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Abstract

In task-oriented dialog, agents need to gener-
ate both fluent natural language responses and
correct external actions like database queries
and updates. We show that methods that
achieve state of the art performance on syn-
thetic datasets, perform poorly in real world di-
alog tasks. We propose a hybrid model, where
nearest neighbor is used to generate fluent re-
sponses and Sequence-to-Sequence (Seq2Seq)
type models ensure dialogue coherency and
generate accurate external actions. The hybrid
model on an internal customer support dataset
achieves a 78% relative improvement in flu-
ency, and a 200% improvement in external call
accuracy.

1 Introduction

Many commercial applications of artificial agents
require task-oriented conversational agents that
help customers achieve a specific goal, such as
making or cancelling a payment or reservation (Zue
et al., 2000; Bennacef et al., 1996). These chatbots
must extract relevant information from the user,
provide relevant knowledge to her, and issue appro-
priate system calls to achieve the goal.
Supervised approaches such as seq2seq models
(Vinyals and Le, 2015; Shang et al., 2015; Serban
et al., 2015; Sordoni et al., 2015b), have recently
gained attention in non-task oriented dialog, due to
their ability to perform end-to-end learning from
expert dialogues', removing the need for many
of the independent modules in traditional systems
such as, natural language understanding, dialog
state tracker and natural language generator.
Seq2Seq models have also shown promising re-
sults on small domain or synthetic task-oriented
dialog datasets. However, performance was much
worse when we applied these models to real world

"'We refer to an entire session of text exchanges between
an agent and a customer as a dialogue.
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datasets. This is in part because end-to-end meth-
ods, in general, require large amounts of data be-
fore they are able to generate fluent textual re-
sponses. In real world settings, words chosen by
human users and agents are not constrained to a
fixed vocabulary, and hence we see many lexical
variations even among semantically similar dialogs.

To ensure that information is both conveyed and
understood, we want responses to be fluent as well
as coherent. We say a response is coherent if it
is a sensible response in the dialogue context. Ta-
ble 1 shows responses generated by a variant of
the seq2seq model, when trained on real customer-
agent chat transcripts. The response of the chatbot
during the fourth turn® in Table 1, accepting the
customer’s expression of gratitude, is coherent and
fluent. Coherence of a response does not neces-
sarily guarantee fluency. The generated response
during the second turn is coherent but not fluent.

On our customer support dataset, seq2seq mod-
els performed well with salutations, but performed
poorly both in terms of fluency and coherency on
intermediate responses. The reason being, saluta-
tions contain minimal lexical variations across di-
alogs and occur more frequently when compared to
other utterances. (Koehn and Knowles, 2017) use
beam search decoding in Neural Machine Trans-
lation to mitigate fluency issues on larger transla-
tion datasets. Typically increasing the beam size
improves translation quality, however, increasing
beam sizes in Neural MT has shown to produce
poor translations (Koehn and Knowles, 2017).

We propose nearest neighbor based approaches
that can directly use and replay available expert
utterances. This removes the need for the models
to learn the grammar of the language, and allows
the models to focus on learning what to say, rather
than how to say it. The nearest neighbor-based

>We define a turn as a pair of text exchanges between the
customer and the agent.
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Table 1: Generated dialogue on customer support data. masked used for anonymization.

Turn  User’s Utterance Agent’s Response Generated Chatbot Response
1 got charged for <masked>  hello , my name is <PERSON> . hello <PERSON> , my name is
membership after trial i did i ’'m here to help you today . <PERSON>> . i 'm here to help
not want to continue. you .
2 <SILENCE> thank you for being a <masked> thank , for you <masked>
member . member
3 <SILENCE> 1’m sorry to hear that you were <SILENCE>
charged with our membership . no
worries . 1’1l do my best
4 thank you , i did not know you ‘re welcome you ‘re most welcome
that it would auto renew
after the trial
5 <SILENCE> api-call cancel_refund api_call cancel _refund
6 <SILENCE> 1 hope my actions helped you out you ’'re most welcome
today
7 very appreciated thank you for contacting <masked>  thank you for contacting <masked>

methods we propose naturally generate more fluent
responses, since they use actual agent responses.
However, our results in Table 3 show that they
perform poorly in predicting external actions and
at ensuring dialogue level coherency. In contrast,
the skip-connection seq2seq models we propose
here, learn when to produce external actions and
produce more coherent dialogues. We propose a
hybrid model that brings together the strengths of
both the approaches.
The contributions of this paper are as follows:

e We propose skip-connections to handle multi-
turn dialogue that outperforms previous models.

e We propose a hybrid model where nearest
neighbor-based models generate fluent responses
and skip-connection models generate accurate
responses and external actions. We show the ef-
fectiveness of the belief state representations ob-
tained from the skip-connection model by com-
paring against previous approaches.

