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Abstract

In conventional supervised training, a model
is trained to fit all the training examples.
However, having a monolithic model may
not always be the best strategy, as examples
could vary widely. In this work, we ex-
plore a different learning protocol that treats
each example as a unique pseudo-task, by
reducing the original learning problem to
a few-shot meta-learning scenario with the
help of a domain-dependent relevance func-
tion. When evaluated on the WikiSQL dataset,
our approach leads to faster convergence and
achieves 1.1%–5.4% absolute accuracy gains
over the non-meta-learning counterparts.

1 Introduction
Conventional supervised training is a pervasive
paradigm for NLP problems. In this setting, a
model is trained to fit all the training examples and
their corresponding targets. However, while shar-
ing the same surface form of the prediction task,
examples of the same problem may vary widely.
For instance, recognizing textual entailment is a
binary classification problem on whether the hy-
pothesis follows a given textual statement, but the
challenge datasets consist of a huge variety of in-
ference categories and genres (Dagan et al., 2013;
Williams et al., 2017). Similarly, for a semantic
parsing problem that maps natural language ques-
tions to SQL statements, the number of conditions
in a SQL query or the length of a question can vary
substantially (Zhong et al., 2017).

The inherently high variety of the examples
suggests an alternative training protocol: instead
of learning a monolithic, one-size-fits-all model, it
could be more effective to learn multiple models,
where each one is designed for a specific “task”
that covers a group of similar examples. How-
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ever, this strategy is faced with at least two dif-
ficulties. As the number of tasks increases, each
task will have much fewer training examples for
learning a robust model. In addition, the notion of
“task”, namely the group of examples, is typically
not available in the dataset.

In this work, we explore this alternative learn-
ing setting and address the two difficulties by
adapting the meta-learning framework. Motivated
by the few-shot learning scenario (Andrychowicz
et al., 2016; Ravi and Larochelle, 2016; Vinyals
et al., 2016), meta-learning aims to learn a general
model that can quickly adapt to a new task given
very few examples without retraining the model
from scratch (Finn et al., 2017). We extend this
framework by effectively creating pseudo-tasks
with the help of a relevance function. During train-
ing, each example is viewed as the test example of
an individual “task”, where its top-K relevant in-
stances are used as training examples for this spe-
cific task. A general model is trained for all tasks
in aggregation. Similarly during testing, instead
of applying the general model directly, the top-K
relevant instances (in the training set) to the given
test example are first selected to update the general
model, which then makes the final prediction. The
overview of the proposed framework is shown in
Figure 1.

When empirically evaluated on a recently
proposed, large semantic parsing dataset,
WikiSQL (Zhong et al., 2017), our approach leads
to faster convergence and achieves 1.1%–5.4%
absolute accuracy gain over the non-meta-learning
counterparts, establishing a new state-of-the-art
result. More importantly, we demonstrate how
to design a relevance function to successfully
reduce a regular supervised learning problem
to a meta-learning problem. To the best of our
knowledge, this is the first successful attempt in
adapting meta-learning to a semantic task.
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Figure 1: Diagram of the proposed framework. (Upper)
we propose using a relevant function to find a support
set S(j)

K from all training datapoints given a datapoint
D′

j for constructing a pseudo-task Tj as in the few-shot
meta-learning setup. (Bottom) We optimize the model
parameters θ such that the model can learn to adapt a
new task with parameters θ′j via a few gradient steps on
the training examples of the new task. The model is up-
dated by considering the test error on the test example
of the new task. See Section 2 for detail.

2 Background: Meta-Learning
Our work is built on the recently proposed
Model-Agnostic Meta-Learning (MAML) frame-
work (Finn et al., 2017), which we describe briefly
here. MAML aims to learn the learners (for the
tasks) and the meta-learner in the few-shot meta-
learning setup (Vinyals et al., 2016; Andrychowicz
et al., 2016; Ravi and Larochelle, 2016). Formally,
it considers a model that is represented by a func-
tion fθ with parameters θ. When the model adapts
to a new task Ti, the model changes parameters θ
to θ′i, where a task contains K training examples
and one or more test examples (K-shot learning).
MAML updates the parameters θ′i by one or a few
rounds of gradient descent based on the training
examples of task Ti. For example, with one gradi-
ent update,

θ′i = θ − α∇θLTi(fθ),
where the step size α is a hyper-parameter;
LTi(fθ) is a loss function that evaluates the er-
ror between the prediction fθ(x(j)) and target y(j),
where x(j),y(j) are an input/output pair sampled
from the training examples of task Ti. Model pa-
rameters θ are trained to optimize the performance
of fθ′i on the unseen test examples from Ti across
tasks. The meta-objective is:

min
θ

∑

Ti∼p(T )
LTi(fθ′i) =

∑

Ti∼p(T )
LTi(fθ−α∇θLTi (fθ))

The goal of MAML is to optimize the model pa-
rameters θ such that the model can learn to adapt

new tasks with parameters θ′i via a few gradient
steps on the training examples of new tasks. The
model is improved by considering how the test er-
ror on unseen test data from Ti changes with re-
spect to the parameters.

