
Proceedings of NAACL-HLT 2018: Student Research Workshop, pages 92–99
New Orleans, Louisiana, June 2 - 4, 2018. c©2017 Association for Computational Linguistics

ListOps: A Diagnostic Dataset for Latent Tree Learning

Nikita Nangia1

nikitanangia@nyu.edu

Samuel R. Bowman1,2,3

bowman@nyu.edu

1Center for Data Science
New York University

60 Fifth Avenue
New York, NY 10011

2Dept. of Linguistics
New York University
10 Washington Place
New York, NY 10003

3Dept. of Computer Science
New York University

60 Fifth Avenue
New York, NY 10011

Abstract

Latent tree learning models learn to parse a
sentence without syntactic supervision, and
use that parse to build the sentence representa-
tion. Existing work on such models has shown
that, while they perform well on tasks like sen-
tence classification, they do not learn gram-
mars that conform to any plausible semantic or
syntactic formalism (Williams et al., 2018a).
Studying the parsing ability of such models in
natural language can be challenging due to the
inherent complexities of natural language, like
having several valid parses for a single sen-
tence. In this paper we introduce ListOps, a
toy dataset created to study the parsing ability
of latent tree models. ListOps sequences are in
the style of prefix arithmetic. The dataset is de-
signed to have a single correct parsing strategy
that a system needs to learn to succeed at the
task. We show that the current leading latent
tree models are unable to learn to parse and
succeed at ListOps. These models achieve ac-
curacies worse than purely sequential RNNs.

1 Introduction

Recent work on latent tree learning models (Yo-
gatama et al., 2017; Maillard et al., 2017; Choi
et al., 2018; Williams et al., 2018a) has introduced
new methods of training tree-structured recurrent
neural networks (TreeRNNs; Socher et al., 2011)
without ground-truth parses. These latent tree
models learn to parse with indirect supervision
from a downstream semantic task, like sentence
classification. They have been shown to perform
well at sentence understanding tasks, like textual
entailment and sentiment analysis, and they gen-
erally outperform their TreeRNN counterparts that
use parses from conventional parsers.

Latent tree learning models lack direct syntac-
tic supervision, so they are not being pushed to
conform to expert-designed grammars, like the

[MAX 2 9 [MIN 4 7 ] 0 ]

Figure 1: Example of a parsed ListOps sequence.
The parse is left-branching within each list, and
each constituent is either a partial list, an integer,
or the final closing bracket.

Penn Treebank (PTB; Marcus et al., 1999). The-
oretically then, they have the freedom to learn
whichever grammar is best suited for the task at
hand. However, Williams et al. (2018a) show that
current latent tree learning models do not learn
grammars that follow recognizable semantic or
syntactic principles when trained on natural lan-
guage inference. Additionally, the learned gram-
mars are not consistent across random restarts.
This begs the question, do these models fail to
learn useful grammars because it is unnecessary
for the task? Or do they fail because they are in-
capable of learning to parse? In this paper we in-
troduce the ListOps datasets which is designed to
address this second question.

Since natural language is complex, there are
often multiple valid parses for a single sentence.
Furthermore, as was shown in Williams et al.
(2018a), using sensible grammars is not neces-
sary to do well at some existing natural language
datasets. Since our primary objective is to study
a system’s ability to learn a correct parsing strat-
egy, we build a toy dataset, ListOps, that primar-
ily tests a system’s parsing ability. ListOps is in
the style of prefix arithmetic; it is comprised of
deeply nested lists of mathematical operations and
a list of single-digit integers.

