
Proceedings of NAACL-HLT 2018, pages 208–215
New Orleans, Louisiana, June 1 - 6, 2018. c©2017 Association for Computational Linguistics

Personalized neural language models for real-world query auto
completion

Nicolas Fiorini
National Center for Biotechnology Information

National Library of Medicine, NIH
Bethesda, MD, USA

nicolas.fiorini@nih.gov

Zhiyong Lu
National Center for Biotechnology Information

National Library of Medicine, NIH
Bethesda, MD, USA

zhiyong.lu@nih.gov

Abstract

Query auto completion (QAC) systems are a
standard part of search engines in industry,
helping users formulate their query. Such sys-
tems update their suggestions after the user
types each character, predicting the user’s in-
tent using various signals — one of the most
common being popularity. Recently, deep
learning approaches have been proposed for
the QAC task, to specifically address the main
limitation of previous popularity-based meth-
ods: the inability to predict unseen queries. In
this work we improve previous methods based
on neural language modeling, with the goal of
building an end-to-end system. We particu-
larly focus on using real-world data by inte-
grating user information for personalized sug-
gestions when possible. We also make use of
time information and study how to increase di-
versity in the suggestions while studying the
impact on scalability. Our empirical results
demonstrate a marked improvement on two
separate datasets over previous best methods
in both accuracy and scalability, making a step
towards neural query auto-completion in pro-
duction search engines.

1 Introduction

Predicting the next characters or words follow-
ing a prefix has had multiple uses from helping
handicapped people (Swiffin et al., 1987) to, more
recently, helping search engine users (Cai et al.,
2016). In practice, most search engines today use
query auto completion (QAC) systems, consisting
of suggesting queries as users type in the search
box (Fiorini et al., 2017). The task suffers from
high dimensionality, because the number of possi-
ble solutions increases as the length of the target
query increases. Historically, the query prediction
task has been addressed by relying on query logs,
particularly the popularity of past queries (Bar-
Yossef and Kraus, 2011; Lu et al., 2009). The idea
is to rely on the wisdom of the crowd, as popular

queries matching a typed prefix are more likely to
be the user’s intent.

This traditional approach is usually referred
to as MostPopularCompletion (MPC)(Bar-Yossef
and Kraus, 2011). However, the performance of
MPC is skewed: it is very high for popular queries
and very low for rare queries. At the extreme,
MPC simply cannot predict a query it has never
seen. This becomes a bigger problem in academic
search (Lankinen et al., 2016), where systems are
typically less used, with a wider range of possible
queries. Recent advances in deep learning, partic-
ularly in semantic modeling (Mitra and Craswell,
2015) and neural language modeling (Park and
Chiba, 2017) showed promising results for pre-
dicting rare queries. In this work, we propose to
improve the state-of-the-art approaches in neural
QAC by integrating personalization and time sen-
sitivity information as well as addressing current
MPC limitations by diversifying the suggestions,
thus approaching a production-ready architecture.

2 Related work

2.1 Neural query auto completion

While QAC has been well studied, the field has
recently started to shift towards deep learning-
based models, which can be categorized into two
main classes: semantic models (using Convolu-
tional Neural Nets, or CNNs) (Mitra and Craswell,
2015) and language models (using Recurrent Neu-
ral Nets, or RNNs) (Park and Chiba, 2017). Both
approaches are frequently used in natural language
processing in general (Kim et al., 2016) and tend
to capture different features. In this work, we fo-
cus on RNNs as they provide a flexible solution to
generate text, even when it is not previously seen
in the training data.

Yet, recent work in this field (Park and Chiba,
2017) suffers from some limitations. Most im-
portantly, the probability estimates for full queries

208

are directly correlated to the length of the sug-
gestions, consequently favoring shorter queries
in some cases and hampering some predictions
(Park and Chiba, 2017). By appending these re-
sults to MPC’s and re-ranking the list with Lamb-
daMART (Burges, 2010) in another step as sug-
gested in previous work (Mitra and Craswell,
2015), they achieve state-of-the-art performance
in neural query auto completion at the cost of a
higher complexity and more computation time.

2.2 Context information

Still, these preliminary approaches have yet to in-
tegrate standards in QAC, e.g. query personal-
ization (Koutrika and Ioannidis, 2005; Margaris
et al., 2018) and time sensitivity (Cai et al., 2014).
This integration has to differ from traditional ap-
proaches by taking full advantage of neural lan-
guage modeling. For example, neural language
models could be refined to capture interests of
some users as well as their actual language or
query formulation. The same can apply to time-
sensitivity, where the probability of queries might
change over time (e.g. for queries such as “tv
guide”, or “weather”). Furthermore, the feasibil-
ity of these approaches in real-world settings has
not been demonstrated, even more so on special-
ized domains.

