
Proceedings of NAACL-HLT 2018, pages 216–224
New Orleans, Louisiana, June 1 - 6, 2018. c©2017 Association for Computational Linguistics

Document-based Recommender System for
Job Postings using Dense Representations

Ahmed Elsafty∗ and Martin Riedl† and Chris Biemann‡
∗ XING SE, Hamburg, Germany

† IMS, Universität Stuttgart, Germany
‡ Language Technology, Universität Hamburg, Germany

ahmed.elsafty@xing.com, martin.riedl@ims.uni-stuttgart.de,
biemann@informatik.uni-hamburg.de

Abstract
Job boards and professional social networks
heavily use recommender systems in order to
better support users in exploring job adver-
tisements. Detecting the similarity between
job advertisements is important for job recom-
mendation systems as it allows, for example,
the application of item-to-item based recom-
mendations. In this work, we research the us-
age of dense vector representations to enhance
a large-scale job recommendation system and
to rank German job advertisements regarding
their similarity. We follow a two-folded eval-
uation scheme: (1) we exploit historic user
interactions to automatically create a dataset
of similar jobs that enables an offline evalua-
tion. (2) In addition, we conduct an online A/B
test and evaluate the best performing method
on our platform reaching more than 1 million
users. We achieve the best results by com-
bining job titles with full-text job descriptions.
In particular, this method builds dense docu-
ment representation using words of the titles to
weigh the importance of words of the full-text
description. In the online evaluation, this ap-
proach allows us to increase the click-through
rate on job recommendations for active users
by 8.0%.

1 Introduction

Recommender systems aim at providing recom-
mendations for services that are targeted to spe-
cific users. The majority of such systems are ap-
plied in the field of e-commerce for e.g. product
recommendations (Lu et al., 2015). In business-
oriented networking platforms, recommender sys-
tems propose job recommendations to users.

In this deployment paper, we target the develop-
ment of content-based methods for job recommen-
dations focusing on German job advertisements.
Based on our social online platform for profes-
sionals, 45% of the traffic is driven by recommen-
dation services for job postings. Thus, improving

the job recommendations is expected to result in
higher user interactions.

Our online platform’s infrastructure consists of
several recommendation stages in order to recom-
mend job postings to users. In this paper, we focus
on the so-called More-Like-This (MLT) compo-
nent that recommends job postings based on previ-
ous users interactions with other job postings. Our
current system consists of an ensemble of recom-
mendation retrieval, filtering and re-ranking stages
in order to recommend relevant job postings to
users. For this, it exploits metadata of a job post-
ing like keywords, disciplines and industries in
which the job is categorized.

There are multiple issues when using exact key-
words or category matching for ranking job post-
ings. First, the document collection, with over 1
million job postings, is fairly huge and too diverse
to fit into the small number of available categories,
e.g. 22 disciplines such as Law or Media. Sec-
ond, strict word matching leads to recall issues,
for instance, J2EE Developer will not be similar to
Software Engineer. Thus, employing a sparse vec-
tor representation is not appropriate for retrieving
similarities between job postings. In addition, due
to the cold start problem (Schein et al., 2002), us-
ing solely metadata of job postings or users is not
suitable, especially for new users, for which only
marginal or no information exists. Furthermore,
metadata can be entirely missing or incorrect (e.g.
outdated or on purpose).

Consequently, we will compute similarities be-
tween job postings based on dense vector rep-
resentations. Recent document embedding tech-
niques learn meaningful syntactic and semantic re-
lationships based on word occurrences in the text.
In this paper, we use dense vector representation of
documents to score similarities between job post-
ings based on their full-text descriptions and ti-
tles. First, we create a dataset for an offline eval-

216

uation consisting of similar job postings based on
user co-interactions. Then, we construct an evalu-
ation metric based on the classification of similar
and non-similar items. Testing multiple embed-
ding models and weighting functions, the best per-
formance is achieved when building embeddings
based on the job description with an increased
weight for words that appear in the job title. Fi-
nally, the model is used in an online A/B test to
assert its performance on live data.

