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Abstract

Recent research in language and vision has
developed models for predicting and disam-
biguating verbs from images. Here, we ask
whether the predictions made by such mod-
els correspond to human intuitions about vi-
sual verbs. We show that the image regions a
verb prediction model identifies as salient for
a given verb correlate with the regions fixated
by human observers performing a verb classi-
fication task.

1 Introduction

Recent research in language and vision has applied
fundamental NLP tasks in a multimodal setting.
An example is word sense disambiguation (WSD),
the task of assigning a word the correct meaning
in a given context. WSD traditionally uses textual
context, but disambiguation can be performed us-
ing an image context instead, relying on the fact
that different word senses are often visually dis-
tinct. Early work has focused on the disambigua-
tion of nouns (Loeff et al., 2006; Saenko and Dar-
rell, 2008; Chen et al., 2015), but more recent re-
search has proposed visual sense disambiguation
models for verbs (Gella et al., 2016). This is a con-
siderably more challenging task, as unlike objects
(denoted by nouns), actions (denoted by verbs) are
often not clearly localized in an image. Gella et al.
(2018) propose a two-stage approach, consisting
of a verb prediction model, which labels an image
with potential verbs, followed by a visual sense
disambiguation model, which uses the image to
determine the correct verb senses.

While this approach achieves good verb predic-
tion and sense disambiguation accuracy, it is not
clear to what extend the model captures human
intuitions about visual verbs. Specifically, it is in-
teresting to ask whether the image regions that the
model identifies as salient for a given verb corre-
spond to the regions a human observer relies on
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when determining which verb is depicted. The out-
put of a verb prediction model can be visualized
as a heatmap over the image, where hot colors in-
dicate the most salient areas for a given task (see
Figure 2 for examples). In the same way, we can
determine which regions a human observes attends
to by eye-tracking them while viewing the image.
Eye-tracking data consists a stream of gaze coor-
dinates, which can also be turned into a heatmap.
Model predictions correspond to human intuitions
if the two heatmaps correlate.

In the present paper, we show that the heatmaps
generated by the verb prediction model of Gella
et al. (2018) correlate well with heatmaps obtained
from human observers performing a verb classifi-
cation task. We achieve a higher correlation than a
range of baselines (center bias, visual salience, and
model combinations), indicating that the verb pre-
diction model successfully identifies those image
regions that are indicative of the verb depicted in
the image.

2 Related Work

Most closely related is the work by Das et al. (2016)
who tested the hypothesis that the regions attended
to by neural visual question answering (VQA) mod-
els correlate with the regions attended to by humans
performing the same task. Their results were neg-
ative: the neural VQA models do not predict hu-
man attention better than a baseline visual salience
model (see Section 3). It is possible that this re-
sult is due to limitations of the study of Das et al.
(2016): their evaluation dataset, the VQA-HAT cor-
pus, was collected using mouse-tracking, which
is less natural and less sensitive than eye-tracking.
Also, their participants did not actually perform
question answering, but were given a question and
its answer, and then had to mark up the relevant
image regions. Das et al. (2016) report a human-
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Figure 1: A schematic view of our multilabel verb clas-
sification model.
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human correlation of 0.623, which suggests low
task validity.

Qiao et al. (2017) also use VQA-HAT, but in a
supervised fashion: they train the attention compo-
nent of their VQA model on human attention data.
Not surprisingly, this results in a higher correlation
with human heatmaps than Das et al.’s (2016) unsu-
pervised approach. However, Qiao et al. (2017) fail
to compare to a visual salience model (given their
supervised setup, such the salience model would
also have to be trained on VQA-HAT for a fair
comparison).

The work that is perhaps closest to our own
work is Hahn and Keller (2016), who use a re-
inforcement learning model to predict eye-tracking
data for text reading (rather than visual processing).
Their model is unsupervised (there is no use of eye-
tracking data at training time), but achieves a good
correlation with eye-tracking data at test time.

Furthermore, a number of authors have used eye-
tracking data for training computer vision models,
including zero shot image classification (Karessli
et al., 2017), object detection (Papadopoulos et al.,
2014), and action classification in still images (Ge
et al., 2015; Yun et al., 2015) and videos (Dorr
and Vig, 2017). In NLP, some authors have used
eye-tracking data collected for text reading to train
models that perform part-of-speech tagging (Bar-
rett et al., 2016a,b), grammatical function classifi-
cation (Barrett and Sggaard, 2015), and sentence
compression (Klerke et al., 2016).

3 Fixation Prediction Models

Verb Prediction Model (M) In our study, we
used the verb prediction model proposed by Gella
et al. (2018), which employs a multilabel CNN-
based classification approach and is designed to
simultaneously predict all verbs associated with
an image. This model is trained over a vocabulary
that consists of the 250 most common verbs in
the TUHOI, Flickr30k, and COCO image descrip-
tion datasets. For each image in these datasets, we
obtained a set of verb labels by extracting all the

verbs from the ground truth descriptions of the im-
age (each image comes with multiple descriptions,
each of which can contribute one or more verbs).