By addressing these issues, we make the follow-
ing contributions in this work compared to the pre-
vious approaches:

• We propose a more straightforward architec-
ture with improved scalability;

• Our method integrates user information
when available as well as time-sensitivity;

• We propose to use a balanced beam search
for ensuring diversity;

• We test on a second dataset and compare the
generalizability of different methods in a spe-
cialized domain;

• Our method achieves stronger performance
than the state of the art on both datasets.

Finally, our source code is made available in a
public repository1. This allows complete repro-
ducibility of our results and future comparisons.

1https://github.com/ncbi-nlp/NQAC

3 Methods

3.1 Personalized neural Language Model
The justification of using a neural language model
for the task of predicting queries is that it has been
proven to perform well to generate text that has
never been seen in the training data (Sutskever
et al., 2011). Particularly, character-level models
work with a finer granularity. That is, if a given
prefix has not been seen in the training data (e.g.
a novel or incomplete word), the model can use
the information shared across similar prefixes to
make a prediction nonetheless.

Recurrent Neural Network The difficulty
of predicting queries given a prefix is that the
number of candidates explodes as the query
becomes longer. RNNs allow to represent each
character (or word) of a sequence as a cell state,
therefore reducing the dimensionality of the task.
However, they also introduce the vanishing gradi-
ent problem during backpropagation, preventing
them from learning long-term dependencies. Both
gated recurrent units (GRU) (Cho et al., 2014) and
long-short term memory cells (LSTMs) solve this
limitation — albeit with a different approach —
and are increasingly used. In preliminary experi-
ments, we tried various forms of RNNs: vanilla
RNNs, GRUs and LSTMs. GRUs performed
similarly to LSTM with a smaller computational
complexity due to fewer parameters to learn as
was previously observed (Jozefowicz et al., 2015).

Word embedded character-level Neural
Language Model The main novelty in (Park and
Chiba, 2017) is to combine a character-level neu-
ral language model with a word-embedded space
character. The incentive is that character-level
neural language models benefit from a finer gran-
ularity for predictions but they lack the semantic
understanding words-level models provide, and
vice versa. Therefore, they encode text sequences
using one-hot encoding of characters, character
embedding and pre-trained word embedding
(using word2vec (Mikolov et al., 2013)) of the
previous word when a space character is encoun-
tered. Our preliminary results showed that the
character embedding does not bring much to the
learning, so we traded it with the context feature
vectors below to save some computation time
while enriching the model with additional, diverse
information.

209

User representation We make the assumption
that the way a user types a query is a function of
their actual language/vocabulary, but also a func-
tion of their interests. Therefore, a language model
could capture these user characteristics to better
predict the query, if we feed the learner with the
information. Each query qi is a set of words such
that qi = {w1, ..., wn}. U is a column matrix and a
user u ∈ U is characterized by the union of words
in their k past queries, i.e. Qu = ∪ki=1qi. The
objective is to reduce, for each user, the vocabu-
lary used in their queries to a vector of a dimen-
sionality d of choice, or Qu → Rd. We chose
d = 30, in order to stay in the same computa-
tion order of previous work using character em-
bedding (Park and Chiba, 2017). To this end, we
adapted the approach PV-DBOW detailed in (Le
and Mikolov, 2014). That is, at each training iter-
ation, a random word wi is sampled from Qu. The
model is trained by maximizing the probability of
predicting the user u given the word wi, i.e.:

1

|U |
∑

u∈U

∑

wi∈Qu

log P (u|wi). (1)

The resulting vectors are stored for each user ID
and are used as input for the neural net (NN) (see
Architecture section).

Time representation As an example, in the
background data (see Section 4.1), the query “tv
guide” appears 1,682 times and it is vastly repre-
sented in evening and nights. For this reason, we
propose to integrate time features in the language
model. While there has been more elaborated ap-
proaches to model it in the past (Shokouhi and
Radinsky, 2012), we instead propose a straightfor-
ward encoding and leave the rest of the work to the
neural net. For each query, we look at the time it
was issued, consisting of hour x , minute y and
second z, and we derive the following features:

sin

(
2π(3600x+ 60y + z)

86400

)
,

cos

(
2π(3600x+ 60y + z)

86400

)
.