The ListOps sequences are generated with a ref-
erence parse, and this parse corresponds to the

92



[MAX [MED [MED 1 [SM 3 1 3 ] 9 ] 6 ] 5 ] [MAX [MED [MED 1 [SM 3 1 3 ] 9 ] 6 ] 5 ]

Truth: 6; Pred: 5 Truth: 6; Pred: 5

[SM [SM [SM [MAX 5 6 ] 2 ] 0 ] 5 0 8 6 ] [SM [SM [SM [MAX 5 6 ] 2 ] 0 ] 5 0 8 6 ]

Truth: 7; Pred: 7 Truth: 7; Pred: 2

[MED 6 [MED 3 2 2 ] 8 5 [MED 8 6 2 ] ] [MED 6 [MED 3 2 2 ] 8 5 [MED 8 6 2 ] ]

Truth: 6; Pred: 6 Truth: 6; Pred: 5

Figure 2: Left: Parses from RL-SPINN model. Right: Parses from ST-Gumbel model. For the first set of
examples in the top row, both each models predict the wrong value (truth: 6, pred: 5). In the second row,
RL-SPINN predicts the correct value (truth: 7) while ST-Gumbel does not (pred: 2). In the third row,
RL-SPINN predicts the correct value (truth: 6) and generates the same parse as the ground-truth tree;
ST-Gumbel predicts the wrong value (pred: 5).

simplest available strategy for interpretation. We
are unaware of reasonably effective strategies that
differ dramatically from our reference parses. If a
system is given the ground-truth parses, it is triv-
ially easy to succeed at the task. However, if the
system does not have the reference parses, or is
unable to learn to parse, doing well on ListOps
becomes dramatically more difficult. Therefore,
we can use ListOps as a litmus test and diagnos-
tic tool for studying latent tree learning models.
ListOps is an environment where parsing is essen-
tial to success. So if a latent tree model is able to
achieve high accuracy in this rigid environment, it
indicates that the model is able to learn a sensible
parsing strategy. Conversely, if it fails on ListOps,
it may suggest that the model is simply incapable
of learning to parse.

2 Related Work

To the best of our knowledge, all existing work
on latent tree models studies them in a natural
language setting. Williams et al. (2018a) experi-
ment with two leading latent tree models on the
textual entailment task, using the SNLI (Bow-
man et al., 2015) and MultiNLI corpora (Williams
et al., 2018b). The Williams et al. (2018a) anal-
ysis studies the models proposed by Yogatama
et al. (2017) (which they call RL-SPINN) and
Choi et al. (2018) (which they call ST-Gumbel). A
third latent tree learning model, which is closely
related to ST-Gumbel, is presented by Maillard
et al. (2017).

All three models make use of TreeLSTMs (Tai
et al., 2015) and learn to parse with distant super-
vision from a downstream semantic objective. The
RL-SPINN model uses the REINFORCE algo-
rithm (Williams, 1992) to train the model’s parser.

93



The parser makes discrete decisions and cannot be
trained with backpropogation.

The model Maillard et al. (2017) present uses a
CYK-style (Cocke, 1969; Younger, 1967; Kasami,
1965) chart parser to compute a soft combination
of all valid binary parse trees. This model com-
putes O(N2) possible tree nodes for N words,
making it computationally intensive, particularly
on ListOps which has very long sequences.

The ST-Gumbel model uses a similar data
structure to Maillard et al., but instead utilizes
the Straight-Through Gumbel-Softmax estimator
(Jang et al., 2016) to make discrete decisions in
the forward pass and select a single binary parse.

Our work, while on latent tree learning models,
is with a toy dataset designed to study parsing abil-
ity. There has been some previous work on the use
of toy datasets to closely study the performance
of systems on natural language processing tasks.
For instance, Weston et al. (2015) present bAbI, a
set of toy tasks for to testing Question-Answering
systems. The tasks are designed to be prerequi-
sites for any system that aims to succeed at lan-
guage understanding. The bAbI tasks have influ-
enced the development of new learning algorithms
(Sukhbaatar et al., 2015; Kumar et al., 2016; Peng
et al., 2015).