To the best of our knowledge, our paper makes
the first attempt at evaluating state of the art mod-
els on a large real world task with human users.
We show that methods that achieve state of the
art performance on synthetic datasets, perform
poorly in real world dialog tasks. Comparing Ta-
bles 2 and 3, we see the impact of moving from
synthetic to real world datasets, and as a result,
find issues with previously proposed models that
may have been obscured by the simplicity and
regularity of synthetic datasets.

2 Related Work

Although seq2seq models have been applied in task-
oriented settings (Wen et al., 2017; Williams and
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Zweig, 2016; Bordes and Weston, 2016; Zhao and
Eskénazi, 2016), they have only been evaluated on
small domain or synthetic datasets.

More recent work has focused on representa-
tion learning for multi-turn dialogue. Sordoni et al.
(2015b) use a single bag-of-words representation
of the entire dialog history. Such a representation
ignores the order of responses, which is crucial
to ensure that utterances are coherent across turns.
An alternative approach is to use a hierarchical
encoder-decoder network (HRED) (Sordoni et al.,
2015a) which uses a complex three layered RNN
network, a query level encoder, a session level en-
coder and a decoder. Attentional networks (Bor-
des and Weston, 2016; Dodge et al., 2015) use a
weighted combination of all the context vectors
upto the current turn. Attentional networks proved
to be a stronger baseline over HRED during our
evaluation. We propose models that learn fixed
size representations of the history using simpler
skip-connection models showing comparable per-
formance with attentional networks (Bordes and
Weston, 2016; Dodge et al., 2015).

Our work is closely related to retrieval-based
chatbots. Williams and Zweig (2016), select a
response from a small set of templates. Zhou
et al. (2016); Yan et al. (2016) perform multi-turn
dialogue by treating the dialogue history as the
query, and perform classification with the num-
ber of classes equal to the number of possible re-
sponses. They evaluate precision@K, from a re-
stricted list, but do not indicate how this list is
obtained in practice. In our real world dataset, the
number of possible responses grows with the data-
set size. In addition, responses are unevenly dis-
tributed with salutations occurring frequently. As a
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Agent’s screen

i want to cancel my <mask> subscription .

AGENT: hello, my name is <name> . i 'm here to help you today .
hi

AGENT: thank you for trying our <mask> membership .
<SILENCE>

AGENT:...

BOT’s
no worries , i 'll help you with this .
* just a minute while i take a look at your account
* thank you for being on hold
* thank you for waiting .
* i've cancelled and refunded the subscription .

Figure 1: System Description. A human agent plays an intermediary role between the chatbot and the user.

result, the classification based approach performed
poorly, with most of the outputs being salutations.

3 Proposed Approach

Complete automation of customer service is still
not possible as chatbots are not perfect yet. How-
ever, automation where possible in the workflow
could still result in considerable savings. In order
to ensure that the end user experience is not sub-
standard, in live user testing, we ask a human agent
to play intermediary role between the chatbot and
the user. A user initiates a chat by entering an initial
query or an issue that requires resolution (Figure 1).
The chatbot responds with 5 diverse responses. The
agent selects the most relevant response, and may
choose to modify it. If the response is not relevant,
she may type a different response. During offline
testing, the chatbot returns only one response and
no human agent is used. The following section
describes our skip connection seq2seq model for
representation learning and our nearest neighbor
approach for response selection. First we describe
the datasets and metrics we use.

3.1 Dataset and Metrics

We use data from bAbI (Task1 and Task2) (Bordes
and Weston, 2016) to evaluate our models. Other
dialog tasks in bAbI require the model to mimic a
knowledge base i.e., memorize it. This is not a suit-
able strategy for our application, since in practice
knowledge bases undergo frequent changes, mak-
ing this infeasible. In the bAbI task, the user inter-
acts with an agent in a simulated restaurant reserva-
tion application, by providing her constraints, such
as place, cuisine, number of people or price range.
The agent or chatbot performs external actions or
SQL-like queries (api_call) to retrieve information
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from the knowledge base of restaurants. We used
80% of the data for training (of which 10% was
used for validation) and the remaining 20% for
testing.

