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Abstract

This paper introduces a meaning represen-
tation for spoken language understanding.
The Alexa meaning representation language
(AMRL), unlike previous approaches, which
factor spoken utterances into domains, pro-
vides a common representation for how peo-
ple communicate in spoken language. AMRL
is a rooted graph, links to a large-scale on-
tology, supports cross-domain queries, fine-
grained types, complex utterances and com-
position. A spoken language dataset has been
collected for Alexa, which contains ∼ 20k ex-
amples across eight domains. A version of this
meaning representation was released to devel-
opers at a trade show in 2016.

1 Introduction

Amazon has developed Alexa, a voice assistant
that has been deployed across millions of de-
vices and processes voice requests in multiple lan-
guages. This paper addresses improvements to the
Alexa voice service, whose core capabilities (as
measured by the number of supported intents and
slots) has expanded more than four-fold over the
last two years. In addition more than ten thousand
voice skills have been created by third-party devel-
opers using the Alexa Skills Kit (ASK). In order
to continue this expansion, new voice experiences
must be both accurate and capable of supporting
complex interactions.

However, as the number of features has ex-
panded, adding new features has become increas-
ingly difficult for four primary reasons. First, re-
quests with a similar surface form may belong to
different domains, which makes it challenging to
add features without degrading the accuracy of ex-
isting domains. For example, similar linguistic
phrases such as “order me an echo dot” (e.g., for
Shopping) have a similar form to phrases used for
a ride-hailing feature such as, “Alexa, order me

a taxi”. The second challenge is that a fixed flat
structure is unable to easily support certain fea-
tures (Gupta et al., 2006b), such as cross-domain
queries or complex utterances, which cannot be
clearly categorized into a given domain. For ex-
ample, “Find me a restaurant near the sharks
game” contains both local businesses and sporting
events and “Play hunger games and turn the lights
down to 3” requires a representation that supports
assigning an utterance to two intents. The third
challenge is that there is no mechanism to repre-
sent ambiguity, forcing the choice of a fixed in-
terpretation for ambiguous utterances. For exam-
ple, “Play Hunger Games” could refer to an au-
diobook, a movie, or a soundtrack. Finally, repre-
sentations are not reused between skills, leading to
the need for each developer to create a custom data
and representations for their voice experiences.

In order to address these challenges and make
Alexa more capable and accurate, we have devel-
oped two key components. The first is the Alexa
ontology, a large hierarchical ontology that con-
tains fine-grained types, properties, actions and
roles. Actions represent a predicate that deter-
mines what the agent should do, roles express the
arguments to an action, types categorize textual
mentions and properties are relations between type
mentions. The second component is the Alexa
Meaning Representation Language (AMRL), a
graph-based domain and language independent
meaning representation that can capture the mean-
ing of spoken language utterances to intelligent as-
sistants. AMRL is a rooted graph where action,
operators, relations and classes are labeled vertices
and properties and roles are labeled edges. Un-
like typical representations for spoken language
understanding (SLU), which factors language un-
derstanding into the prediction of intents (non-
overlapping actions) and slots (e.g., named enti-
ties) (Gupta et al., 2006a), our representation is
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grounded in the Alexa ontology, which provides a
common semantic representation for spoken lan-
guage understanding and can directly represent
ambiguity, complex nested utterances and cross-
domain queries. Unlike similar meaning repre-
sentations such as AMR (Banarescu et al., 2013),
AMRL is designed to be cross-lingual, explicitly
represent fine-grained entity types, logical state-
ments, spatial prepositions and relationships and
support type mentions. Examples of AMRL and
the SLU representations can be seen in Figure 1.

The AMRL has been released via Alexa Skills
Kit (ASK) built-in intents and slots in 2016 at a
developers conference, offering coverage for eight
of the ∼20 SLU domains 1. In addition to these
domains, we have demonstrated that the AMRL
can cover a wide range of additional utterances
by annotating a sample from all first and third-
party applications. We have manually annotated
data for 20k examples using the Alexa ontology.
This data includes the annotation of∼100 actions,
∼500 types, ∼20 roles and ∼172 properties.