3 Dataset

Description The ListOps examples are com-
prised of summary operations on lists of single-
digit integers, written in prefix notation. The full
sequence has a corresponding solution which is
also a single-digit integer, thus making it a ten-
way balanced classification problem. For exam-
ple, [MAX 2 9 [MIN 4 7 ] 0 ] has the solution 9.
Each operation has a corresponding closing square
bracket that defines the list of numbers for the op-
eration. In this example, MIN operates on {4, 7},
while MAX operates on {2, 9, 4, 0}. The correct
parse for this example is shown in Figure 1. As
with this example, the reference parses in ListOps
are left-branching within each list. If they were
right-branching, the model would always have to
maintain the entire list in memory. This is because
the summary statistic for each list is dependent on
the type of operation, and the operation token ap-
pears first in prefix notation.

Furthermore, we select a small and easy opera-
tion space to lower output set difficulty. The oper-
ations that appear in ListOps are:

• MAX: the largest value of the given list. For
the list {8, 12, 6, 3}, 12 is the MAX.

• MIN: the smallest value of the given list. For
the list {8, 12, 6, 3}, 3 is the MIN.

• MED: the median value of the given list. For
the list {8, 12, 6, 3}, 7 is the MED.

• SUM MOD (SM): the sum of the items in
the list, constrained to a single digit by the
use of the modulo-10 operator. For the list
{8, 12, 6, 3}, 9 is the SM.

ListOps is constructed such that it is trivially
easy to solve if a model has access to the ground-
truth parses. However, if a model does not have
the parses, or is unable to learn to parse correctly,
it may have to maintain a large stack of informa-
tion to arrive at the correct solution. This is partic-
ularly true as the sequences become long and have
many nested lists.

Efficacy We take an empirical approach to de-
termine the efficacy of the ListOps dataset to test
parsing capability. ListOps should be trivial to
solve if a model is given the ground-truth parses.
Therefore, a tree-structured model that is provided
with the parses should be able to achieve near
100% accuracy on the task. So, to establish the
upper-bound and solvability of the dataset, we use
a TreeLSTM as one of our baselines.

Conversely, if the ListOps dataset is adequately
difficult, then a strong sequential model should not
perform well on the dataset. We use an LSTM
(Hochreiter and Schmidhuber, 1997) as our se-
quential baseline.

We run extensive experiments on the ListOps
dataset to ensure that the TreeLSTM does consis-
tently succeed while the LSTM fails. We tune the
model size, learning rate, L2 regularization, and
decay of learning rate (the learning rate is low-
ered at every epoch when there has been no gain).
We require that the TreeLSTM model does well
at a relatively low model size. We further ensure
that the LSTM, at an order of magnitude greater
model size, is still unable to solve ListOps. There-
fore, we build the dataset and establish its effec-
tiveness as a diagnostic task by maximizing this
RNN–TreeRNN gap.

Theoretically, this RNN–TreeRNN gap arises
because an RNN of fixed size does not have the ca-
pacity to store all the necessary information. More

94



concretely, we know that each of the operations
in ListOps can be computed by passing over the
list of integers with a constant amount of mem-
ory. For example, to compute the MAX, the system
only needs to remember the largest number it has
seen in the operation’s list. As an RNN reads a se-
quence, if it is in the middle of the sequence, it will
have read many operations without closed paren-
theses, i.e. without terminating the lists. There-
fore, it has to maintain the state of all the open
operations it has read. So the amount of informa-
tion the RNN has to maintain grows linearly with
tree depth. As a result, once the trees are deep
enough, an RNN with a fixed-size memory can-
not effectively store and retrieve all the necessary
information.

For a TreeRNN, every constituent in ListOps is
either a partial list, an integer, or the final clos-
ing bracket. For example, in Figure 1, the first
constituent, ([MAX, 2, 9), is a partial list. So, the
amount of information the TreeLSTM has to store
at any given node is no greater than the small
amount needed to process one list. Unlike with
an RNN, this small amount of information at each
node does not grow with tree depth. Consequently,
TreeRNNs can achieve high accuracy at ListOps
with very low model size, while RNNs require
higher capacity to do well.