2 Related Work

Recommendation systems can be divided into
three categories (Resnick and Varian, 1997):
content-based, collaborative filtering and hybrid
models. Content-based recommender systems use
items the user positively interacted with in the
past, calculate similarity scores between item pairs
and rank the new recommendations accordingly
(Lops et al., 2011). Collaborative filtering ap-
proach suggest items to a given user, that other
similar users positively interacted with (Koren and
Bell, 2015). Hybrid methods combine both tech-
niques (Burke, 2007). To avoid cold start prob-
lems, due to missing data, we focus on content-
based approach here.

Dense numeric representations are commonly
used to compute the similarity between content
of documents (Hofmann, 2000) in order to reduce
sparse count-based representations (Koren et al.,
2009), which require huge amounts of memory.
Word2Vec (Mikolov et al., 2013) has become a
standard method that builds dense vector repre-
sentations, which are the weights of a neural net-
work layer predicting neighboring words. To re-
trieve a document representation, we compute the
average of all vectors of the words in the docu-
ments. Word2Vec was also used for recommender
systems to re-rank items based on vector correla-
tions (Musto et al., 2015; Ozsoy, 2016). A modifi-
cation that allows the usage of predicting arbitrary
context in order to compute word representation
is named Word2VecF and was introduced by Levy
and Goldberg (2014). Document embedding tech-
niques like Doc2Vec (Le and Mikolov, 2014) as-
signs each document a single vector, which gets
adjusted with respect to all words in the document
and all document vectors in the dataset. In an
attempt to reduce Doc2Vec complexity and train-
ing corpus size dependencies, Doc2VecC (Chen,
2017) uses the same architecture as Word2Vec’s,

except that it samples words from the document in
each training iteration by creating a document vec-
tor out of their average. The vector is then used to
help predicting neighboring words during training.

To our best knowledge, no dataset is available
to evaluate the performance of ranking similari-
ties between jobs. Most similar is the dataset of
the RecSys 2016 task (Abel et al., 2016). How-
ever, the task of this challenge was to learn the
retrieval relevant documents based on user meta-
data and the approaches use supervised systems.
In addition, datasets for document similarity ex-
ist, but do not focus on job postings. For the task
of document similarity, the 20 Newsgroups (Lang,
1995) and TREC-AP (Lewis et al., 1996) datasets
are commonly used. Here the task is to assign doc-
uments to a predefined category. Thus, the task is
more related to document clustering than informa-
tion retrieval of similar documents. Also related
are semantic text similarity tasks, where two sen-
tences have to be scored regarding their similarity
with a score between 0 and 5 (Baudiš et al., 2016).
Paraphrasing is another aspect that is important
for document similarity. Bernhard and Gurevych
(2008) introduced a dataset for paraphrasing both
questions and answers in order to enhance the re-
sults for the information retrieval.

Related work was done by Fazel-Zarandi and
Fox (2009), who introduced a method for match-
ing jobs with job seekers. Whereas this fits to the
RecSys 2016 task, this does not cover job post-
ing retrieval of similar jobs. Furthermore, super-
vised approaches exist that predict jobs to candi-
date users e.g. Poch et al. (2014). In addition,
Kessler et al. (2008) introduced a dataset based on
French job offers and presented a system for rank-
ing relevant jobs to candidates based on a jobs-to-
candidates similarity metric.

3 Method

We hypothesize that job offers are semantically
similar if the words used in its description are se-
mantically similar. In addition, metadata of job
offers like e.g. location of employee, title or qual-
ifications are relevant for similarity computations.

3.1 Data Retrieval

Based on our job recommendation platform, we
extract user interactions (bookmarks and reply in-
tentions) from March 2014 to March 2017 as pairs
of users and jobs. First, we remove users and jobs

217

that have less than two interactions overall. Then,
users are filtered out that have a number of over-
all lifetime interactions that exceeds the 99th per-
centile of all users. We consider such users as out-
liers. As click data of users is noisier than the
bookmark data, we do not use clicks for the cre-
ation of this dataset.

