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Abstract

Word vector models learn about semantics
through corpora. Convolutional Neural Net-
works (CNNs) can learn about semantics
through images. At the most abstract level,
some of the information in these models must
be shared, as they model the same real-world
phenomena. Here we employ techniques pre-
viously used to detect semantic representa-
tions in the human brain to detect semantic
representations in CNNs. We show the accu-
mulation of semantic information in the layers
of the CNN, and discover that, for misclassi-
fied images, the correct class can be recovered
in intermediate layers of a CNN.

1 Introduction

As we study semantics through the lens of a cor-
pus, it can be easy to forget that concepts exist in-
dependently of language. Animals with no lan-
guage system still form representations of con-
cepts, based on their interactions with the world
(e.g. vision, touch, taste). In this paper, we
bridge the gap between the study of semantics
in computer vision and computational linguistics.
We take inspiration from previous work on brain-
based representations of meaning, and measure the
semantic information through the layers of a Con-
volutional Neural Network (CNN) trained to de-
tect objects in images.

Our work is not the first to draw connections be-
tween computer vision and distributional seman-
tics. Indeed, joint models of semantics based
on images and text have been developed, and
word vectors have been grounded in the visual
space (Silberer and Lapata, 2012, 2014; Bruni
and Baroni, 2013). However, we believe that our
work is the first to explore the convergence of se-
mantic embeddings built from text and images,
specifically studying the hidden representations of

CNNs, and how the accumulation of semantic ev-
idence builds as a function of network depth.

2 Methods
The representations created by CNNs have dif-
fering numbers of dimensions, and even within a
CNN, the size of layers may differ (see Section 2.2
for more details on CNNs). In addition, the size of
word vectors also varies. We need a method to de-
tect similarities across embedding spaces, regard-
less of their dimensionality.

A solution, similarity-encoding, was proposed
in parallel by two recent papers (Anderson et al.,
2016; Xu et al., 2016), which calculates the simi-
larity of embedding spaces using the correlation
of elements within a space, rather than directly
comparing the embeddings between spaces.

Similarity-encoding compares the correlation
matrices of embedding spaces. For example, if
the word vectors have dimension p, our matrix of
word vectors will be Rk×p(where k is the number
of concepts). The resulting correlation matrix will
be W ∈ Rk×k, and will represent the pairwise cor-
relation of all concepts in word space. Similarly,
for a given layer of a CNN with dimension q, we
can create a matrix of embeddings for the same k
concepts (Rk×q), and compute a correlation ma-
trix in image space: I ∈ Rk×k. Thus, we have
taken embedding spaces for the same set of k con-
cepts and created new spaces of dimension k based
on the correlation between concepts. Because the
correlation spaces share the same dimension, we
can directly compare the correlation matrices of
word vectors (W ) with the correlation matrices of
image embeddings (I).

To compare the correlation spaces, we could
simply calculate the correlation between matrices
W and I , which would be a Representational Sim-
ilarity Analysis (RSA), as proposed by Kriegesko-
rte et al. (2008). RSA has the advantage of being a
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fairly simple and straightforward method for com-
paring the representations across two embedding
spaces. However, RSA has the disadvantage that it
produces one aggregate number for a pair of corre-
lation matrices, and does not show which concepts
contributed most to a high or low score. We will
need this added flexibility to explore misclassified
images in Section 3.3.

Both Anderson et al. (2016) and Xu et al. (2016)
extend RSA with an additional analysis step, in-
spired by some of the first work searching for se-
mantics in the brain (Mitchell et al., 2008). An-
derson et al. (2016) present a pictorial overview of
the procedure in Figure 2 of their paper.

In similarity-encoding, we choose two elements
from the concept list (c1 and c2), and calculate the
correlation of their embeddings to every other k−2
concept in each embedding space (word or image).
This creates a vector for each of the two held out
concepts with length k − 2, and is equivalent to
selecting the corresponding rows of the full corre-
lation matrices W and I , but omitting the columns
which correspond to c1 and c2. We then compare
the correlation patterns of c1 and c2 in word space
(vectors wc1 and wc2) to the correlations in image
space (vectors ic1 and ic2) by checking if:

corr(wc1 , ic1) + corr(wc2 , ic2) (1)

(the correlation of correctly matched concepts: c1
to c1 and c2 to c2) is greater than:

corr(wc1 , ic2) + corr(wc2 , ic1) (2)

(the correlation of incorrectly matched concepts).
Xu et al. (2016) call this the 2 vs. 2 test. If the
correctly matched vectors are more correlated than
the incorrectly matched vectors, then the test is
considered to have passed. We perform the 2 vs. 2
test for all possible pairs of concepts, 13,695 tests
in total. The 2 vs. 2 accuracy is the percentage of
2 vs. 2 tests passed, and chance 2 vs. 2 accuracy is
50%. We compute significance for the 2 vs. 2 test
by performing a permutation test: permuting the
rows of embeddings in one space, and re-running
the full similarity-encoding methodology.