2 Approach

This paper describes a common representation for
SLU, consisting of two primary components:
• The Alexa ontology - A large-scale hierarchi-

cal ontology developed to cover all spoken
language usage.
• The Alexa meaning representation language

(AMRL) - A rooted graph that provides a
common semantic representation, is compo-
sitional and can support complex user re-
quests.

These two components are described in the fol-
lowing sections.

2.1 The Alexa ontology

The Alexa ontology provides a common semantics
for SLU. The Alexa ontology is developed in RDF
and consists of five primary components:
• Classes A hierarchy of Classes, also re-

ferred to as types, is defined in the ontology.
This hierarchy is a rooted tree, with finer-
grained types at deeper levels. Coarse types
that are children of THING include PERSON,
PLACE, INTANGIBLE, ACTION, PRODUCT,
CREATIVEWORK, EVENT and ORGANIZA-
TION. Fine-grained types include MUSI-
CRECORDING and RESTAURANT.

1https://amzn.to/2qDjNcJ

• Properties A given class contains a list of
properties, which relate that class to other
classes. Properties are defined in a hierar-
chy, with finer-grained classes inheriting the
properties of its parent. There are range re-
strictions on the available types for both the
domain and range of the property.
• Actions A hierarchy of actions are defined as

classes within the ontology. ACTIONS cover
the core functionality of Alexa.
• Roles ACTIONS operate on entities via roles.

The most common role for an ACTION is the
.object role, which is defined to be the entity
on which the ACTION operates.
• Operators and Relations A hierarchy of op-

erators and relations represent complex rela-
tionships that cannot be expressed easily as
properties. Represented as classes, these in-
clude ComparativeOperator, Equals and Co-
ordinator (Figure 2).

The Alexa ontology utilized schema.org as its
base and has been updated to include support for
spoken language. In addition, using schema.org
as the base of the Alexa Ontology means that it
shares a vocabulary used by more than 10 million
websites, which can be linked to the Alexa ontol-
ogy.

2.2 Alexa meaning representation language

AMRL leverages classes, properties, actions, roles
and operators in the main ontology to create a
compositional, graph-based representation of the
meaning of an utterance. The graph-based rep-
resentation conceptualizes each arc as a property
and each node as an instance of a type; each type
can have multiple parents. Conventions have been
developed to annotate the AMRL for an utterance
accurately and consistently. These conventions fo-
cus primarily on linguistic annotation, and only
consider filled pauses, edits, and repairs in limited
contexts. The conventions include:
• Fine-grained type mentions When an entity

type appears in an utterance, the most fine-
grained type will be annotated. For “turn on
the light”, the mention ‘light’ could be an-
notated as a DEVICE. However, there is a
more appropriate finer-grained type, LIGHT-
ING which will be selected instead.
• Ambiguous type mentions When more than

one fine-grained type is possible, then the
annotator will utilize a more coarse-grained
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“turn on the song thriller by michael jackson”
D MusicApp
I ListenMediaIntent
S turn on the [song]SongType [thriller]Song by [michael jackson]Singer

“turn on the living room lights”
D HomeAutomation
I ActivateIntent
S turn on the [living room]Location [lights]Device

(a) SLU Example 1 (b) AMRL Example 2

Figure 1: This figure shows the SLU representation on the left and the AMRL representation on the right.
The three components of the SLU representation, domain (D), intent (I) and slots (S) are shown. The
intent is different (e.g., “ListenMediaIntent” vs. “ActivateIntent”), despite the presence of“turn on”. On
the right are the same utterances represented in the AMRL. The nodes represent the instances of classes
defined in an ontology, while the directed arcs connecting the class instances are properties. The root
node of both graphs is the action, ACTIVATEACTION is shared across these two utterances, providing the
domain-less annotation with a uniform representation for the same carrier phrase. “-0” indicates the first
mention of a type in the utterance, and can be used used to denote co-reference across multiple dialog
turns.