Whereas our job recommendation platform fea-
tures job postings in English and German, most
users prefer German postings. This also affects
our dataset, which comprises of 91% of German
postings. While training semantic models for mul-
tiple languages is possible (e.g. Søgaard et al.,
2017), we focus on German job postings, as found
by a language detector1.

3.2 Data Preprocessing

Before training, HTML tags, URLs and e-mails
were removed using regular expressions, as early
models showed a huge bias towards HR contact
emails and job agencies that include boilerplate
URLs in the job description footers. All special
characters like non-alphabetical characters, inter-
punctuation and bullet points were removed. Ini-
tial semantic models required large vocabularies
due to writing variations of the same word. For
instance, the term Java occurs three times: Java,
java and JAVA. Hence, we lowercase job posting
texts and replace numbers with a placeholder (Ab-
delwahab and Elmaghraby, 2016). Finally, the
document is stemmed using Snowball stemmer2.

3.3 Ground Truth Construction

As manual annotation is expensive and time con-
suming – experts would have to go through N2

jobs for completeness (where N is the sample
size) – we automatically build a dataset using in-
teractions of users from our job recommendation
system. For building the dataset, we assume that
two jobs are similar, if two or more users are inter-
ested in these two jobs. This assumption follows
our intuition that users bookmark relevant jobs that
are similar. However, this source of information
can be noisy, due to random surfing, accidental
clicks or when job postings are bookmarked for a
friend and not for the profile owner. Hence, by se-
lecting only jobs where several users co-interacted
with, we can increase the probability that such jobs
are similar.

1https://pypi.python.org/pypi/
langdetect

2http://snowballstem.org/

In order to validate this assumption, a proper
representative sample should be randomly se-
lected and assessed by human experts. Since we
did not have the resources for manual judgments,
we compare the metadata from the job postings.
For example, for 616,000 pairs of similar jobs,
70.02% of them share the same discipline. The
other about 30% span across similar disciplines
like e.g. Marketing, Quality Assurance and Project
Management that have high topical overlap. How-
ever, discipline pairs exist that may not be consid-
ered as similar, like Engineering & Technical and
Management & Corporate Development. Such
“noise” in addition to slight diversity in book-
marked jobs is expected due to the automatic gen-
eration of the dataset. Nevertheless, such non-
trivial discipline combinations have very low fre-
quency. Better dataset construction approaches
could involve increasing the number of users who
co-interact with the job. Whereas this increases
confidence, it decreases the dataset size drastically
and could impose a bias for popular vs. rather
sparingly sought disciplines.

Offline Evaluation Setup
The two jobs with the titles Java Developer, Ham-
burg and Java Backend Developer, Stuttgart are
examples of two very similar job postings with
different locations. Due to the location difference
they fit to two different types of users: those who
live close to Stuttgart and those close to Hamburg.
For the creation of our dataset we consider the fol-
lowing: if there is no user co-interaction between
two jobs, they will not be considered similar in the
dataset. The same applies to similar jobs postings
with large creation time stamp differences. For
example, users that have been interested in jobs
posted in 2014, might not be interested in similar
jobs posted in 2017.

Inspired by the information retrieval-based
evaluation approach by Le and Mikolov (2014),
we created our dataset. In their approach, they
created triples (s, p, n) that consists of a para-
graph s, a similar paragraph p and a non-similar
randomly sampled paragraph n. Inspired by this
dataset, negative sampling in Word2Vec and cross
validation, we extended the approach to construct
a dataset of positive and negative samples as de-
scribed in Algorithm 1. For each job, we create 10
folds of 10 similar and 40 non-similar jobs.

This algorithm returns a list of triplets consist-
ing of the job j, a list of similar jobs Posf and a

218

Algorithm 1 Building the Evaluation Dataset

1: procedure CREATE DATASET(jobs)
2: output← []
3: for j in jobs do
4: for f = 1 . . . 10 do
5: Posf , Foldf ← [], []
6: for i = 1 . . . 10 do
7: pi ← random similar job
8: Posf .append(pi)
9: Foldf .append(pi)

10: for i = 1 . . . 40 do
11: ni ← random job
12: Foldf .append(ni)

13: shuffle(Foldf)
14: output.append((j, Posf , Foldf))

15: return output . A list of triplets

shuffled list Foldf of similar and non similar job
postings to the job j. During evaluation, every job
posting in the shuffled Foldf is compared to the
corresponding job j to compute a similarity score,
which is used to rearrange Foldf . The precision
measure is used to compare the list cutout at 10
(retrieved), and the relevant job postings in Posf .