2.1 Word Vectors
We chose four word vector models from recent
work. SkipGram vectors are from a neural net-
work trained to predict co-occurring words. We
used the 300 dimensional model trained on Google
news (English) (Mikolov et al., 2013). RNN is a

recurrent neural network trained to predict the next
word in a sequence. It has 640 dimensions, and
was trained on transcriptions of English broad-
cast news(Mikolov et al., 2011). Glove is a
regression-based model that incorporates both lo-
cal and global co-occurrence information. This
300-dimensional model was trained on the En-
glish Wikipedia and Gigaword 5 corpora com-
bined (Pennington et al., 2014). Cross-lingual
word vectors project embeddings from multiple
languages into a shared space. We used the
German-English model (512 dimensions), trained
on WMT-2011 (Faruqui and Dyer, 2014).

2.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) can be
trained to perform image classification (Goodfel-
low et al., 2016). In general, the input is three
continuous valued matrices, representing the RGB
values of an image. The network convolves the in-
put with a set of learned filters (typically 2D). The
output of the convolution is fed to another layer of
the network, which performs additional operations
(e.g. more convolutions, pooling). Each layer of
the network produces a hidden representation that
is used by subsequent layers, ending in a final clas-
sification layer.

There has been a proliferation of neural net-
work architectures for image classification; we ex-
plore three CNNs: VGG 16, ResNet 50 and In-
ception V3. We chose these networks based on
availability (pre-trained models are readily down-
loadable), for their performance on image classi-
fication tasks, and for their diversity in structural
complexity. All CNNs used here were trained on
ImageNet (Deng et al., 2009).

VGG 16 is one of the two deepest networks
described in Simonyan and Zisserman (2014). It
has a very simple linear architecture. We mea-
sured the 2 vs. 2 accuracy against all convolu-
tional and dense layers of the network. Incep-
tion V3 (Szegedy et al., 2015), has a more com-
plicated architecture, including Inception blocks
which act as multi-resolution feature extractors,
applying differently sized filters in parallel. We
measured the 2 vs. 2 accuracy at the concat
(mixed) layers, which appear at the end of incep-
tion blocks. ResNet 50 (He et al., 2015) uses
residual modules, which use linear shortcut con-
nections to allow earlier representations to filter up
as required. Residual modules allow the networks
to become very deep without the typical problems
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in training associated with deep networks. We
measured the 2 vs. 2 accuracy at the activation lay-
ers both within and at the end of residual blocks.

Illustrations of the architectures for each of
these networks appear in the supplementary mate-
rial (Figures 1-3), annotated to show the layers we
used for our experiments. We used the Keras im-
plementation of all networks (Chollet et al., 2015).

2.3 Concept Selection
Each of the CNNs described in Section 2.2 was
trained on ImageNet, a collection of over a million
images, each annotated for the presence of one of
1000 concepts. These concepts can be fairly high-
level single words (e.g. stove, sandwich) or ex-
tremely specific multi-word concepts (e.g. Ger-
man short-haired pointer, tobacco shop). We se-
lected all concepts for which a match was found
in all four of the word vector models from Sec-
tion 2.1, resulting in 166 concepts. From this set
of 166 concepts, we randomly chose 5 images an-
notated with the given concept in the ImageNet
validation set, for a total of 830 images.

We then computed each network’s activation on
each of the 830 images. These images are divided
into 5 groups, such that each of the 166 concepts
occurs exactly once per group. We ran the 2 vs.
2 test separately for each of the 5 groups, and re-
port the average across the 5 runs to account for
variability across images.

3 Results
3.1 Word Vector Comparison
Figure 1 shows the performance of several word
vector models against the layers of VGG 16. The
first point represents the performance using corre-
lation at the pixel level only, and no CNN-derived
representation. The performance of SkipGram,
Glove and the Cross-lingual vectors are very sim-
ilar, and are within a percentage or two across all
layers. The RNN model we tested did not per-
form as well, on average about 5% lower in the
first convolutional layers, and 10% lower in the
highest hidden layers. These results are similar
to those seen in Xu et al. (2016) when compar-
ing word vectors to brain activity. Because the
performance is very similar for the three top per-
forming word vectors, our analyses proceeds with
SkipGram vectors only.

Note that the 2 vs. 2 accuracy improves as we
move up the layers of the CNN. This is evidence
that, though trained on very different data sources,

the semantic representations in CNNs and word
vectors are quite similar, and the similarities grow
stronger as the CNN gets closer to its final classi-
fication layer. Though the starting points are dif-
ferent (text vs. images) the final result of the CNN
is similar to word vectors built from corpora, im-
plying that a shared embedding space can emerge
from each data source independently.