type in the hierarchy. This type should be the
finest-grained type that still captures the am-
biguity. For example, in the utterance “play
thriller’, “thriller” can either be a MUSICAL-
BUM or a MUSICRECORDING. Instead of
selecting one of these a more coarse-grained
type of MUSICCREATIVEWORK will be cho-
sen. When the ambiguity would force fall-
back to the root class of the ontology THING,
AMRL annotation chooses a sub-class and
marks the usage of it as uncertain.
• Properties Properties are annotated when

they are unambiguous. For example, “find
books by truman capote”, the use of the .au-
thor property on the BOOK class is unam-
biguous. Similarly, for “find books about tru-
man capote” the use of the .about property
on the BOOK class is unambiguous.
• Ambiguous property usage When there is

uncertainty in the property that should be se-
lected for the representation, the annotator
may fall back to a more generic property.
• Property inverses When a property can

be annotated in two different directions, a
canonical property is defined in the ontol-
ogy and used for all annotations. For ex-
ample, .parentOrganization has an inverse
of .subOrganization. The former is selected
as canonical for annotation flexibility and to

eliminate cycles in the graph.

A few of these properties have special meaning
at annotation time. Specifically, for the annotation
of textual mentions there exist three primary prop-
erties: .name, .value and .type. The conventions
for these properties are as follows:

• .name This is a nominal mention in the ut-
terance, the .name property links the text to
an instance of a class. .name is only used
for mentions that are not a numeric quantity
or enumeration. An example of .name for a
MUSICIAN class would be “madonna”.
• .value This is defined in the same way as

.name but is used for mentions that are nu-
meric quantities or enumerations. For in-
stance, “two” would be a .value of an IN-
TEGER class.
• .type This is a generic mention of an entity

type. For example, “musician” is a .type
mention of the MUSICIAN class.

One action (NULLACTION) has a special mean-
ing. This is annotated whenever a SLU query does
not have an associated action or the action is un-
clear. This happens, for example, when someone
says, “temperature”. In contrast, “show me the
temperature” is annotated with the more specific
DISPLAYACTION.
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2.3 Expanded Language Support

AMRL has been used to represent utterances that
are either not supported or challenging to support
using standard SLU representations. The follow-
ing section describes support for anaphora, com-
plex and cross-domain utterances, referring ex-
pressions for locations and composition.

2.3.1 Anaphora
AMRL can natively support pronominal anaphora
resolution both within the same utterance or across
utterances. For example:
• Within utterance: “Find the highest-rated

toaster and show me its reviews’’
• Across utterances: “What is Madonna’s lat-

est album” “Play it.”
Terminal nodes refer back to the same (unique)

entity. An example annotation across multiple ut-
terances can be seen in Figures 3a and 3b. Sim-
ilar to the above, it can handle bridges within dis-
course, such as, “find me an italian restaurant” and
“what’s on its menu.”

2.3.2 Inferred nodes
AMRL contains nodes that are not grounded in
the text. For example, for the utterance, in Fig-
ure 2a there are two inferred nodes, one for the
address of the restaurant and another for the ad-
dress of the sports event. Not explicitly represent-
ing types has two primary benefits. First, certain
linguistic phenomena such as anaphora are easier
to support. Second, the representation is aligned to
the ontology, which enables direct queries against
the knowledge base. Inferred nodes are the AMRL
way to perform reification.

2.3.3 Cross-domain utterances
Using the common semantics of AMRL means
that parses do not need to obey domain bound-
aries. For example, these utterances would be-
long to two domains (e.g., sports and local search):
“Where is the nearest restaurant” and “What is
happening at the Sharks game”. AMRL, as in
Figure 2a, can handle utterances that span multi-
ple domains, such as the one shown in Figure 2a.

2.3.4 Conjunctions, disjunctions and
negations

AMRL can cover logical expressions, where there
can be an arbitrary combination of conjunctions,
disjunctions, or conditional statements. Some ex-
amples of object-level or clause-level conjunctions

include:
• Object-level conjunction: “Add milk, bread,

and eggs to my shopping list”
• Clause-level conjunction: “Restart this song

and turn the volume up to seven”
Conjunctions and disjunctions are represented us-
ing a Coordinator class. The “.value” property de-
fined which logical operation is to be performed.
Examples of the AMRL representation for these is
shown in Figure 2b and 2c.