Sampling “negative job postings” from the en-
tire dataset, we reduce the chance of fetching simi-
lar job postings that our dataset did not capture. To
reduce the chance of false negatives, we increase
the size of the dataset by randomly generating 10
lists for each job, resulting in a dataset of 112,000
distinct job postings and 12,000 shuffled lists.

In Figure 1, we show the similarity between job
titles (we translated them from German to English)
based on a Doc2VecC model (500 dim vectors, 10
window size, 15 negative sampling, 20 iterations)
using T-SNE. The job colored in black (Lean Java
Expert Munich) represents the job being evaluated,
and the gray ones represent similar (positive) job
postings sampled from our user interactions. The
remaining jobs depict non-similar (negative) jobs
sampled from the entire corpus. Based on the fig-
ure we have three observations: first, most posi-
tive jobs are closest to the queried job and focus
on the same topic, namely Java development. Sec-
ond, some of the “negative” jobs are relevant, e.g.
FrontEnd developer and Teamleader in IT Devel-
opment, and have a close distance to the queried
job. Third, we observe multiple clusters: for ex-
ample, in the upper right corner we observe a
“media management” cluster, and in the center a

“project management” cluster.

4 Offline Evaluation

In this section, we first report results that are com-
puted based on full-text job descriptions. Then,
we exploit the performance using the job titles. To
complete our experiments we show results for the
combination of job titles and job descriptions.

In our experiments, we use commonly used hy-
perparameters (Siencnik, 2015; Levy et al., 2015;
Yao et al., 2017). We tested different combinations
of window size (2, 5, 10), model choice (skip-
gram vs. continuous bag of words) and number
of dimensions (100, 250, 500) and picked the fol-
lowing hyperparameters for the rest of the exper-
iments: skip-gram model with vector size of 500,
window size of 10, 15 words for negative sam-
pling, 20 iterations and a threshold for the mini-
mum count of 5.

Due to the ranking nature of the task, we report
results based on the precision at 10 (P@10) score
considering the ten highest ranked jobs. Since we
have 10 positive similar job postings in each list,
the P@10 can be interpreted as an average per-
centage of jobs in the top 10 which are actually
similar and can have a maximum value of 100%.

Full-Text Job Description: As a baseline we
represent each job as a word vector of TF-IDF
scores based on the job description and use the co-
sine similarity for re-ranking the jobs (see Table
1). This baseline performs lowest with a P@10
score of 8.69% showing that such a sparse repre-
sentation is insufficient to identify similarities be-
tween documents.

Model Stem-
med

Doc.
Context

TF-IDF
weights P@10

TF-IDF 08.69 %
Word2Vec 54.84 %
Word2Vec * 56.22 %
Word2VecF * * 61.12 %
Word2VecF * * * 62.81 %
Doc2VecC * 62.73 %
Doc2VecC * * 64.23 %

Table 1: Precision scores of word embedding mod-
els using full-text description only.

Using Word2Vec, we achieve a score of 54.85%,
demonstrating that dense representations perform
much better on our dataset than using sparse word
representations. Stemming the documents yields
to a further improvement (+1.38) and reduces the

219

Facility Manager

Web Developer

Consultant ORACLE CRM

Corporate lawyer/Legal Counsel

Content & Social Media Manager

Content & Social Media ManagerSales Support Manager Investment Consulting

Market Research

Category Manager REWE

Biologist − Quality Control

Head of Controlling

Investment Associate/Director

Employee in Quality Management

Personal Referent Recruiting

Distribution/Sales Assistant

JAVA SOFTWARE ENGINEER

Controller

Regional Business Development Manager

Senior Project Manager

Trainee Energy services

Head of the Personnel Department

Working student Graphic Design

Teamlead Sales Managing Consultant

Junior Java Developer

Head of Quality in testing

Java Software developer/Architekt

Stress Engineer CAE Rigidity

Senior Java Software−developer

Schaller & Partner in Mannheim

Project Manager Digital Services

Frontend Developer (HTML/CSS/Javascript)

