
running the pipelines on the test documents
and by comparing the results on the provided
test annotations. The configuration of the
best-performing NLP pipeline will be stored
into the target directory.

• Based on the previous steps the Maven plu-
gin creates a Java archive (JAR) which con-
tains the NLP models and configuration of
the best-performing NLP pipeline.

3



• Finally, the created JAR artifact can be in-
stalled or deployed into any Maven reposi-
tory.

public class StanfordCoreNlpEngineFactory {

public AnalysisEngineDescription
createStanfordSegmenter() throws Exception {↪→

return createEngineDescription(
StanfordSegmenter.class,
StanfordSegmenter.PARAM_LANGUAGE_FALLBACK,

"en");↪→
}

}

Listing 3: Engine Factory for NLP Tools Without
Training Support

5 API Running the Best-performing
NLP Pipeline

When the best-performing NLP pipeline is avail-
able as JAR artifact in a Maven repository, devel-
opers can integrate this artifact as Maven depen-
dency into the NLP application. Therefore, devel-
opers insert the project coordinates of the domain
specific corpus into the application’s POM, illus-
trated by Listing 4. Additionally, developers need
to add the plumping library which provides an API
to execute the best-performing NLP pipeline.

<dependency>
<groupId>your.company</groupId>
<artifactId>domain-specific-corpus</artifactId>
<version>1.0-SNAPSHOT</version>

</dependency>

<dependency>
<groupId>de.schrieveslaach.nlpf</groupId>
<artifactId>plumbing</artifactId>
<version>1.0.0</version>

</dependency>

Listing 4: Dependencies of NLP Application

The provided API integrates seamlessly into the
API of the UIMA framework which provides an
interface to run NLP components on unstructured
data such as natural language text, c. f. method
runPipeline in Listing 5. However, the best-
performing NLP has to be configured manually.
NLPf’s plumping JAR artifact provides the method
createBestPerformingPipelineEngineDescription()

which reads the configuration of the JAR that
contains the configuration and models of the
best-performing NLP pipeline.

CollectionReaderDescription readerDescription =
createReaderDescription(↪→
OdtReader.class,
OdtReader.PARAM_SOURCE_LOCATION, new

File("plain.odt"));↪→

AnalysisEngineDescription writerDescription =
createEngineDescription(↪→
OdtWriter.class,
OdtWriter.PARAM_TARGET_LOCATION, new File("."),
OdtWriter.PARAM_OVERWRITE, true);

runPipeline(readerDescription,
createBestPerformingPipelineEngineDescription(),
// integrate custom engine descriptions here
writerDescription);

Listing 5: Example Application Java Code

The example code provided in Listing 5 per-
forms following steps, executed by runPipeline:

• It reads an ODT file with the name plain.odt,
c. f. readerDescription.

• Then, it runs the best-performing NLP
pipeline which annotates the whole document
with the natural language structure.

• Finally, it stores the annotations into an
ODT file into the current directory, c. f.
writerDescription.

Developers can integrate custom analyses as
they require them (see // integrate custom... in
Listing 5). Therefore, they need to implement
UIMA annotators which use the typesystem of
DKPro Core. The conjunction of UIMA, DKPro
Core, and NLPf allows developers to implement
NLP applications effectively.

6 Summary

This paper provides a demonstration of NLP
Lean Programming framework (NLPf) which en-
ables developers to create domain-specific NLP
pipelines more effectively, making less decisions
through CoC. NLPf provides a standardized en-
vironment and the well-designed annotation tool
Quick Pad Tagger (QPT) with an improved in-
put mechanism to improve the annotation process.
Additionally, the best-performing NLP pipeline
will be determine through the convenient build
tool Maven and the resulting artifact can be inte-
grated as Maven dependency into any application
conveniently.

NLPf is Open-source software, released under
the LGPL version 3, and available at https://
gitlab.com/schrieveslaach/NLPf. All
artifacts are available on Maven central and they
can also be used with Jython in Python programs.

4



References
Ekaterina Buyko, Joachim Wermter, Michael Poprat,

and Udo Hahn. 2006. Automatically adapting an
nlp core engine to the biology domain. In Proceed-
ings of the Joint BioLINK-Bio-Ontologies Meeting.
A Joint Meeting of the ISMB Special Interest Group
on Bio-Ontologies and the BioLINK Special Inter-
est Group on Text Data M ining in Association with
ISMB. pages 65–68.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A broad-coverage collection of portable NLP com-
ponents for building shareable analysis pipelines. In
Nancy Ide and Jens Grivolla, editors, Proceedings of
the Workshop on Open Infrastructures and Analysis
Frameworks for HLT at COLING 2014. Association
for Computational Linguistics and Dublin City Uni-
versity, Dublin, Ireland, pages 1–11.

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of
semantic and syntactic structures. In Proceedings
of the workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH) at COL-
ING 2016. pages 76–84.

David Ferrucci and Adam Lally. 2004. Uima:
An architectural approach to unstructured infor-
mation processing in the corporate research envi-
ronment. Natural Language Engineering 10(3–
4):327–348. https://doi.org/10.1017/
S1351324904003523.

Eugenie Giesbrecht and Stefan Evert. 2009. Is part-of-
speech tagging a solved task? an evaluation of pos
taggers for the german web as corpus. In Proceed-
ings of the 5th Web as Corpus Workshop. WAC5,
pages 27–35.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations.
pages 55–60.

Melanie Neunerdt, Bianka Trevisan, Michael
Reyer, and Rudolf Mathar. 2013. Part-of-
speech tagging for social media texts. pages
139–150. https://doi.org/10.1007/
978-3-642-40722-2_15.

Fouad Nasser A Al Omran and Christoph Treude.
2017. Choosing an nlp library for analyzing soft-
ware documentation: A systematic literature review
and a series of experiments. In Proceedings of the
14th International Conference on Mining Software
Repositories. IEEE Press, Piscataway, NJ, USA,
MSR ’17, pages 187–197. https://doi.org/
10.1109/MSR.2017.42.

Richard M. Reese. 2015. Natural Language Process-
ing with Java. Packt Publishing Ltd.

Marc Schreiber, Kai Barkschat, Bodo Kraft, and Al-
bert Zündorf. 2015. Quick Pad Tagger: An Efficient
Graphical User Interface for Building Annotated
Corpora with Multiple Annotation Layers. Com-
puter Science & Information Technology 4:131–
143. https://doi.org/10.5121/csit.
2015.50413.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. Association for Computational Linguistics,
Vancouver, Canada, pages 88–99.

Christoph Treude and Martin P. Robillard. 2016. Aug-
menting api documentation with insights from stack
overflow. In Proceedings of the 38th International
Conference on Software Engineering. ACM, New
York, NY, USA, pages 392–403. https://doi.
org/10.1145/2884781.2884800.

5