Generation The two primary variables that de-
termine the difficulty of the ListOps dataset are
tree depth and the function space of mathematical
operations. We found tree depth to be an essen-
tial variable in stressing model performance, and
in maximizing the RNN–TreeRNN gap. While
creating ListOps, we clearly observe that with in-
creasing recursion in the dataset the performance
of sequential models falls. Figure 3 shows the dis-
tribution of tree depths in the ListOps dataset; the
average tree depth is 9.6.

As discussed previously, since we are con-
cerned with a model’s ability to learn to parse, and
not its ability to approximate mathematical opera-
tions, we choose a minimal number of operations
(MAX, MIN, MED, SM). In our explorations, we
find that these easy-to-compute operations yield
bigger RNN–TreeRNN gaps than operations like
multiplication.

The ListOps dataset used in this paper has 90k
training examples and 10k test examples. During
data generation, the operations are selected at ran-
dom, and their frequency is balanced in the final

Figure 3: Distribution of average tree depth in the
ListOps training dataset.

dataset. We wrote a simple Python script to gen-
erate the ListOps data. Variables such as maxi-
mum tree-depth, as well as number and kind of
operations, can be changed to generate variations
on ListOps. One might want to increase the aver-
age tree depth if a model with much larger hidden
states is being tested. With a very large model size,
an RNN, in principle, can succeed at the ListOps
dataset presented in this paper. The dataset and
data generation script are available on GitHub.1

4 Models

We use an LSTM for our sequential baseline, and
a TreeLSTM for our tree-structured baseline. For
the latent tree learning models, we use two leading
models discussed in Section 2: RL-SPINN (Yo-
gatama et al., 2017) and ST-Gumbel (Choi et al.,
2018). We are borrowing the model names from
Williams et al. (2018a).

Training details All models are implemented in
a shared codebase in PyTorch 0.3, and the code
is available on GitHub.1 We do extensive hyper-
parameter tuning for all baselines and latent tree
models. We tune the learning rate, L2 regular-
ization, and rate of learning rate decay. We tune
the model size for the baselines in our endeavor
to establish the RNN–TreeRNN gap, wanting to
ensure that the TreeLSTM, with reference parses,
can solve ListOps at a low hidden dimension size,
while the LSTM can not solve the dataset at sig-
nificantly larger hidden sizes. We test model sizes
from 32D to 1024D for the baselines. The model

1https://github.com/NYU-MLL/spinn/
tree/listops-release

95



Model ListOps SNLI

Prior Work: Baselines

100D LSTM (Yogatama) – 80.2
300D BiLSTM (Williams) – 81.5
300D TreeLSTM (Bowman) – 80.9

Prior Work: Latent Tree Learning

300D RL-SPINN (Williams) – 83.3
300D ST-Gumbel (Choi) – 84.6
100D Soft-Gating (Maillard) – 81.6

This Work: Baselines

128D LSTM 73.3 –
1024D LSTM 74.4 –
48D TreeLSTM 94.7 –
128D TreeLSTM 98.7 –

This Work: Latent Tree Learning

48D RL-SPINN 62.3 –
128D RL-SPINN 64.8 –
48D ST-Gumbel 58.5 –
128D ST-Gumbel 61.0 –

Table 1: SNLI shows test set results of models
on the Stanford Natural Language Inference Cor-
pus, a sentence classification task. We see that the
latent tree learning models outperform the super-
vised TreeLSTM model. However, on ListOps,
RL-SPINN and ST-Gumbel have worse perfor-
mance accuracy than the LSTM baseline.

size for latent tree models is tuned to a lesser ex-
tent, since a model with parsing ability should
have adequate representational power at lower di-
mensions. We choose the narrower range of model
sizes based on how well the TreeLSTM baseline
performs at those sizes. We consider latent tree
model sizes from 32D to 256D. Note that the la-
tent tree models we train with sizes greater than
128D do not show significant improvement in per-
formance accuracy.

For all models, we pass the representation
through a 2-layer MLP, followed by a ten-way
softmax classifier. We use the Adam optimizer
(Kingma and Ba, 2014) with default values for the
beta and epsilon parameters.