We also evaluate our models on an internal cus-
tomer support dataset of 160k chat transcripts con-
taining 3 million interactions. We limit the num-
ber of turns to 20. We will refer to this dataset
as C'S_large. We perform spell correction, de-
identification to remove customer sensitive infor-
mation, lexical normalization particularly of lingo
words such as, lol and ty. Generalizing such entities
reduces the amount of training data required. The
values must be reinserted, currently by a human
in the loop. We have also masked product and the
organization name in the examples.

The use of MT evaluation metrics to evaluate
dialogue fluency with just one reference has been
debated (Liu et al., 2016). There is still no good
alternative to evaluate dialog systems, and so we
continue to report fluency using BLEU (BiLingual
Evaluation Understudy (Papineni et al., 2002)), in
addition to other metrics and human evaluations.
Coherency also requires measuring correctness of
the external actions which we measure using a met-
ric we call, Exact Query Match (EQM), which rep-
resents the fraction of times the api_call matched
the ground truth query issued by the human agent.
We do not assign any credit to partial matches. In
addition, we report the precision (P), recall (R) and
accuracy (Acc) achieved by the models in predict-
ing whether to make an api_call (positive) or not
(negative). Obtaining and aligning api_calls with
the chat transcripts is often complex as such infor-
mation is typically stored in multiple confidential
logs. In order to measure coherency with respect
to api_calls, we randomly sampled 1000 chat tran-
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Figure 2: Proposed embeddings for finding the nearest neighbor.

scripts and asked human agents to hand annotate
the api_calls wherever appropriate. We will refer
to this labeled dataset as C'S_small.

3.1.1 Skip Connection Seq2Seq Model

Seq2seq models are an application of Long Short-
Term Memory (Hochreiter and Schmidhuber, 1997)
architecture where inputs and outputs are variable
length sequences. We unroll the basic seq2seq
model and make one copy for each turn. This is
illustrated in Figure 2. Input words are one hot
encoded, and projected using a linear layer to ob-
tain z}, for the input word at position k in turn ¢,
resulting in a sequence X; = {z%, 2%, ...2% }. The
output sequence to be generated is represented by
Y: = {y!, v, ...yt }. The encoder at turn ¢ re-
ceives the user’s projected input, as well as the
context vectors from the final hidden units of the
encoder and the decoder at turn ¢ — 1, forming
a skip connection. This ensures that a fixed size
vector is used to represent the dialogue history at
every turn. Orange-solid-square boxes in Figure 2
represent LSTM cells of the encoder. k! _ _is the
context vector which is sent to every LSTM cell in
the decoder (dec) at any turn ¢ (Cho et al., 2014).

Green-dashed-square cells in the decoder rep-
resent the LSTM and dense layers with a soft-
max non-linearity. These are trained to predict
each word in the agent’s utterance. Each of the
seq2seq copies share the same parameters. Once
the training is complete, we use only one copy of
the seq2seq model to make predictions.
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3.1.2 Results with Skip-Connections

The results obtained with the vanilla seq2seq model
on the bAbI dataset is shown in the first row
(Model 1) of Table 2. The EQM is 0%, even though
the BLEU scores look reasonable. Model 2 is the
skip-connection seq2seq model, where only the
output of the hidden states from the decoder at turn
t — 1 is appended to the input at time ¢, i.e., htheln .
from the encoder history is not explicitly preserited
to turn 7.

Model 3 extends Model 1 by adding an atten-
tional layer. Model 3 is a variant of Bordes and
Weston (2016); Dodge et al. (2015) where the out-
put of the attentional layer is sent to the decoder
for generating the responses rather than classify-
ing as one of the known responses. This variant
performed better on the customer support data com-
pared to a direct implementation of Bordes and We-
ston (2016). The reason being, salutations occurred
more frequently in the customer support data and
hence, the classification based approach originally
proposed by Bordes and Weston (2016) classified
most of the outputs as salutations. Finally, Model
4 extends Model 2 by providing htL_eln . toturn ¢.

We see that explicitly adding skip-connections
substantially improves performance in EQM, from
0 or 6% to 55%, and has a positive effect on BLEU.
The models show similar behavior on C'S_small.
In this case, when an api_call is executed, the re-
sult is treated as a response and sent as input to the
next turn. Although Model 4 performed the best



Table 2: Results with variants of the seq2seq model on the bAbI dataset.