2.3.5 Conditional statements
Conditional statements are not usually represented
in other formalisms. An example of a condi-
tional statement is, “when its raining, turn off the
sprinklers”. Time-based conditional statements
are special cased due to their frequency in spo-
ken language. For time-based expressions (e.g.,
“when it is three p.m., turn on the lights”), a start-
Time (or endTime) property is used on the action
to denote the condition of when the action should
start (or stop). For all other expressions, we use
the ConditionalOperator, which has a “condition”
property as well as a “result” property. When the
condition is true, then the result would apply. The
constrained properties are defining the arguments
of the Equals operator. An example can be seen in
Figure 4. A deterministic transformation from the
simplified time-based scheme to ConditionalOper-
ator form when greater consistency is desired.

2.3.6 Referring expressions for locations
AMRL can represent locations and their relation-
ships. For simpler expressions that are common,
such as “on” or “in,” properties are used to repre-
sent the relationship between two entity mentions.
For other spatial relations, such as “between” or
“around,” an operator is introduced. Two exam-
ples of spatial relationships can be seen in Fig-
ure 2d. In this example “beside” grounds to the
relation being used (e.g., “beside”) and uses two
properties (e.g., constrained and target), which are
the the first and second arguments to the spatial
preposition.

2.3.7 Composition
AMRL supports composition, which enables reuse
of types and subgraphs to represent utterances
with similar meanings. For example, Figures 2e
and 2f show the ability to create significantly dif-
ferent actions only by changing the type of the ob-
ject of the utterance. Such substitution can occur
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(a) Cross-domain (b) Conjunction (c) Conjunction (multiple actions)

(d) Spatial relations (e) Composition (1) (f) Composition (2)

Figure 2: Examples of complex queries. In (a) is the utterance “find restaurants near the sharks game.”.
In (b) is the utterance “find red and silver toasters”. In (c) is “play charlie brown and turn the volume
up to 10”. In (d) is “find the wendy’s on 5th avenue beside the park.” In (e) and (f) are an illustration
composition for, “play girl from the north country” and “play blue velvet.”.

(a) Turn 1 (b) Turn 2

Figure 3: (a) shows the first turn of a conversation,
“play songs by madonna” (b) shows the second
turn of a conversation, “what’s her address”. Be-
cause the node SINGER-0 has the same “-0” ID in
both turns, the previous turn can be directly used
to infer that the address should be for the person
whose name is “Madonna.”

anywhere in the annotation graph. PlaybackAc-
tion is used to denote playing of the entity referred
to by the object role.

2.3.8 Unsupported features

Although many linguistic phenomena can be sup-
ported in AMRL, there are a few that have not
been explicitly supported and are left for future
work. These include existential and universal
quantification and scoping and conventions for
agency (most requests are imperative). In addi-
tion, there is currently no easy way to convert to
first order logic (e.g., lambda calculus), due to
conventions that simplify annotation, but lose in-
formation about operators such as spatial relation-
ships.

3 Dataset

Data has been collected for the AMRL across
many spoken language use-cases. The current do-
mains that are supported include music, books,
video, local search, weather and calendar. We
have prototyped mechanisms to speed up anno-
tation via paraphrasing (Berant and Liang, 2014)
and conversion from our current SLU represen-
tation, in order to leverage the much larger data
available. The primary mechanism we have for
data-acquisition is via manual annotation. Tools
have been developed in order to acquire the full
graph annotated with all the properties, classes,
actions and operators.

AMRL manual annotation is performed by data
annotators in four stages. In the first stage an ac-
tion is selected, for example ACTIVATEACTION

in Figure 1b. The second stage defines the text
spans in an utterance that link to a class in the
ontology (e.g., “michael jackson” is a Musician
type and “thriller” and “song” are MusicRecord-
ing types, the first is a .name mention, while the
latter is a .type mention. The third stage creates
connections between the classes and defines any
missing nodes in the graph. In the final stage a
skilled annotator reviews the graph for mistakes
and and re-annotates it if necessary. There is a
visualization of the semantic annotation available,
enabling an annotator to verify that they have built
the graph in a semantically accurate manner. Man-
ual annotation happens at the rate of 40 per hour.
The manually annotated dataset contains∼20k an-
notated utterances and contains 93 unique actions,
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(a) AMRL for “when it is raining, turn off the sprin-
klers”

(b) AMRL for “when it is three p.m., turn on the
lights.”