5 ListOps Results

Baseline models The results for the LSTM and
TreeLSTM baseline models are shown in Table 1.
We clearly see the RNN–TreeRNN gap. The
TreeLSTM model does well on ListOps at embed-
ding dimensions as low as 48D, while the LSTM
model shows low performance even at 1024D,
and with heavy hyperparameter tuning. With this

large performance gap (∼25%) between our tree-
based and sequential baselines, we conclude that
ListOps is an ideal setting to test the parsing abil-
ity of latent-tree learning models that are deprived
of syntactic supervision.

Latent tree models Prior work (Yogatama et al.,
2017; Choi et al., 2018; Maillard et al., 2017;
Williams et al., 2018a) has established that la-
tent tree learning models often outperform stan-
dard TreeLSTMs at natural language tasks. In
Table 1 we summarize results for baseline mod-
els and latent tree models on SNLI, a textual en-
tailment corpus. We see that all latent tree mod-
els outperform the TreeLSTM baseline, and ST-
Gumbel does so with a sizable margin. However,
the same models do very poorly on the ListOps
dataset. A TreeLSTM model, with its access to
ground truth parses, can essentially solve ListOps,
achieving an accuracy of 98.7% with 128D model
size. The RL-SPINN and ST-Gumbel models ex-
hibit very poor performance, achieving 64.8% and
61.0% accuracy with 128D model size. These la-
tent tree models are designed to learn to parse, and
use the generated parses to build sentence repre-
sentations. Theoretically then, they should be able
to find a parsing strategy that enables them to suc-
ceed at ListOps. However, their poor performance
in this setting indicates that they can not learn a
sensible parsing strategy.

Interestingly, the latent tree models perform
substantially worse than the LSTM baseline. We
theorize that this may be because the latent tree
models do not settle on a single parsing strategy.
The LSTM can thoroughly optimize given its fully
sequential approach. If the latent tree models keep
changing their parsing strategy, they will not be
able to optimize nearly as well as the LSTM.

To test repeatability and each model’s robust-
ness to random initializations, we do four runs of
each 128D model (using the best hyperparameter
settings); we report the results in Table 2. We
find that the LSTM maintains the highest accuracy
with an average of 71.5. Both latent tree learning
models have relatively high standard deviation, in-
dicating that they may be more susceptible to bad
initializations.

Ultimately, ListOps is a setting in which parsing
correctly is strongly encouraged, and doing so en-
sures success. The failure of both latent tree mod-
els suggests that, in-spite their architectures, they
may be incapable of learning to parse.

96



Accuracy Self
Model µ(σ)µ(σ)µ(σ) max F1

LSTM 71.5 (1.5) 74.4 -
RL-SPINN 60.7 (2.6) 64.8 30.8
ST-Gumbel 57.6 (2.9) 61.0 32.3

Random Trees - - 30.1

Table 2: Accuracy shows accuracy across four runs
of the models (expressed as mean, standard devia-
tion, and maximum). Self F1 shows how well each
of these four model runs agrees in its parsing de-
cisions with the other three.

F1 wrt. Avg.
Model LB RB GT Depth

48D RL-SPINN 64.5 16.0 32.1 14.6
128D RL-SPINN 43.5 13.0 71.1 10.4
48D ST-Gumbel 52.2 15.3 55.3 11.1
128D ST-Gumbel 56.5 9.8 57.3 12.7

Ground-Truth Trees 41.6 8.8 100.0 9.6
Random Trees 24.0 24.0 24.2 5.2

Table 3: F1 wrt. shows F1 scores on ListOps with
respect to left-branching (LB), right-branching
(RB), and ground-truth (GT) trees. Avg. Depth
shows the average across sentences of the average
depth of each token in its tree.

6 Analysis

Given that the latent tree models perform poorly
on ListOps, we take a look at what kinds of parses
these models produce.

F1 scores In Table 3, we show the F1 scores
between each model’s predicted parses and fully
left-branching, right-branching, and ground-truth
trees. We use the best run for each model in the
reported statistics.