Model Type Description BLEU P Acc EQM
Model 1 Basic Seq2Seq  dependencies between turns absent  88.3 0.60 0.87 0.00
Model 2 Skip connection append h’}j lde . 90.2 1.00 1.00 0.06
Model 3 Seq2Seq Model 1 with an attention layer 93.4 1.00 1.00 0.26
Model 4  Skip connection Model 2 + htL_eln . 95.8 1.00 1.00 0.55
Table 3: Results with the Nearest Neighbor approach on customer support data (C'S_small).
Model Description BLEU P R Acc EQM
Model 4  Skip connection 9.91 0.34 0.79 0.81 0.30
Model 6  Nearest Neighbor using Word2Vec 11.06 031 024 0.86 0.10
Model 7  Nearest Neighbor using Sent2Vec 1439 029 026 0.85 0.09
Model 8  Nearest Neighbor using discounted Sent2Vec 1643  0.56 0.60 091 0.21
Model 9  Nearest neighbor using output of encoder 15.14 038 035 0.86 0.13
Model 10  Nearest neighbor using output of decoder 16.34 036 0.31 0.86 0.16
Model 11  Best Of both (Models 4+10) 17.67 033 0.73 0.80 0.30

on C'S_small and C'S_large, our analysis showed
that the generated responses were most often inco-
herent and not fluent, a phenomenon that did not
arise in the synthetic dataset. We now proceed to
explain the nearest neighbor based approach, which
we show is able to produce reasonable responses
that are more fluent.

3.2 Nearest Neighbor-based approach

In our nearest neighbor approach, an agent’s re-
sponse is chosen from human generated transcripts
or the training data - ensuring fluency. However,
this does not necessarily ensure that the responses
are coherent in the context of the dialogue. The
nearest neighbor approach starts with a represen-
tation of the entire dialogue history bs; ; for turn
t and dialogue ¢. Together with a;;, the action
the agent took while in this state i.e., the natural
language response or api_call query issued by the
agent, this results in a tuple < bs; ;, a;; >. The en-
tire training data is converted into a set of tuples .S,
that contains pairwise relationships between dialog
state representations and agent actions.

In the online or test phase, given an embedding
of the dialogue so far, testVec, we find the near-
est neighbor bsiestiec in S. We return the nearest
neighbor’s corresponding response, Gsestvec, as the
predicted agent’s response. We use ball trees (Kib-
riya and Frank, 2007) to perform efficient nearest
neighbor search. Since we want to provide more
flexibility to the human agent in choosing the most
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appropriate response, we extended this approach to
find £ = 100 responses and then used a diversity-
based ranking approach (Zhu et al., 2007) to return
5 diverse responses. To construct the adjacency
matrix for diversity ranking, we use word overlap
between responses after stop word removal.
Numerous techniques have been proposed
for representating text including word2vec and
sent2vec (Mikolov et al., 2013b,a; Pagliardini et al.,
2017; Pennington et al., 2014). In the following
sections, we compare these approaches against our
proposed representations using skip connections.

3.2.1 Dialogue Embeddings from
Word/Sentence Embeddings

In our first baseline, Model 6, for a dialogue,
1, the user’s response at turn ¢, user;, is con-
catenated with his/her responses in previous
turns (user; 1.1—1) and the agent’s responses upto
turn ¢t — 1 (agent;14—1), to obtain, p;;
(useriy.t,agenti1.4—1). We obtain a belief
state vector representation as the average of the
word2vec (Mikolov et al., 2013b) representations
of words in p; ;. We then apply the nearest neigh-
bor approach described in Section 3.2. Results
obtained with this approach on C'S_small are in
Table 3.

We emphasize a subtle but important oracle ad-
vantage that we give this baseline algorithm. When
we obtain the embeddings of a test dialogue, we
use the true utterances of the expert agent so far,



Table 4: Results with the Nearest Neighbor approach on customer support data (C'S_large).

Model Description BLEU Online-BLEU
Model 4  Skip connection 8.9 46.2
Model 5  Lucene 8.4 39.2
Model 10  Nearest neighbor using output of decoder 13.5 90.8

which would not be available in practice. How-
ever, we will show that our proposed representa-
tion, described in Section 3.3, performs better, even
without access to this information.

Pagliardini et al. (2017) recently described a
method that leads to better sentence-level represen-
tations. We use their approach as another baseline.
bs; is represented by the average of the sentence
embeddings of all agent’s responses upto turn ¢ — 1
and user’s responses upto turn . We also explore
geometric discounting to give higher importance
to recent responses. We use a similar process to
obtain representations for the user’s responses dur-
ing the test phase. As done with word-embeddings,
we provide true agent responses upto turn ¢ — 1 for
predicting the agent’s response at turn ¢. Results ob-
tained on C'S_small by averaging (Model 7) and
discounted averaging (Model 8) are given in Table
3. Model 8 performs better than Model 7 across
all measures. A comparison between Model 6, 7
and 8 with Model 4 in Table 3, would not be a fair
one as Model 4 does not use previous frue agent
responses to predict the agent’s next response.