(2)

This encoding has the benefit of belonging to
[−1, 1], which is a range comparable to the rest
of the features. It is also capable to model cyclic
data, which is important particularly around
boundaries (e.g. considering a query at 11:55PM

and another at 00:05AM). We proceed the same
way to encode weekdays and we end up with four
time features.

Overall architecture An overview of the ar-
chitecture is proposed in Figure 1. The input of
our neural language model is a concatenation of
the vectors defined above, for each character and
for each query in the training set. We use zero-
padding after the “\n” character to keep the se-
quence length consistent, and the NN learns to rec-
ognize it. We feed this input vector into 2 layers
of 1024 GRUs2, each followed by a dropout layer
(with a dropout rate of 50%) to prevent overfitting.
Each GRU cell is activated with ReLu(x) = x+

and gradients are clipped to a norm of 0.5 to avoid
gradient exploding problems. The output of the
second dropout layer is fed to a temporal softmax
layer, which allows to make predictions at each
state. The softmax function returns the probabil-
ity P (ci|c1, ..., ci−1) of the character ci given the
previous characters of the sequence, which is then
used to calculate the loss function by comparing it
to the next character in the target query. Instead
of using the objective denoted in (Park and Chiba,
2017), we minimize the loss L defined as the aver-
age cross entropy of this probability with the ref-
erence probability P̂ (ci) across all queries, that is

L =

− 1

|Q|
∑

q∈Q

|q|−1∑

i=1

P̂ (ci+1)× log P (ci+1|c1, ..., ci).

(3)

Q is the set of queries in the training dataset, |Q|
is the total number of queries in the set and |q|
is the number of characters in the query q. Con-
vergence stabilizes around 5-10 epochs for the
AOL dataset (depending on the model) and 15-20
epochs for the biomedical specialized dataset (see
Section 4.1).

3.2 Balanced diverse beam search
The straightforward approach for decoding the
most likely output sequence — in this case, a suf-
fix given a prefix — is to use a greedy approach.
That is, we feed the prefix into the trained NN and
pick the most likely output at every step, until the
sequence is complete. This approach has a high

2It was reported that using more cells may not help the
prediction while hurting computation (Park and Chiba, 2017).

210

Figure 1: Architecture of our proposed model.

chance to output a locally optimal sequence and
a common alternative is to use a beam search in-
stead. We propose to improve the beam search
by adding a greedy heuristic within it, in order to
account for the diversity in the results. A similar
suggestion has been made in (Vijayakumar et al.,
2016), and our proposition differs by rebalancing
the probabilities after diversity was introduced. In
(Vijayakumar et al., 2016), at every step the most
likely prediction is not weighted while all others
are, by greedily comparing them. This approach
effectively always prefers the most likely charac-
ter over all other alternatives at each step. The
first result will thus be the same as the local op-
timum using a greedy approach, which becomes
problematic for QAC where order is critical. By
rebalancing the probability of the most likely sug-
gestion with the average diversity weight given to
other suggestions, we make sure probabilities stay
uniform yet suggestions are diverse. We use a nor-
malized Levenshtein distance to assess the diver-
sity.

4 Experiments

4.1 Dataset

The AOL query logs (Pass et al., 2006) are com-
monly used to evaluate the quality of QAC sys-
tems. We rely on a background dataset for the

NN; training and validation datasets for lamb-
daMART integrations; and a test dataset for eval-
uations. Some adaptations are done to the AOL
background dataset as in (Park and Chiba, 2017),
such as removing the queries appearing less than 3
times or longer that 100 characters. For each query
in the training, validation and test datasets, we use
all possible prefixes starting after the first word as
in (Shokouhi, 2013). We use the sets from (Park
and Chiba, 2017) available online, enriched with
user and time information provided in the original
AOL dataset. In addition, we evaluate the systems
on a second real-world dataset from a production
search engine in the biomedical domain, PubMed
(Fiorini et al., 2017; Lu, 2011; Mohan et al., 2018),
that was created in the same manner. The biomed-
ical dataset consists of 8,490,317 queries. The
sizes of training, validation and test sets are com-
parable to those used for the AOL dataset.