Overall, the RL-SPINN model produces parses
that are most consistent with the ground-truth
trees. The ListOps ground-truth trees have a high
F1 of 41.6 with left-branching trees, compared
to 9.8 with right-branching trees. Williams et al.
(2018a) show that RL-SPINN tends to settle on a
left-branching strategy when trained on MultiNLI.
We observe a similar phenomena here at 48D.
Since ListOps is more left-branching, this ten-
dency of RL-SPINN’s could offer it an advan-
tage. Furthermore, as might be expected, increas-
ing model size from 48D to 128D helps improve
RL-SPINN’s parsing quality. At 128D, it has a

high F1 score of 71.1 with ground-truth trees. The
128D model also produces parses with an aver-
age tree depth (10.4) closer to that of ground-truth
trees (9.6).

The parses from the 128D ST-Gumbel have
a significantly lower F1 score with ground-truth
trees than the parses from RL-SPINN. This result
corresponds with the performance on the ListOps
task where RL-SPINN outperforms ST-Gumbel
by∼4%. Even though the trees ST-Gumbel gener-
ates are of a worse quality than RL-SPINN’s, the
trees are consistently better than random trees on
F1 with ground-truth trees.

It’s important to note that the F1 scores have
very high variance from one run to the next. Ta-
ble 2 shows the self F1 scores across random
restarts of both models. Both have very poor
agreement in parsing decisions across restarts,
their self F1 is comparable to that of randomly
generated trees. For RL-SPINN, the F1 with
ground-truth trees ranges from 18.5 to 71.1, with
an average of 39.8 and standard deviation of 19.4.
While ST-Gumbel has an average of 44.5, and a
standard deviation of 11.8. This high variance in
F1 scores is reflective of the high variance in ac-
curacy across random restarts, and it supports our
hypothesis that these latent tree models do not find
and settle on a single parsing strategy.

Parse trees In Figure 2, we show some exam-
ples of trees generated by both models. We use
the best runs for the 128D versions of the models.
Parses generated by RL-SPINN are in the left col-
umn, and those generated by ST-Gumbel are on
the right.

For the pair of examples in the top row of Fig-
ure 2, both models incorrectly predict 5 as the so-
lution. Both parses compose the first three opera-
tions together, and it is not clear how these models
arrive at that solutions given their chosen parses.

In the second pair of examples, RL-SPINN pre-
dicts the correct value of 7, while ST-Gumbel
wrongly predicts 2. The parse generated by RL-
SPINN is not the same as the ground-truth tree but
it finds some of the correct constituent boundaries:(
[MAX 5 6

)
are composed with a right-branching

tree, and
(
2 ]

)
are composed together. Since

the first three operations are all SUM MOD, their
strange composition does not prevent the model
from correctly predicting 7.

For the third pair of examples, the RL-SPINN
model generates the same parse as the ground-

97



Figure 4: Model accuracy on ListOps test set by
size of training dataset.

truth reference and rightly predicts 6. While
ST-Gumbel gets some of the correct constituent
boundaries, it produces a fairly balanced tree, and
falters by predicting 5. Overall, the generated
parses are not always interpretable, particularly
when the model composes several operations to-
gether.

Dataset size ListOps is intended to be a simple
dataset that can be easily solved with the correct
parsing strategy. One constraint on ListOps is the
dataset size. With a large enough dataset, in prin-
ciple an RNN with enough capacity should be able
to solve ListOps. As we stated in Section 3, a
requirement for ListOps is having a large RNN–
TreeRNN gap to ensure the efficacy of the dataset.