3.3 Hybrid model: Nearest Neighbor with
Seq2Seq Embeddings

We suggest using the outputs of the hidden units in
the decoder of our skip connection seq2seq model,
as suitable representations for the belief states. The
seq2seq model for handling multi-turn dialogue is
trained as before (Section 3.1.1). Once the param-
eters have been learned, we proceed to generate
representations for all turns in the training data.
The output of the last hidden unit of the encoder or
the decoder before turn ¢ is used to represent the
belief state vector at turn ¢t. As before, we obtain a
set .S consisting of pairs of belief state vectors and
next actions taken by the agent.

We test the models as done in Section 3.1.1, ex-
cept now we select responses using the nearest
neighbor approach (Figure 2). Results obtained are
in Table 3 (Models 9 and 10). Model 9 uses the
output of the last hidden unit of the encoder. Model
10 uses previous turn’s decoder’s last hidden unit.
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Both the models show a significant improvement
in BLEU when compared to generating the agent’s
response (Model 4). Although Model 10 was not
exposed to the past true agent responses, it still
achieved comparable performance to that of Model
8. Appending both the encoder and the decoder
outputs did not have significant impact.

The results also show that the seq2seq model
achieved a better EQM when compared to the near-
est neighbor approach. The final hybrid model, we
propose (Model 11) combines both strategies. We
run both the Models 4 and 10 in parallel. When
Model 4 predicts an API response, we use the out-
put generated by Model 4 as the agent’s response,
otherwise we use the output of Model 10 as the
predicted agent’s response. This model achieved
the best results among all models we study, both in
terms of fluency (BLEU) as well as correctness of
external actions (EQM). The hybrid model achieves
a 78% relative improvement (from 9.91 to 17.67)
in fluency scores, and 200% improvement in EQM
over previous approaches (from 0.10 to 0.30).

Table 4 shows results obtained on C'S_large
(column 3) using models that performed the best
on the other datasets. Another obvious baseline
is to use traditional retrieval approaches. (query,
agent response) pairs are created for each agent re-
sponse, with a query constructed by concatenating
all the agent’s responses upto turn ¢ — 1 and user’s
responses upto turn ¢, for an agent response at time
t. For a given dialogue history query, the corre-
sponding agent response is retrieved using Lucene?.
Since C'S_large did not contain labeled api_calls,
we report results using Model 10. As seen, Model
10 provides a substantial boost in performance.

3.4 Manual Online Evaluation

One caveat to the above evaluations is that they are
based on customer responses to the actual human
agent interactions, and are not fully indicative of
how customers would react to the real automated
system in practice. Another disadvantage of using

*https://lucene.apache.org/



Table 5: Sample responses show interesting human behaviors learned by the approach.

Example User’s Utterance Agent’s Response
1 YES YES YES , get it done . done :)

perfect sir , thanks for waiting
2 it was clearly your fault i understand sir

when should i return it and how

you can keep it or you can donate or else you can dispose it off .

automated evaluation with just one reference, is
that the score (BLEU) penalizes valid responses
that may be lexically different from the available
agent response. To overcome this issue, we con-
ducted online experiments with human agents.

We used 5 human users and 2 agents. On average
each user interacted with an agent on 10 different
issues that needed resolution. To compare against
our baseline, each user interacted with the Model
4, 5 and 10 using the same issues. This resulted
in ~ 50 dialogues from each of the models. Af-
ter every response from the user, the human agent
was allowed to select one of the top five responses
the system selected. We refer to the selected re-
sponse as A. The human agent was asked to make
minimal modifications to the selected response, re-
sulting in a response A’. If the responses suggested
were completely irrelevant, the human agent was
allowed to type in the most suitable response.

We then computed the BLEU between the sys-
tem generated responses (As) and human gener-
ated responses (A’s), referred to as Online-BLEU
in Table 4. Since the human agent only made
minimal changes where appropriate, we believe
the BLEU score would now be more correlated to
human judgments. Since C'S_large did not con-
tain any api_calls, we only report BLEU scores.
The results obtained with models 4, 5 and 10 on
C'S_large are shown in Table 4 (column 4). Model
10 performs better than Models 4 and 5. We do not
measure inter-annotator agreement as each human
user can take a different dialog trajectory.