Our model uses a sigmoid cross-entropy loss
and the ResNet 152-layer CNN architecture. The
network weights were initialized with the publicly
available CNN pretrained on ImageNet' and fine-
tuned on the verb labels. We used stochastic gradi-
ent descent and trained the network with a batch
size of one for three epochs. The model architecture
is shown schematically in Figure 1.

To derive fixation predictions, we turned the out-
put of the verb prediction model into heatmaps us-
ing the class activation mapping (CAM) technique
proposed by Zhou et al. (2016). CAM uses global
average pooling of convolution feature maps to
identify the important image regions by projecting
back the weights of the output layer onto the con-
volutional feature maps. This technique has been
shown to achieve competitive results on both ob-
ject localization and localizing the discriminative
regions for action classification.

Center Bias (CB) We compare against a center
bias baseline, which simulates the task-independent
tendency of observers to make fixations towards
the center of an image. This is a strong baseline
for most eye-tracking datasets (Tatler, 2007). We
follow Clarke and Tatler (2014) and compute a
heatmap based on a zero mean Gaussian with a

2
co-variance matrix of (% vgz , where 6% = 0.22

and v = 0.45 (the values suggested by Clarke and
Tatler 2014).

Visual Salience (SM) Models of visual salience
are meant to capture the tendency of the human
visual system to fixate the most prominent parts of
a scene, often within a few hundred milliseconds
of exposure. A large number of salience models
have been proposed in the cognitive literature, and
we choose the model of Liu and Han (2016), as
it currently achieves the highest correlation with
human fixations on the MIT300 benchmark out of
77 models (Bylinskii et al., 2016).

The deep spatial contextual long-term recurrent
convolutional network (DSCLRCN) of Liu and
Han (2016) is trained on SALICON (Jiang et al.,
2015), a large human attention dataset, to infer
salience for arbitrary images. DSCLRCN learns
powerful local feature representations while simul-

Thttps://github.com/KaimingHe/
deep-residual-networks
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riding bike riding horse

Figure 2: Heatmaps visualizing human fixations (H), Center Bias (CB), salience model (SM) predictions, and
verb model (M) prediction for randomly picked example images. The SM heatmaps are very focused, which is a
consequence of that model being trained on SALICON, which contains focused human attention maps. However,
our evaluation uses rank correlation, rather than correlation on absolute attention scores, and is therefore unaffected

by this issue.

taneously incorporating global context and scene
context to compute a heatmap representing visual
salience. Note that salience models are normally
tested using free viewing tasks or visual search
tasks, not verb prediction. However, salience can
be expected to play a large role in determining fix-
ation locations independent of task, so DSCLRCN
is a good baseline to compare to.

4 Eye-tracking Dataset

The PASCAL VOC 2012 Actions Fixation dataset
(Mathe and Sminchisescu, 2013) contains 9,157
images covering 10 action classes (phoning, read-
ing, jumping, running, walking, riding bike, rid-
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ing horse, playing instrument, taking photo, using
computer). Each image is annotated with the eye-
fixations of eight human observers who, for each
image, were asked to recognize the action depicted
and respond with one of the class labels. Partici-
pants were given three seconds to freely view an
image while the x- and y-coordinates of their gaze
positions were recorded. (Note that the original
dataset also contained a control condition in which
four participants performed visual search; we do
not use the data from this control condition.) In
Figure 2 (row H) we show examples of heatmaps
generated from the human fixations in the Mathe
and Sminchisescu (2013) dataset. For details on



Rank correlations

Verb Images H CB SM M CB+SM CB+M M+SM M+CB+SM
phoning 221 0911 0.599 0361 0.562 0.598 0.654 0.569 0.652
reading 231 0.923 0.589 0.404 0.544 0.598 0.655 0.558 0.655
jumping 201 0.930 0.612 0.300 0.560 0.609 0.650 0.561 0.647
running 154 0.934 0.548 0.264 0.536 0.545 0.604 0.536 0.602
walking 195 0.938 0.553 0311 0.535 0.552  0.611 0.537 0.609
riding bike 199 0.925 0.580 0.329 0.518 0.578 0.622 0.527 0.621
riding horse 206 0910 0.593 0.351 0.532 0.588 0.604 0.532 0.601
playing instrument 229 0.925 0.571 0.350 0.478 0.568 0.596 0.484 0.593
taking photo 205 0.925 0.656 0.354 0.508 0.647 0.630 0.514 0.628
using computer 196 0916 0.633 0.389 0.525 0.626  0.655 0.533 0.652
overall 2037 0.923 0.592 0.344 0.529 0.591 0.628 0.535 0.626

Table 1: Table of average rank correlation scores for the verb prediction model (M), compared with the upper
bound of average human-human agreement (H), center bias (CB) baseline (Clarke and Tatler, 2014), and salience
map (SM) baseline (Liu and Han, 2016). Results are reported on the validation set of the PASCAL VOC 2012
Actions Fixation data (Mathe and Sminchisescu, 2013). The best score for each class is shown in bold (except
upper bound). Model combination are by mean of heatmaps.

the eye-tracking setup used, including information
on measurement error, please refer to Mathe and
Sminchisescu (2015), who used the same setup as
Mathe and Sminchisescu (2013).