Project leader Logistics Lean

Software Engineer JEE

Sales engineer in sealing technology

Editor/Copywriter/Content Manager

Car Salesman

Trainee Programm headquarters

Online−editor Search Engine optimization

Marketing Specialist Communication

Consultant Contract & Product management

JUNIOR SOFTWARE ENGINEER JEE

Leader Food Logistics

Team Leader in IT−development

Digital Media Manager/Online−editor

JAVA Programming/Backend

Developer XML/XSL

Java Professional Project Leader Events

Trainee − regional manager

Office Manager − Location CoordinatorLean Java Expert Munich

Figure 1: T-SNE representation of a sampled list after a model evaluation (job titles
are translated from German to English).

training time, due to the smaller vocabulary size.
Combining the stemmed representation with con-
text information – we use the document IDs and
compute the representation using Word2VecF – we
achieve improvements of +4.9 points in compari-
son to the standard Word2Vec approach. In this
setting, we predict the document ID for every word
(unlike predicting its neighbors in Word2Vec).
Such a “window” can be seen as a global context
over the entire document, which performs better
than using Word2Vec local context. By extending
this model with TF-IDF scores, the performance
is boosted by another +1.69 points to a score of
62.81%. In addition, we compute similarities with
Doc2VecC using stemmed job descriptions as doc-
uments. This method performs best among the
single tested models (62.73%), and scores highest
when combined with TF-IDF weights achieving a
score of 64.32%.

Job Title: Whereas the models mentioned
above use the job description, most users click
on jobs based on the title. Thus, we investigate
building document vectors using solely title infor-
mation using Word2Vec with stemmed words and
TF-IDF weights. This experiment should reveal
whether computational efforts can be reduced by

using less information.
As shown in Table 2, Word2Vec using title vec-

tor yields a P@10 of 58.79%. Whereas these re-
sults are lower, they are still impressive, as we only
have one “sentence” with an average of 4.8 words.
In addition, we consider job titles as documents

Model P@10
Word2Vec – 500 dim. 58.79%
Doc2Vec – 100 dim. 59.87 %
Doc2Vec – 250 dim. 60.03 %
Doc2Vec – 500 dim. 61.23 %
Doc2Vec – 500 dim. – Inferred 20.66 %

Table 2: Results using the title with various embed-
dings.

and use Doc2Vec. Given the small sentence size,
it can be trained in reasonable time. In our ex-
periments, we test this model with various dimen-
sions (100, 250, 500) and keep the other parame-
ters fixed.3 Testing the effect of Doc2Vec on titles
that have not been seen before, we achieve a low
precision of 20.66%. This was tested by dropping
the document vectors generated for our dataset af-
ter training, and using the model to infer the doc-

3We use a distributed bag of words model, window size
of 10, minimum word count of 5 and a sampling rate of 1e-5.

220

ument vectors again. When predicting vectors for
unseen documents, the model infers the title vec-
tor based on its words, however, information loss
is to be expected. This implies that the model can-
not be efficiently used in an online scenario or in
a pipeline of streaming jobs since the entire model
has to be retrained on the full data to obtain a bet-
ter word coverage.

Title weighted description: Next, we com-
bine Doc2VecC word vectors of the description
weighted by the TF-IDF values with weights, in-
dicating if a word is contained in the title. For the
combination we use the following formula:

D(w1, . . . , wk) =

∑k
i=1 TF–IDF (wi) ∗ V (wi) ∗ λ(wi)∑k

i=1 TF–IDF (wi) ∗ λ(wi)

λ(wi) =

{
c, if wi ∈ title, c > 1.0

1, otherwise

with λ(wi) = c with the constant c > 1.0 if
wi is contained in the title and λ(wi) = 1.0 if the
word wi is not contained in the title.