The meta-objective across tasks is optimized us-
ing stochastic gradient descent (SGD). The model
parameters θ are updated as follows:

θ ← θ − β∇θ
∑

Ti∼p(T )
LTi(fθ′i),

where β is the meta step size.

3 Approach
As discussed in Section 1, to reduce traditional
supervised learning to a few-shot meta-learning
problem, we introduce a relevance function, which
effectively helps group examples to form pseudo-
tasks. Because the relevance function is problem-
dependent, we first describe the semantic parsing
problem below, followed by the design of our rel-
evance function and the complete algorithm.

3.1 The Semantic Parsing Task

The specific semantic parsing problem we study in
this work is to map a natural language question to a
SQL query, which can be executed against a given
table to find the answer to the original question. In
particular, we use the currently largest natural lan-
guage questions to SQL dataset, WikiSQL (Zhong
et al., 2017), to develop our model and to conduct
the experiments.

3.2 Relevance Function

The intuition behind the design of a relevance
function is that examples of the same type should
have higher scores. For the questions to SQL prob-
lem, we design a simple relevance function that
depends on (1) the predicted type of the corre-
sponding SQL query and (2) the question length.

There are five SQL types in the WikiSQL
dataset: {Count, Min, Max, Sum, Avg,
Select}. We train a SQL type classifier fsql us-
ing SVMs with bag-of-words features of the input
question, which achieves 93.5% training accuracy
and 88% test accuracy in SQL type prediction.
Another soft indication on whether two questions
can be viewed as belonging to the same “task” is
their lengths, as they correlate to the lengths of
the mapped SQL queries. The length of a ques-
tion is the number of tokens in it after normal-

733



Algorithm 1 Pseudo-Task MAML (PT-MAML)

Require: Training Datapoints D = {x(j),y(j)}
Require: α, β: step size hyperparameters
Require: K: support set size hyperparameter

1: Construct a task Tj with training examples
using a support set S(j)K and a test example
D′j = (x(j),y(j)).

2: Denote p(T ) as distribution over tasks
3: Randomly initialize θ
4: while not done do
5: Sample batch of tasks Ti ∼ p(T )
6: for all Ti do
7: Evaluate∇θLTi(fθ) using S(j)K

8: Compute adapted parameters with gradi-
ent descent: θ′i = θ − α∇θLTi(fθ)

9: end for
10: Update θ ← θ − β∇θ

∑
Ti∼p(T ) LTi(fθ′i)

using eachD′i from Ti and LTi for the meta-
update

11: end while

izing entity mentions to single tokens.1 Our rel-
evance function only considers examples of the
same predicted SQL types. If examples x(i) and
x(j) have the same SQL type, then their relevance
score is 1 − |qlen(x(i)) − qlen(x

(j))|, where qlen
calculates the question length. Notice that the rele-
vance function does not need to be highly accurate
as there is no formal definition on which exam-
ples should be grouped in the same pseudo-task.
A heuristic-based function that encodes some do-
main knowledge typically works well based on
our preliminary study. In principle, the relevance
function can also be jointly learned with the meta-
learning model, which we leave for future work.

3.3 Algorithm

Given a relevance function, the adaptation of the
meta-learning using the MAML framework can
be summarized in Algorithm 1, called Pseudo-
Task MAML (PT-MAML). For each training ex-
ample x(j), we create a pseudo-task Tj using
the top-K relevant examples as the support set
S(j)K (Step 1). The remaining steps of the algo-
rithm mimics the original MAML design, update
task-level models (Step 8) and the meta-level, gen-
eral model (Step 10) using gradient descent.

1Phrases in questions that can match some table cells are
treated as entities.

4 Experiments
In this section, we introduce the WikiSQL dataset
and preprocessing steps, the learner model in our
meta-learning setup, and the experimental results.

4.1 Dataset
We evaluate our model on the WikiSQL dataset
(Zhong et al., 2017). We follow the data pre-
processing in (Wang et al., 2017). Specifically,
we first preprocess the dataset by running both
tables and question-query pairs through Stanford
Stanza (Manning et al., 2014) using the script in-
cluded with the WikiSQL dataset, which normal-
izes punctuations and cases of the dataset. We fur-
ther normalize each question based on its corre-
sponding table: for table entries and columns oc-
curring in questions or queries, we normalize their
format to be consistent with the table. After pre-
processing, we filter the training set by removing
pairs whose ground truth solution contains con-
stants not mentioned in the question, as our model
requires the constants to be copied from the ques-
tion. We train and tune our model only on the
filtered training and filtered development set, but
we report our evaluation on the full development
and test sets. We obtain 59,845 (originally 61,297)
training pairs, 8,928 (originally 9,145) develop-
ment pairs and 17,283 test pairs (the test set is not
filtered).