4.2 Evaluation
Systems are evaluated using the traditional Mean
Reciprocal Rank (MRR) metric. This metric as-
sesses the quality of suggestions by identifying the
rank of the real query in the suggestions given one
of its prefixes. We also tested PMRR as introduced
in (Park and Chiba, 2017) and observed the same
trends in results as MRR, so we do not show them
due to space limitation. Given the set of prefixes

211

P in the test dataset, MRR is defined as follows:

MRR =
1

|Q|
∑

r∈P

1

rp
, (4)

where rp represent the rank of the match. Paired
t-tests measure the significance of score variations
among systems and are reported in the Results sec-
tion. We also evaluate prediction time as this is an
important parameter for building production sys-
tems. The prediction time is averaged over 10 runs
on the test set, on the same hardware for all mod-
els. We do not evaluate throughput but rather com-
pare the time required by all approaches to process
one prefix.

4.3 Systems and setups
We implemented the method in (Park and Chiba,
2017) and used their best-performing model as a
baseline. We also compare our results to the stan-
dard MPC (Bar-Yossef and Kraus, 2011). For our
method, we evaluate several incremental versions,
starting with NQAC which follows the architec-
ture detailed above but with the word embeddings
and the one-hot encoding of characters only. We
add the subscript U when the language model is
enriched with user vectors and T when it inte-
grates time features. We append +D to indicate the
use of the diverse beam search to predict queries
instead of a standard beam search. Finally, we
also study the impact of adding MPC and Lamb-
daMART (+MPC, +λMART).

5 Results

A summary of the results is presented in Table 1.
Interestingly, our simple NQAC model performs
similarly to the state-of-the-art on this dataset,
called Neural Query Language Model (NQLM),
on all queries. It is significantly less good for seen
queries (-5.6%) and significantly better for unseen
queries (+4.2%). Although GRUs have less ex-
pressive power than LSTMs, their smaller num-
ber of parameters to train allowed them to bet-
ter converge than all LSTM models we tested, in-
cluding that of (Park and Chiba, 2017). NQAC
also benefits from a significantly better scalabil-
ity (28% faster than NQLM) and thus seems more
appropriate for production systems. When we
enrich the language model with user informa-
tion, it becomes better for seen queries (+1.9%)
while being about as fast. Adding time sensitiv-
ity does not yield significant improvements on this

dataset overall, but improves significantly the per-
formance for seen queries (+1.7%). Relying on
the diverse beam search significantly hurts the pro-
cessing time (39% longer) while not providing sig-
nificantly better performance. Our integration of
MPC differs from previous studies. We noticed
that for Web search, MPC performs extremely
well and is computationally cheap (0.24 seconds).
On the other hand, all neural QAC systems are
better for unseen queries but struggle to stay un-
der a second of processing time. Since identifying
if a query has been seen or not is done in con-
stant time, we route the query either to MPC or
to NQACUT and we note the overall performance
as NQACUT+MPC. This method provides a sig-
nificant improvement over NQLM (+6.7%) overall
while being faster on average. Finally, appending
NQACUT ’s results to MPC’s and reranking the list
with LambdaMART provides the best results on
this dataset, but at the expense of greater compu-
tational cost (+60%).

While NQACUT+MPC appears clearly as the
best compromise between performance and qual-
ity for the AOL dataset, the landscape changes
drastically on the biomedical dataset and the qual-
ity drops significantly for all systems. This shows
the potential difficulties associated with real-world
systems, which particularly occur in specialized
domains. In this case, the drop in performance
is mostly due to the fact that biomedical queries
are longer and it becomes more difficult for mod-
els to predict the entire query accurately only with
the first keywords. While the generated queries
make sense and are relevant candidates, the chance
for generative models to predict the exact target
query diminishes as the target query is longer be-
cause of combinatorial explosion. This is even
more true when the target queries are diverse as in
specialized domains (Islamaj Dogan et al., 2009;
Névéol et al., 2011). For example, for the pre-
fix “breast cancer”, there are 1169 diverse suffixes
in a single day of logs used for training. These
include “local recurrence”, “nodular prognosis”,
“hormone receptor”, “circulating cells”, “family
history”, “chromosome 4p16” or “herceptin re-
view”, to cite only a few. Hence, while the model
predicts plausible queries, it is a lot more diffi-
cult to predict the one the user intended. The tar-
get query length also has an impact on prediction
time, as roughly twice the time is needed for Web
searches. MPC is the exception, however, it per-

212

Table 1: MRR results for all tested models on the AOL and biomedical datasets with their average prediction time
in seconds.