However, it is possible that the latent tree mod-
els we discuss in this paper could greatly benefit
from a larger dataset size, and may indeed be able
to learn to parse given more data. To test this hy-
pothesis, and to ensure that data volume is not crit-
ical to solving ListOps, we generate three expan-
sions on the training data, keeping the original test
set. The new training datasets have 240k, 540k,
and 990k examples, with each dataset being a sub-
set of the next larger one. We train and tune the
128D LSTM, RL-SPINN, and ST-Gumbel models
on these datasets. Model accuracies for all train-
ing sets are plotted in Figure 4. We see that while
accuracy does go up for the latent tree models, it’s
not at a rate comparable to the LSTM. Even with
an order of magnitude more data, the two mod-
els are unable to learn how to parse successfully,
and remain thoroughly outstripped by the LSTM.
Clearly then, data volume is not a critical issue

keeping these latent tree models from success.

7 Conclusion

In this paper we introduce ListOps, a new toy
dataset that can be used as a diagnostic tool to
study the parsing ability of latent tree learning
models. ListOps is an ideal setting for testing a
system’s parsing ability since it is explicitly de-
signed to have a large RNN–TreeRNN perfor-
mance gap. While ListOps may not be the sim-
plest type of dataset to test a system’s parsing ca-
pability, it is certainly simpler than natural lan-
guage, and it fits our criteria.

The experiments conducted on ListOps with
leading latent tree learning models show that these
models are unable to learn to parse, even in a
setting that strongly encourages it. We only test
two latent tree models, and are unable to train and
analyse some other leading models, like Maillard
et al.’s (2017) due to its high computational com-
plexity. In the future, we would like to develop a
version of ListOps with shorter sequence lengths,
while maintaining the RNN–TreeRNN gap. With
such a version, we can experiment with more com-
putationally intensive models.

Ultimately, we aim to develop a latent tree
learning model that is able to succeed at ListOps.
If the model can succeed in this setting, then
perhaps it will discover interesting grammars in
natural language that differ from expert designed
grammars. If those discovered grammars are prin-
cipled and systematic, they may lead to improved
sentence representations. We hope that this work
will inspire more research on latent tree learning
and lead to rigorous testing of such models’ pars-
ing abilities.

Acknowledgments

This project has benefited from financial support
to Sam Bowman by Google, Tencent Holdings,
and Samsung Research. We thank Andrew Droz-
dov, who contributed to early discussions that mo-
tivated this work.

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

98



Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018.
Learning to compose task-specific tree structures.
In Proceedings of the 2018 Association for the Ad-
vancement of Artificial Intelligence (AAAI).

John Cocke. 1969. Programming Languages and Their
Compilers: Preliminary Notes. Courant Institute of
Mathematical Sciences, New York University.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat-
egorical reparameterization with gumbel-softmax.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Tadao Kasami. 1965. An efficient recognition and syn-
tax analysis algorithm for context-free languages.
Air Force Cambridge Research Laboratory, Bed-
ford, MA.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference for Learning Repre-
sentations (ICLR).

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit
Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. 2016.
Ask me anything: Dynamic memory networks for
natural language processing. In Proceedings of the
33rd International Conference on Machine Learning
(ICML).

Jean Maillard, Stephen Clark, and Dani Yogatama.
2017. Jointly learning sentence embeddings and
syntax with unsupervised tree-lstms. arXiv preprint
1705.09189.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-3.
LDC99T42. Linguistic Data Consortium.

Baolin Peng, Zhengdong Lu, Hang Li, and Kam-Fai
Wong. 2015. Towards neural network-based reason-
ing. arXiv preprint 1508.05508.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In Proceedings of the 2015 Conference on
Advances in Neural Information Processing Systems
(NIPS).

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics

and the 7th International Joint Conference on Natu-
ral Language Processing (ACL-IJCNLP).

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards AI-complete ques-
tion answering: A set of prerequisite toy tasks.
arXiv preprint 1502.05698.

Adina Williams, Andrew Drozdov, and Samuel R.
Bowman. 2018a. Learning to parse from a seman-
tic objective: It works. is it syntax? In Proceedings
of the Transactions of the Association for Computa-
tional Linguistics (TACL).

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2018b. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL).

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to
compose words into sentences with reinforcement
learning. In Proceedings of the International Con-
ference on Learning Representations (ICLR).

Daniel H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10:10:189–208.

99