4.2 Learner Model
We use the model of Wang et al. (2017) as the
learner in our meta-learning setup. The model is a
grammar-aware Seq2Seq encoder-decoder model
with attention (Cho et al., 2014; Bahdanau et al.,
2014). The encoder is a bidirectional LSTM,
which takes the concatenation of the table header
(column names) of the queried table and the ques-
tion as input to learn a joint representation. The
decoder is another LSTM with attention mecha-
nism. There are three output layers corresponding
to three decoding types, which restricts the vocab-
ulary it can sample from at each decoding step.
The three decoding types are defined as follows:
• τV (SQL operator): The output has to be

a SQL operator, i.e., a terminal from V =
{Select, From, Where, Id, Max, Min,
Count, Sum, Avg, And, =, >, ≥, <, ≤,
<END>, <GO>}.
• τC (column name): The output has to be a

column name, which will be copied from ei-
ther the table header or the query section of
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Model Dev Test
Acclf Accex Acclf Accex

PointerNet (2017) 44.1% 53.8% 43.3% 53.3%
Seq2SQL (2017) 49.5% 60.8% 48.3% 59.4%
Pointer loss (2017) 46.8% 52.1% 46.1% 51.8%
Meta + Pointer loss 52.0% 57.7% 51.4% 57.2%
Max loss (2017) 61.3% 66.9% 60.5% 65.8%
Meta + Max loss 62.1% 67.3% 61.6% 67.0%
Sum loss (2017) 62.0% 67.1% 61.5% 66.8%
Meta + Sum loss 63.1% 68.3% 62.8% 68.0%

Table 1: Experimental Results on the WikiSQL dataset,
where Acclf represents the logical form accuracy and
Accex represents the SQL execution accuracy. “Pointer
loss”, “Max loss”, and “Sum loss” are the non-meta-
learning counterpart from Wang et al. (2017). “Meta +
X” denotes the meta-learning model with learner “X”.

the input sequence. Note that the column re-
quired for the correct SQL output may or may
not be mentioned explicitly in the question.
• τQ (constant value): The output is a constant

that would be copied from the question sec-
tion of the input sequence.

The grammar of SQL expressions in the the
WikiSQL dataset can be described in regular ex-
pression as “Select f c From t Where (c op
v)∗” (f refers to an aggregation function, c refers
to a column name, t refers to the table name,
op refers an comparator and v refers to a value).
The form can be represented by a decoding-type
sequence τV τV τCτV τCτV (τCτV τQ)∗, which will
ensure only decoding-type corrected tokens can be
sampled at each decoding step.

Wang et al. (2017) propose three cross-entropy
based loss functions: “Pointer loss”, which is the
cross-entropy between target index and the chosen
index, “Max loss”, which computes the probabil-
ity of copying a token v in the input as the maxi-
mum probability of pointers that point to token v,
and “Sum loss”, which computes the probability
of copying a token v in the input as the sum of
probabilities of pointers that point to token v. See
(Wang et al., 2017) for more detail.

4.3 Model Hyperparameters
We use the pre-trained n-gram embeddings by
Hashimoto et al. (2017) (100 dimension) and the
GloVe word embedding (100 dimension) by Pen-
nington et al. (2014); each token is embedded into
a 200 dimensional vector. The encoder is a 3-
layer bidirectional LSTM with hidden states of
size 100, and the decoder is a 3-layer unidirec-
tional LSTM with hidden states of size 100. The
model is trained with question-query pairs with a
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Figure 2: Logical form accuracy comparison, where
“meta train” and “meta dev” are the train and develop-
ment set accuracy using the “Meta + Sum loss” model,
“train” and “dev” are the train and development set ac-
curacy using the “Sum loss” model (Wang et al., 2017).

batch size of 200 for 100 epochs. During train-
ing, we clip gradients at 5 and add gradient noise
with η = 0.3, γ = 0.55 to stabilize training (Nee-
lakantan et al., 2015). We found the meta-learning
model is trained stably without back-propagating
to second order gradients. We select the support
set size K to be 2 based on the development set.
Empirically, the performance does not improve
when we use a larger K. We set the learning rates
α = 0.001 and β = 0.1 based on the development
set. The model is implemented in Tensorflow and
trained using Adagrad (Duchi et al., 2011).