When constructing the document vector D con-
taining k words, all word vectors V (wi) are multi-
plied by their corresponding scalar TF-IDF values
and the constant c if the word appears in the ti-
tle. Then, the vectors are summed up and divided
over the weights to calculate the weighted aver-
age. Based on findings in the previous section,
we already know that the title provides enough in-
formation to distinguish jobs. Thus, weighting ti-
tle words higher when averaging pulls the docu-
ment vector a bit closer to the title in the vector
space. Using c = 5, we achieve result with a pre-
cision score of 73.05%. It shows that by choosing
a proper weighting function, we can achieve better
results than changing the entire model. In indus-
try, often not the best performing system is used,
but the one which can also be applied efficiently
to new and unseen data. Since word vectors are
precomputed, document vectors can be computed
online in the platform pipeline, such that vectors
of new documents are available when needed by
the recommender services.

5 Online Evaluation

The existing recommender system uses Elastic-
search4 to retrieve job postings based on the user’s

4https://www.elastic.co

metadata, then exploits the user’s previous inter-
actions with job postings to rank the recommen-
dations in a doc-to-doc similarity fashion via TF-
IDF. This is used as a ranking baseline. For
our online evaluations, we use the retrieval mod-
ule from Elasticsearch, and plug our fastest and
best performing job representation (title weighted
Doc2VecC) model into a new system to re-rank the
retrieved documents.

Before we performed the online evaluation, we
analyzed whether the results with the A/B test will
differ using different semantic representation, to
prove whether the A/B test will lead to any mean-
ingful result. For this, we re-rank the same re-
trieved recommendations for 2000 users sampled
from the most active users on the platform.

As shown in Table 3, the intersected (common)
recommendations (µ) between the two systems
does not exceed 36% for allK ranks in the recom-
mendation lists, with a decreasing standard devia-
tion (σ). This reveals that the changes have huge
impact on the rankings.

Top K Intersection Avg Distance (km)
µ σ Existing New

4 30.1% 32.16% 287 179
10 35.5% 27.89% 293 188
20 35.4% 25.69% 325 195
50 34.1% 21.28% 336 192

Table 3: Pre-analysis for the A/B test. We show the
mean and standard deviation of common recom-
mendations returned by the systems on different
ranks K, and the average distance of job postings
to the user in kilometers (km).

In addition, we analyze the average distance in
kilometers (km) of the recommended job postings
to the user’s location. The new model favors to
rank jobs with closer distance at higher position:
the top 4 recommendations are 30% closer and
even 60% closer for the top 50 jobs. This is an im-
portant finding, as we hypothesize that users prefer
jobs that are closer to their location. Job locations
are usually included in the title, allowing vectors
of cities to contribute higher in the title weighted
averaging approach.

To perform the A/B test, we conduct a controlled
experiment by selecting active users (with at least
a single previous job interaction) and split them
into two groups: one group gets job posting rec-
ommendations ranked by the Elasticsearch, and

221

the second group gets job posting recommenda-
tions ranked by our best system (title weighted
Doc2VecC model).

First, we apply an A/A test (Kohavi et al., 2009)
to test for any split bias: both groups get recom-
mendations from the existing system for 30 days.
Then, the A/B test is conducted over the period of
20 days. The success metric is the Click-Through-
Rate (CTR), which is the percentage of clicked
items considering all items that have been shown
to the users. Thus, the more items users interact
with, the higher the CTR and the more successful
is the algorithm.

Group 1 Group 2

A/A test 20.000% 19.986%
A/B test 20.000% 21.600%

Table 4: Results of the A/A and A/B test with
masked CTR to comply with the platform’s pol-
icy.

Table 4 shows the results for the A/A and A/B
test. To keep the true numbers proprietary to the
company, we masked the absolute CTR values
by normalizing group 1’s real CTR to 20% and
changing the clicks and group 2’s CTR accord-
ingly to preserve the ratios without showing confi-
dential numbers. The A/A test shows negligible
difference between the splits (-0.07%), showing
no bias between the two groups. The experimental
group 2 has a very noticeable relative difference
of +8.00% more clicks per received recommenda-
tions using the title weighted description model.