Figure 4: Two examples of conditional statements. In (b) are the annotation for time-based conditions,
while in (a) is a non-time based trigger.

448 types, 172 properties and 23 roles.

4 Parsing

Any graph parsing method can be used to predict
AMRL given a natural language utterance. One
approach is to use hyperedge replacement gram-
mars (Chiang et al., 2013) (Peng et al., 2015),
though these require large datasets in order to train
accurate parsers. Alternatively, the graph can be
linearized, as in (Gildea et al., 2017) and sequence
to sequence or sequential models can be used to
predict AMRL (Perera and Strubell, 2018). We
have shown that AMRL full-parse accuracy is at
78%, though the serialization, use of embeddings
from related tasks can improve parser accuracy.
More details can be found in (Perera and Strubell,
2018).

5 Related Work

FreeBase (Bollacker et al., 2008) (now WikiData)
and schema.org (Guha et al., 2016) are two com-
mon ontologies. Schema.org is widely used on
the web and contains actions, types and proper-
ties. The Alexa ontology expands schema.org to
cover types, properties and roles used in spoken
language.

Semantic parsing has been investigated in the
content of small domain-specific datasets such as
GeoQuery (Wong and Mooney, 2006) and in the
context of larger broad-coverage representations
such as the Groningen Meaning Bank (GMB) (Bos
et al., 2017), the Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), UCCA (Abend
and Rappoport, 2013), PropBank (Kingsbury
and Palmer, 2002), Raiment (Baker et al.,
1998) and lambda-DCS (Kingsbury and Palmer,
2002). OntoNotes (Hovy et al., 2006), lambda-
DCS s (Liang, 2013) (Baker et al., 1998),
FrameNet (Baker et al., 1998), combinatory
categorial grammars (CCG) (Steedman and

Baldridge, 2011) (Hockenmaier and Steedman,
2007), universal dependencies (Nivre et al., 2016)
are all related representations. A comparison of
semantic representations for natural language se-
mantics is described in Abend and Rappoport. Un-
like these meaning representations for written lan-
guage, AMRL covers question answering, imper-
ative actions, and a wide range of new types and
properties (e.g., smart home, timers, etc.).

AMR and AMRL are both rooted, directed,
leaf-labeled and edge-labeled graphs. AMRL
does not reuse PropBank frame arguments, cov-
ers predicate-argument relations, including a wide
variety of semantic roles, modifiers, co-reference,
named entities and time expressions (Banarescu
et al., 2013). There are more than 1000 named-
entity types in AMRL (AMR has around 80). Re-
entrancy is not used in AMRL notation. In ad-
dition to the AMR “name” property, AMRL con-
tains a “type” property for mentions of a type
(or class) and a “value” property for the men-
tion of numeric values. Anaphora is handled
in AMRL for spoken dialog Poesio and Art-
stein (Gross et al., 1993). Unlike representations
used for spoken language understanding (SLU)
(Gupta et al., 2006b), AMRL represents both en-
tity spans, complex natural language expressions,
and fine-grained named-entity types.

6 Conclusions and Future Work

This paper develops AMRL, a meaning represen-
tation for spoken language. We have shown how it
can be used to expand the set of supported use-
cases to complex and cross-domain utterances,
while leveraging a single compositional seman-
tics. The representation has been released at AWS
Re:Invent 2016 2. It is also being used as a rep-
resentation for expanded support for complex ut-
terances, such as those with sequential composi-

2https://amzn.to/2qDjNcJ
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tion. Continued development of a common mean-
ing representation for spoken language will enable
Alexa to become capable and accurate, expanding
the set of functionality for all Alexa users.
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