AOL dataset Biomedical dataset

Model
MRR

Time
MRR

Time
Seen Unseen All Seen Unseen All

MPC (Bar-Yossef and Kraus, 2011) 0.461 0.000 0.184 0.24 0.165 0.000 0.046 0.29
NQLM(L)+WE+MPC+λMART (Park and Chiba, 2017) 0.430 0.306 0.356 1.33 0.159 0.152 0.154 2.35

Our models in this paper
NQAC 0.406 0.319 0.354 0.94 0.155 0.139 0.143 1.73
NQACU 0.417 0.325 0.361 0.98 0.191 0.161 0.169 1.77
NQACUT 0.424 0.326 0.365 0.95 0.101 0.195 0.157 1.81
NQACUT+D 0.427 0.326 0.366 1.32 0.186 0.185 0.185 2.04
NQACUT+MPC 0.461 0.326 0.380 0.68 0.165 0.195 0.187 1.20
NQACUT+MPC+λMART 0.459 0.330 0.382 1.09 0.154 0.179 0.172 2.01

forms poorly even on seen queries (0.165). This
observation suggests that more elaborate models
are specifically needed for specialized domains.
On this dataset, NQAC does not perform as well as
NQLM and it seems this time that the higher num-
ber of parameters in NQLM is more appropriate
for the task. Still, user information helps signifi-
cantly for seen queries (+23%), probably because
some users frequently check the same queries to
keep up-to-date. Time sensitivity seems to help
significantly unseen queries (+21%) while signifi-
cantly hurting the quality for seen queries (-47%).
Diversity is significantly helpful on this dataset
(+19%) and provides a balance in performance for
both seen and unseen queries. NQACUT+MPC
yields the best overall MRR score for this dataset,
and LambdaMART is unable to learn how to re-
rank the suggestions, thus decreasing the score.
From these results, we draw several conclusions.
First, MPC performs very well on seen queries
for Web searches and it should be used on them.
For unseen queries, the NQACUT model we pro-
pose achieves a sub-second state-of-the-art perfor-
mance. Second, it is clear that the field of appli-
cation will affect many of the decisions when de-
signing a QAC system. On a specialized domain,
the task is more challenging: fast approaches like
MPC perform too poorly while more elaborate
approaches do not meet production requirements.
NQACU performs best on seen queries, NQACUT

on unseen queries. Finally, NQACUT+D provides
an equilibrium between the two at a greater com-
putational cost. Its overall MRR is similar to that
of NQACUT+MPC but it is less redundant (see Ta-
ble 2). Particularly, the system seems not to be
limited anymore by the higher probability associ-

Table 2: Comparison of the 10 top query candidates
from the baselines and our approach for the prefix
“www”.

MPC (Park and Chiba, 2017) NQAC+D

www google com www google com www google com
www yahoo com www yahoo com www myspace com
www myspace com www myspace com www mapquest com
www google www google www yahoo com
www ebay com www hotmail com www hotmail com
www hotmail com www my www bankofamerica com
www mapquest com www myspace com www chase com
www myspace www mapquest com www disneychannel com
www msn com www yahoo www myspace
www bankofamerica com www disney channel com www disney channel com

ated with shorter suggestions (e.g. “www google”,
a form of “www google com”), thus bringing more
diversity. This aspect can be more useful for
specialized domains where the range of possible
queries is broader. Finally, we found that a lot
more data was needed for the biomedical domain
than for general Web search. After about a million
queries, NQAC suggests meaningful and plausi-
ble queries for both datasets. However, for the
biomedical dataset, the loss needs more epochs to
stabilize than for the AOL dataset, mainly due to
the combinatorial explosion mentioned above.

6 Conclusions and future work

To the best of our knowledge, we proposed the first
neural language model that integrates user infor-
mation and time sensitivity for query auto com-
pletion with a focus on scalability for real-world
systems. Personalization is provided through pre-
trained user vectors based on their past queries.
By incorporating this information and by adapt-
ing the architecture, we were able to achieve state-
of-the-art performance in neural query auto com-
pletion without relying on re-ranking, making this
approach significantly more scalable in practice.

213

We studied multiple variants, their benefits and
drawbacks for various use cases. We also demon-
strate the utility of this method for specialized do-
mains such as biomedicine, where the query diver-
sity and vocabulary are broader and MPC fails to
provide the same performance as in Web search.
We also found that user information and diversity
improve the performance significantly more than
for Web search engines. To allow readers to easily
reproduce, evaluate and improve our models, we
provide all the code on a public repository.
The handling of time-sensitivity may benefit from
a more elaborate integration, for example session-
based rather than absolute time. Also, we evalu-
ated our approaches on a general search setup for
both datasets, while searches in the biomedical do-
main commonly contain fields (i.e. authors, title,
abstract, etc.) which adds to the difficulty. The
choice of a diversity metric is also important and
could be faster or more efficient (e.g., using word
embeddings to diversify the semantics of the sug-
gestions). These limitations warrant further work
and we leave them as perspectives.