We noticed that the approach mimics certain
interesting human behavior. For example, in Table
5, the chatbot detects that the user is frustrated and
responds with smileys and even makes exceptions
on the return policy.

4 Conclusion and Future Work

We demonstrated limitations of previous end-end
dialog approaches and proposed variants to make
them suitable for real world settings. In ongo-
ing work, we explore reinforcement learning tech-
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niques to reach the goal state quicker thereby re-
ducing the number of interactions.

References

S. Bennacef, L. Devillers, S. Rosset, and L. Lamel.
1996. Dialog in the railtel telephone-based sys-
tem. In Spoken Language, 1996. ICSLP 96. Pro-
ceedings., Fourth International Conference on. vol-

ume 1, pages 550-553 vol.1.

Antoine Bordes and Jason Weston. 2016. Learn-
ing end-to-end goal-oriented dialog. CoRR
abs/1605.07683.

Kyunghyun Cho, Bart van Merrienboer, Caglar

Giilcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR .

Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine
Bordes, Sumit Chopra, Alexander H. Miller, Arthur
Szlam, and Jason Weston. 2015. Evaluating prereq-
uisite qualities for learning end-to-end dialog sys-
tems. CoRR abs/1511.06931.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735-
1780.

Ashraf M. Kibriya and Eibe Frank. 2007. An empirical
comparison of exact nearest neighbour algorithms.
In Proceedings of the 11th European Conference
on Principles and Practice of Knowledge Discovery
in Databases. Springer-Verlag, Berlin, Heidelberg,
PKDD 2007, pages 140-151.

Philipp Koehn and Rebecca Knowles. 2017.
challenges for neural machine translation.
abs/1706.03872.

Six
CoRR

Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban,
Michael Noseworthy, Laurent Charlin, and Joelle
Pineau. 2016. How NOT to evaluate your dialogue
system: An empirical study of unsupervised evalua-

tion metrics for dialogue response generation. CoRR
abs/1603.08023.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781.



Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems
- Volume 2. Curran Associates Inc., USA, NIPS’13,
pages 3111-3119.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2017. Unsupervised learning of sentence embed-
dings using compositional n-gram features. CoRR
abs/1703.02507.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Stroudsburg, PA, USA, ACL °02, pages
311-318.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1532—-1543.

Tulian Vlad Serban, Ryan Lowe, Peter Henderson, Lau-
rent Charlin, and Joelle Pineau. 2015. A survey of
available corpora for building data-driven dialogue
systems. CoRR abs/1512.05742.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short text conversation.
ACL .

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-
Yun Nie. 2015a. A hierarchical recurrent encoder-
decoder for generative context-aware query sugges-
tion. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Man-
agement. ACM, New York, NY, USA, CIKM ’15,
pages 553-562.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015b.
A neural network approach to context-sensitive

generation of conversational responses.  CoRR
abs/1506.06714.

Oriol Vinyals and Quoc V. Le. 2015. A neural conver-
sational model. CoRR abs/1506.05869.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina M Rojas-Barahona, Pei-Hao Su, Stefan Ultes,
David Vandyke, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. EACL .

Jason D. Williams and Geoffrey Zweig. 2016. End-
to-end Istm-based dialog control optimized with
supervised and reinforcement learning. = CoRR
abs/1606.01269.

32

Rui Yan, Yiping Song, and Hua Wu. 2016. Learning
to respond with deep neural networks for retrieval-
based human-computer conversation system. In Pro-
ceedings of the 39th International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval. ACM, New York, NY, USA, SIGIR
"16, pages 55-64.

Tiancheng Zhao and Maxine Eskénazi. 2016. To-
wards end-to-end learning for dialog state tracking
and management using deep reinforcement learning.
CoRR abs/1606.02560.

Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao,
Dianhai Yu, Hao Tian, Xuan Liu, and Rui Yan. 2016.
Multi-view response selection for human-computer
conversation. In EMNLP. pages 372-381.

Xiaojin Zhu, Andrew Goldberg, Jurgen Van Gael, and
David Andrzejewski. 2007. Improving diversity
in ranking using absorbing random walks. HLT-
NAACL pages 97-104.

Victor Zue, Stephanie Seneff, James Glass, Joseph
Polifroni, Christine Pao, Timothy J. Hazen, and
Lee Hetherington. 2000. Jupiter: A telephone-
based conversational interface for weather informa-
tion. IEEE Trans. on Speech and Audio Processing
8:85-96.