To exemplify the difference between both sys-
tems, we show in Table 5 the top recommenda-
tions for a postdoctoral researcher who showed in-
terest in three Deep Learning Engineer positions.
Most of the recommendations of the existing sys-
tem are software engineer associated job postings,
while the new system suggests research oriented
job postings with topics similar to the user’s pre-
vious interactions like data science.

In contrast to offline evaluations, deploying
models in productive pipelines must adhere to cer-
tain metrics, like request response time. As the
recommender ranks over 300 jobs against multi-
ple interactions per request, it shows a +9.90% in-
crease in average response time compared to the
existing indexed Elasticsearch model. While the
new system’s response time lies within our ac-

Existing System New System

1 IT project leader
Deep Learning in
Autonomous cars

2
Software Engineer

Data Scientist
(Automotive)

3
Senior Software En- PhD researcher in
gineer (smart cars) Medical Imaging

4 Senior IT Consultant
Computer Linguist/
Analytics

5
Java Software Researcher in single-
Engineer cell Bioinformatics

Table 5: Ranked output from the existing and new
system for a user with interest in machine learn-
ing.

ceptable ranges, it could be improved by reducing
the model’s vector dimensionality at the cost of its
performance.

6 Conclusion and Future Work

In this paper, we have introduced a new method
for automatically creating datasets for the offline
evaluation of job posting similarities. Using such a
silver standard dataset, we have evaluated the per-
formance of different dense vector representations
of documents in order to identify the most promis-
ing setup. Building dense representations based
on full-text job descriptions yields the best results.
However, computing representations for novel job
postings becomes computational expensive, as the
model has to be recomputed, as estimating rep-
resentations for new documents results in much
lower results. Building models from titles, the
scores only slightly decrease, however, the com-
putation of new models is much faster. In our ex-
periments, we observe the best performance with
a combined model, using the words within the title
for weighting words in the description that allows
to compute new representations in an online sce-
nario. With this model, we yield a substantial 8%
relative increase in CTR over the platform’s previ-
ous system component.

In future work, we want to extend the weight-
ing scheme by integrating ontology and keyword
information in order to improve the similarity
search.

222

References
Omar Abdelwahab and Adel Elmaghraby. 2016. UofL

SemEval-2016 task 4: Multi domain word2vec for
twitter sentiment classification. In Proceedings of
the 10th International Workshop on Semantic Evalu-
ation, SemEval at NAACL-HLT, pages 164–170, San
Diego, CA, USA.

Fabian Abel, András A. Benczúr, Daniel Kohlsdorf,
Martha Larson, and Róbert Pálovics. 2016. RecSys
challenge 2016: Job recommendations. In Proceed-
ings of the 10th ACM Conference on Recommender
Systems, pages 425–426, Boston, MA, USA.

Petr Baudiš, Jan Pichl, Tomáš Vyskočil, and Jan
Šedivỳ. 2016. Sentence pair scoring: Towards uni-
fied framework for text comprehension. volume
Arxiv.

Delphine Bernhard and Iryna Gurevych. 2008. An-
swering Learners’ Questions by Retrieving Question
Paraphrases from Social Q&A Sites. In Proceedings
of the Third Workshop on Innovative Use of NLP
for Building Educational Applications, EANL ’08,
pages 44–52, Columbus, OH, USA.

Robin Burke. 2007. In The Adaptive Web, chapter Hy-
brid Web Recommender Systems, pages 377–408.

Minmin Chen. 2017. Efficient vector representation
for documents through corruption. In Proceedings
of the International Conference on Learning Repre-
sentations, ICLR, Toulon, France.

Maryam Fazel-Zarandi and Mark S. Fox. 2009. Se-
mantic Matchmaking for Job Recruitment: An
Ontology-Based Hybrid Approach. In Proceedings
of the 3rd International SMR2 2009 Workshop on
Service Matchmaking and Resource Retrieval in the
Semantic Web, collocated with the 8th International
Semantic Web Conference, pages 3111–3119, Wash-
ington DC, USA.