Acknowledgement

This research was supported by the Intramural Re-
search Program of the NIH, National Library of
Medicine.

References
Ziv Bar-Yossef and Naama Kraus. 2011. Context-

sensitive query auto-completion. In Proceedings
of the 20th international conference on World wide
web, pages 107–116. ACM.

Christopher JC Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview. Learning,
11(23-581):81.

Fei Cai, Maarten De Rijke, et al. 2016. A survey
of query auto completion in information retrieval.
Foundations and Trends R© in Information Retrieval,
10(4):273–363.

Fei Cai, Shangsong Liang, and Maarten De Rijke.
2014. Time-sensitive personalized query auto-
completion. In Proceedings of the 23rd ACM in-
ternational conference on conference on informa-
tion and knowledge management, pages 1599–1608.
ACM.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Nicolas Fiorini, David J Lipman, and Zhiyong Lu.
2017. Cutting edge: Towards pubmed 2.0. eLife,
6:e28801.

Rezarta Islamaj Dogan, G Craig Murray, Aurélie
Névéol, and Zhiyong Lu. 2009. Understanding
pubmed R© user search behavior through log analy-
sis. Database, 2009.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In International Confer-
ence on Machine Learning, pages 2342–2350.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI, pages 2741–2749.

Georgia Koutrika and Yannis Ioannidis. 2005. A uni-
fied user profile framework for query disambigua-
tion and personalization. In Proceedings of work-
shop on new technologies for personalized informa-
tion access, pages 44–53.

Matti Lankinen, Hannes Heikinheimo, Pyry Takala,
Tapani Raiko, and Juha Karhunen. 2016. A
character-word compositional neural language
model for finnish. arXiv preprint arXiv:1612.03266.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Zhiyong Lu. 2011. Pubmed and beyond: a survey
of web tools for searching biomedical literature.
Database, 2011.

Zhiyong Lu, W John Wilbur, Johanna R McEntyre,
Alexey Iskhakov, and Lee Szilagyi. 2009. Finding
query suggestions for pubmed. In AMIA Annual
Symposium Proceedings, volume 2009, page 396.
American Medical Informatics Association.

Dionisis Margaris, Costas Vassilakis, and Panagiotis
Georgiadis. 2018. Query personalization using so-
cial network information and collaborative filtering
techniques. Future Generation Computer Systems,
78:440–450.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Bhaskar Mitra and Nick Craswell. 2015. Query auto-
completion for rare prefixes. In Proceedings of the
24th ACM international on conference on informa-
tion and knowledge management, pages 1755–1758.
ACM.

Sunil Mohan, Nicolas Fiorini, Sun Kim, and Zhiyong
Lu. 2018. A fast deep learning model for textual rel-
evance in biomedical information retrieval. CoRR,
abs/1802.10078.

214

Aurélie Névéol, Rezarta Islamaj Doğan, and Zhiy-
ong Lu. 2011. Semi-automatic semantic annota-
tion of pubmed queries: a study on quality, effi-
ciency, satisfaction. Journal of biomedical informat-
ics, 44(2):310–318.

Dae Hoon Park and Rikio Chiba. 2017. A neural lan-
guage model for query auto-completion. In Pro-
ceedings of the 40th International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval, pages 1189–1192. ACM.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson.
2006. A picture of search. In InfoScale, volume
152, page 1.

Milad Shokouhi. 2013. Learning to personalize query
auto-completion. In Proceedings of the 36th inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 103–
112. ACM.

Milad Shokouhi and Kira Radinsky. 2012. Time-
sensitive query auto-completion. In Proceedings of
the 35th international ACM SIGIR conference on
Research and development in information retrieval,
pages 601–610. ACM.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural
networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages
1017–1024.

Andrew Swiffin, John Arnott, J Adrian Pickering, and
Alan Newell. 1987. Adaptive and predictive tech-
niques in a communication prosthesis. Augmenta-
tive and Alternative Communication, 3(4):181–191.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. arXiv preprint arXiv:1610.02424.

215