4.4 Results

Table 1 shows the experimental results of our
model on the WikiSQL dataset. We select the
model based on the best logical form accuracy
on the development set, and compare our results
to augmented pointer network and the Seq2SQL
model (with RL) in (Zhong et al., 2017). Both
logical form accuracy (denoted by Acclf ) that
compares the exact SQL syntax match, and the
SQL execution results (denoted by Accex) are re-
ported. We compare our approach with its non-
meta-learning counterpart using “Pointer loss”,
“Max loss”, and “Sum loss” losses from (Wang
et al., 2017). Our model achieves 1.1%–5.3% and
1.2%–5.4% gains on the test set logical form and
execution accuracy, respectively.

We also investigate the training and develop-
ment set logical form accuracy over different
epochs by “Meta + Sum loss” and “Sum loss”
models. The results are shown in Figure 2. One
interesting observation is that the “Meta + Sum
loss” model converges much faster than the “Sum
loss” model especially in the first 10 epochs. We
attribute this improvement to the ability to adapt
to new tasks even with a small number of training
examples.
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Figure 3: Logical form accuracy comparison. “Meta
+ Sum loss (o), Sum loss (x)” indicates the generated
SQL is incorrect by the “Sum loss” model and is cor-
rect by the “Meta + Sum loss” model. Similarly, “Meta
+ Sum loss (x), Sum loss (o)” indicates the generated
SQL is incorrect by the “Meta + Sum loss” model and
is correct by the “Sum loss” model.

We compare the logical form error on the test
set between the “Sum loss” model (Wang et al.,
2017) and the proposed “Meta + Sum loss” model.
Among the 17,283 test examples, there are 6,661
and 6,428 errors by the “Sum loss” and the “Meta
+ Sum loss”, respectively. There are 5,190 com-
mon errors by both models. We examine the test
examples where “Sum loss” is correct while “Meta
+ Sum loss” is not and vice versa, shown in Fig-
ure 3. We observe that the differences are mainly
in ground truth SQL length = 7 and 10, where the
“Meta + Sum loss” model outperforms “Sum loss”
model by a large margin. We show some examples
for the two cases in the supplementary material.

5 Related Work

Meta Learning One popular direction of meta-
learning (Thrun and Pratt, 1998; Schmidhuber,
1987; Naik and Mammone, 1992) is to train a
meta-learner that learns how to update the param-
eters of the learners model (Bengio et al., 1992;
Schmidhuber, 1992). This direction has been ap-
plied to learning to optimize deep neural networks
(Hochreiter et al., 2001; Andrychowicz et al.,
2016; Li and Malik, 2017; Ha et al., 2017). Few-
shot learning methods have also adapted meta-
learning approaches for image recognition (Koch,
2015; Ravi and Larochelle, 2016; Vinyals et al.,
2016) and reinforcement learning (Finn et al.,
2017). Given that the few-shot learning setup can-
not directly work in standard supervised learn-
ing problems, we explore reducing a regular su-
pervised learning problem to the few-shot meta-
learning scenario by creating pseudo-tasks with a

relevance function.
Semantic Parsing Mapping natural language

to logic forms has been actively studied in natu-
ral language processing research (Zettlemoyer and
Collins, 2005; Giordani and Moschitti, 2010; Artzi
and Zettlemoyer, 2011; Berant et al., 2013; Vla-
chos and Clark, 2014; Yih et al., 2014, 2015; Wang
et al., 2015; Golub and He, 2016; Iyer et al., 2017;
Krishnamurthy et al., 2017). However, unlike con-
ventional approaches, which fit one model for all
training examples, the proposed approach learns to
adapt to new tasks. By using the support set based
on the relevance function, the proposed model can
adapt to a unique model for each example.

Program Induction / Synthesis Program in-
duction (Reed and De Freitas, 2016; Neelakantan
et al., 2015; Graves et al., 2014; Yin et al., 2015;
Devlin et al., 2017) aims to infer latent programs
given input/output examples, while program syn-
thesis models (Zhong et al., 2017; Parisotto et al.,
2017) aim to generate explicit programs and then
execute them to get output. The learner model we
used in this work follows the line of program syn-
thesis models and trains on pairs of natural lan-
guage (question) and program (SQL) directly.

6 Conclusion
In this paper, we propose a new learning protocol
that reduces a regular supervised learning prob-
lem to the few-shot meta-learning scenario. This
is done by effectively creating pseudo-tasks with
the help of a relevance function. When evalu-
ated on the newly released, large semantic pars-
ing dataset, WikiSQL, our approach leads to faster
convergence and enjoys 1.1%–5.4% absolute ac-
curacy gains over the non-meta-learning counter-
parts, achieving a new state-of-the-art result.

While the initial finding is encouraging, we be-
lieve the potential of this meta-learning frame-
work has not yet been fully realized. In the fu-
ture, we plan to explore more variations of the
meta-learning setup, such as using different rele-
vance functions, including the ones that are jointly
learned. We also would like to understand this
approach better by testing it on more natural lan-
guage processing tasks.
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