While actions and verbs are distinct concepts
(Ronchi and Perona, 2015; Pustejovsky et al., 2016;
Gella and Keller, 2017), we can still use the PAS-
CAL Actions Fixation data to evaluate our model.
When predicting a verb, the model presumably has
to attend to the same regions that humans fixate on
when working out which action is depicted — all
the actions in the dataset are verb-based, hence rec-
ognizing the verb is part of recognizing the action.

5 Results

To evaluate the similarity between human fixa-
tions and model predictions, we first computed a
heatmap based on the human fixations for each im-
age. We used the PyGaze toolkit (Dalmaijer et al.,
2014) to generate Gaussian heatmaps weighted by
fixation durations. We then computed the heatmap
predicted by our model for the top-ranked verb the
model assigns to the image (out of its vocabulary of
250 verbs). We used the rank correlation between
these two heatmaps as our evaluation measure. For
this, both maps are converted into a 14 x 14 grid,
and each grid square is ranked according to its aver-
age attention score. Spearman’s p is then computed
between these two sets of ranks. This is the same
evaluation protocol that Das et al. (2016) used to
evaluate the heatmaps generated by two question
answering models with unsupervised attention, viz.,

the Stacked Attention Network (Yang et al., 2016)
and the Hierarchical Co-Attention Network (Lu
et al., 2016). This makes their rank correlations
and ours directly comparable.

In Table 1 we present the correlations between
human fixation heatmaps and model-predicted
heatmaps. All results were computed on the val-
idation portion of the PASCAL Actions Fixation
dataset. We average the correlations for each action
class (though the class labels were not used in our
evaluation), and also present overall averages. In
addition to our model results, we also give the cor-
relations of human fixations with (a) the center bias
baseline, and (b) the salience model. We also report
the correlations obtained by all combinations of our
model and these baselines. Finally, we report the
human-human agreement averaged over the eight
observes. This serves as an upper bound to model
performance.

The results show a high human-human agree-
ment for all verbs, with an average of 0.923. This is
considerably higher than the human-human agree-
ment of 0.623 that Das et al. (2016) report for their
question answering ask, indicating that verb classi-
fication is a task that can be performed more reli-
ably than Das et al.’s (2016) VQA region markup
task (they also used mouse-tracking rather than eye-
tracking, a less sensitive experimental method).

We also notice that the center baseline (CB) gen-
erally performs well, achieving an average corre-
lation of 0.592. The salience model (SM) is less
convincing, averaging a correlation of 0.344. This
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is likely due to the fact that SM was trained on the
SALICON dataset; a higher correlation can proba-
bly be achieved by fine-tuning the salience model
on the PASCAL Actions Fixation data. However,
this would no longer be fair comparison with our
verb prediction model, which was not trained on fix-
ation data (it only uses image description datasets
at training time, see Section 3). Adding SM to CB
does not lead to an improvement over CB alone,
with an average correlation of 0.591.

Our model (M) on its own achieves an average
correlation of 0.529, rising to 0.628 when com-
bined with center bias, clearly outperforming cen-
ter bias alone. Adding SM does not lead to a fur-
ther improvement (0.626). The combination of our
model with SM performs only slightly better than
the model on its own.

In Figure 2, we visualize samples of heatmaps
generated from the human fixations, the center-
bias, the salience model, and the predictions of our
model. We observe that human fixations and cen-
ter bias exhibit high overlap. The salience model
attends to regions that attract human attention in-
dependent of task (e.g., faces), while our model
mimics human observers in attending to regions
that are associated with the verbs depicted in the
image. In Figure 2 we can observe that our model
predicts fixations that vary with the different uses
of a given verb (riding bike vs. riding horse).

6 Conclusions

We showed that a model that labels images with
verbs is able to predict which image regions hu-
mans attend when performing the same task. The
model therefore captures aspects of human intu-
itions about how verbs are depicted. This is an
encouraging result given that our verb prediction
model was not designed to model human behavior,
and was trained on an unrelated image descrip-
tion dataset, without any access to eye-tracking
data. Our result contradicts the existing literature
(Das et al., 2016), which found no above-baseline
correlation between human attention and model
attention in a VQA task.
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