Thomas Hofmann. 2000. Learning the similarity of
documents: An information-geometric approach to
document retrieval and categorization. In Advances
in Neural Information Processing Systems 12, pages
914–920. Denver, CO, USA.

Rémy Kessler, Nicolas Béchet, Mathieu Roche, Marc
El-Bèze, and Juan-Manuel Torres-Moreno. 2008.
Automatic profiling system for ranking candidates
answers in human resources. In On the Move to
Meaningful Internet Systems: OTM 2008 Work-
shops, pages 625–634, Monterrey, Mexico.

Ron Kohavi, Roger Longbotham, Dan Sommerfield,
and Randal M. Henne. 2009. Controlled experi-
ments on the web: survey and practical guide. Data
Mining and Knowledge Discovery, 18(1):140–181.

Yehuda Koren and Robert Bell. 2015. Advances in col-
laborative filtering. In Recommender systems hand-
book, pages 77–118.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009.
Matrix factorization techniques for recommender
systems. Computer, 42(8):42–49.

Ken Lang. 1995. Newsweeder: Learning to filter
netnews. In Machine Learning, Proceedings of
the Twelfth International Conference on Machine
Learning, pages 331–339, Tahoe City, CA, USA.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the 31th International Conference on
Machine Learning, ICML, pages 1188–1196, Bei-
jing, China.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics, ACL, pages 302–308, Baltimore,
MD, USA.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

David D. Lewis, Robert E. Schapire, James P. Callan,
and Ron Papka. 1996. Training algorithms for lin-
ear text classifiers. In Proceedings of the 19th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR’96, pages 298–306, Zurich, Switzerland.

Pasquale Lops, Marco De Gemmis, and Giovanni Se-
meraro. 2011. Content-based recommender sys-
tems: State of the art and trends. In Recommender
systems handbook, pages 73–105.

Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang,
and Guangquan Zhang. 2015. Recommender sys-
tem application developments. Decision Support
Systems, 74(C):12–32.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Proceedings of Advances in Neural
Information Processing Systems, NIPS, pages 3111–
3119, Lake Tahoe, NV, USA.

Cataldo Musto, Giovanni Semeraro, Marco de Gem-
mis, and Pasquale Lops. 2015. Word embedding
techniques for content-based recommender systems:
An empirical evaluation. In Poster Proceedings of
the 9th ACM Conference on Recommender Systems,
RecSys, Vienna, Austria.

Makbule G. Ozsoy. 2016. From word embeddings to
item recommendation. CoRR, abs/1601.01356.

Marc Poch, Núria Bel, Sergio Espeja, and Felipe
Navio. 2014. Ranking Job Offers for Candidates:
Learning Hidden Knowledge from Big Data. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation LREC’14,
pages 2076 – 2082, Reykjavik, Iceland.

223

Paul Resnick and Hal R. Varian. 1997. Recommender
systems. Communications, 40(3):56–58.

Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar,
and David M. Pennock. 2002. Methods and metrics
for cold-start recommendations. In Proceedings of
the 25th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’02, pages 253–260, Tampere, Fin-
land.

Scharolta Katharina Siencnik. 2015. Adapting
word2vec to named entity recognition. In Proceed-
ings of the 20th Nordic Conference of Computa-
tional Linguistics, NODALIDA, pages 239–243, Vil-
nius, Lithuania.

Anders Søgaard, Yoav Goldberg, and Omer Levy.
2017. A strong baseline for learning cross-lingual
word embeddings from sentence alignments. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics, EACL, pages 765–774, Valencia, Spain.

Yao Yao, Xia Li, Xiaoping Liu, Penghua Liu, Zhaotang
Liang, Jinbao Zhang, and Ke Mai. 2017. Sensing
spatial distribution of urban land use by integrat-
ing points-of-interest and Google word2vec model.
International Journal of Geographical Information
Science, 31(4):825–848.

224