The very early layers of CNNs have been shown
to represent low level features like edges, curves
and other simple shapes (Mahendran and Vedaldi,
2016), so we did not expect early layers to have
any significant relation to word vectors. We were
surprised to find that even the very first layer of the
VGG 16 gives above chance 2 vs. 2 accuracy using
SkipGram vectors (p < 0.001). Upon inspection,
we found that the correlation for matched vectors
(the value for Eq. 1) was just slightly larger than
the correlation for mismatched vectors (the value
of Eq. 2), implying that the network has only weak
evidence for semantic relationships at the early
layers of the CNN. Figure 4 in the supplemen-
tary material shows this effect in greater detail.
Note that the first layer of VGG 16 improves upon
the pixel level accuracy, implying that even simple
CNN features provide useful signal.

We also noted that some macroscopic distinc-
tions between the concepts can likely be inferred
from the low level features of images alone. For
example, man made objects tend to have more
straight lines and natural objects are more curved.
Thus, it is logical that the early layers of a CNN
could distinguish between some pairs of objects
using only the most basic of visual features.

3.2 CNN Comparison
Figures 1-3 show 2 vs. 2 accuracy for SkipGram
vectors against the layers of VGG 16, ResNet 50
and Inception V3 networks. In general, the pat-
tern is similar: as the depth of the layers increases,
so too does the 2 vs. 2 accuracy. However, there
are a few interesting exceptions to this pattern.
In ResNet 50 we see a drop in accuracy in sev-
eral places, most notably between activation lay-
ers 16 and 17. Upon inspection of the architec-
ture diagram, we noted that several of the early
residual blocks were not improving 2 vs. 2 ac-
curacy, and relied mostly on residual connections
(see Supp. Figure 3), implying some of the depth
in ResNet 50 may be unnecessary.

We see maximum 2 vs. 2 accuracy in later layers
of CNNs, but not always at the last layer. Incep-
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Figure 1: 2 vs. 2 accuracy for 4
word vector models and layers of
VGG 16. BnCm: mth conv. layer
of the nth block.

Figure 2: 2 vs. 2 accuracy for
SkipGram and layers of Incep-
tion V3.

Figure 3: 2 vs. 2 accuracy
for SkipGram and layers of
ResNet 50.

tion V3 shows maximum accuracy of 0.90 at layer
Mixed9, several layers before the final classifica-
tion layer. ResNet 50 has maximum accuracy of
0.93 at the last layer, and VGG 16 peaks at the
final layer with 0.94 accuracy. This implies that
there may be a way to improve Inception V3 us-
ing, for example, a skip connection from the high-
est scoring layer to the final classification layer.

3.3 Misclassifications
We wondered if mistakes made in the ImageNet
classification task could be detected, or even com-
pensated for, using word vectors. Within one set
of 166 images, we selected those images misclas-
sified by VGG 16 such that they were misclassi-
fied into classes with a matching word vector (36
images). Could word vectors determine where in
the network these misclassifications emerge? For
this, we developed a variant of the 2 vs. 2 test: the
1 vs. 2 test. For every misclassified image, there
is a true and a predicted concept class (ctrue and
cpredicted, guaranteed to be different, since the im-
age was misclassified). We selected the word vec-
tors corresponding to ctrue and cpredicted and com-
pute their correlation to all word vectors for which
there was a corresponding correctly classified im-
age. This creates vectors wtrue and wpredicted

which represent correlations in word space. We
also compute the correlations of the hidden repre-
sentations for the misclassified image to the hid-
den representations of the correctly classified im-
ages to create a vector imisclassified. The 1 vs. 2
test is considered to have passed if imisclassified is
more correlated to wtrue than to wpredicted. The 1
vs. 2 accuracy is the fraction of 1 vs. 2 tests passed,
and chance is again 50%. The 1 vs. 2 test allows
us to test if the classification mistake made at the

final layer of the CNN is present through all of the
hidden layers of the CNN.

Figure 4 shows the results for this experiment
using layers from VGG 16. We see that in B4C1
and B5C1, the correlation of the hidden represen-
tations are, on average, significantly closer to the
correlations of the correct rather than the predicted
word vector (p = 0.048). But, during the last fully
connected layer, this difference disappears, lead-
ing to the misclassification of the image. This im-
plies that, for at least some of the misclassified im-
ages, the information required to make the correct
prediction exists in the hidden representations, but
the classification layer is not using it for the final
prediction.

Figure 4: Results for the 1 vs. 2 test. For some layers of
VGG 16, the correct class of misclassified images can
be recovered (black dots).

4 Conclusion and Future Work

In this paper, we used methodology originally de-
veloped to analyze brain images to study semantic
representations in CNNs. Our results point to sev-
eral interesting possibilities for future work. The
techniques explored here could be use to com-
bat adversarial attacks on CNNs, detect misclas-
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sifications, or possibly guide the improvement of
CNN architectures, and eventually help to unite
the study of semantics in computer vision and
computational linguistics.
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