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Abstract

Multi-task learning with Convolutional Neu-
ral Network (CNN) has shown great success
in many Natural Language Processing (NLP)
tasks. This success can be largely attributed
to the feature sharing by fusing some lay-
ers among tasks. However, most existing
approaches just fully or proportionally share
the features without distinguishing the help-
fulness of them. By that the network would
be confused by the helpless even harmful fea-
tures, generating undesired interference be-
tween tasks. In this paper, we introduce gate
mechanism into multi-task CNN and propose
a new Gated Sharing Unit, which can filter the
feature flows between tasks and greatly reduce
the interference. Experiments on 9 text classi-
fication datasets shows that our approach can
learn selection rules automatically and gain a
great improvement over strong baselines.

1 Introduction

The combination of multi-task learning and neural
networks has shown its advantages in many tasks,
ranging from computer vision (Misra et al., 2016;
Ruder et al., 2017) to natural language processing
(Collobert and Weston, 2008). Multi-task learn-
ing (MTL) has the ability to share the knowledge
among the joint tasks, which implicitly increases
the training materials (Caruana, 1997). The shared
knowledge help the network learn a more univer-
sal representation for the inputs. Inspired by this,
more DNN-based approaches (Liu et al., 2015;
Zhang et al., 2017) utilize multi-task learning to
improve their performance.

The scheme for information sharing is the linch-
pin for designing an elaborate multi-task network.
Most existing work attempts to find a appropriate
proportion to sharing the layers between tasks, de-
spite they entirely reuse the shallow layers (Liu
et al., 2015; Caruana, 1993) or add the layers up

at a ratio (Fang et al., 2017). And recently, the lat-
ter one shows its advantages for controlling rela-
tional intensity among tasks and become prevail-
ing. More models adopt this thought to enhance
the performance (Liu et al., 2015, 2016).

However, under the scheme of proportional ad-
dition (Ruder et al., 2017; Misra et al., 2016), all
the features are shared with the same weight be-
tween every pair of tasks. Helpless or harmful
features may be transported between tasks with
the same importance as helpful ones, namely, the
interference is generated. This would burden the
network for distinguishing the helpful features and
even mislead the predictions.

To solve above problem, we propose a new
CNN-based architecture for multi-task learning,
which can share features in a selective way. Our
model allocates a private subnet to each task and
transport the features between the subnets with a
well-designed module—Gated Sharing Unit. It
has the ability to filter features with gate mecha-
nism (Chung et al., 2014; Srivastava et al., 2015)
and select the helpful ones to benefit the tasks in
hand, which expands the feature spaces and pro-
vides more evidence for right predictions. Our
model is an end-to-end method and the proposed
Gated Sharing Unit is easy to train.

We conduct extensive experiments on 9 bench-
mark datasets for text classification. The results
show that our model greatly improves the perfor-
mance and surpasses the single-task models and
other competitors.

2 Gated Multi-Task Network

To make full use of multiple datasets and, mean-
while, avoid the interference, we introduce a new
structure for multi-task learning in this section.
The new structure is designed in a separative
way—every task owns a private subnet. To share
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Figure 1: Illustration of the architecture for Gated
Multi-Task CNN .

features across the subnets, gate mechanism is de-
signed to selectively allow the features been ex-
changed. Our new model can be trained end-to-
end, needing no extra supervision or handcraft hy-
perparameters. And it can be easily transferred to
other networks such as DNN, RNN, LSTM, etc.
Figure 1 illustrates the design of model structure
and other details.

2.1 Model Architecture

Multi-task model with deeper layers shared can
augment deeper knowledge and greatly increase
the feature space (Zhang et al., 2017). But unde-
sirable interference inevitably and simultaneously
comes with the benefits, especially between less-
related tasks. This would burden the models with
the overhead on distinguishing helpful features.
To overcome this problem, we assign each task
a private subnet as illustrated in Figure 1. Tasks
are relatively separated and can borrow the useful
information from others through a bridge, Gated
Sharing Unit (GSU). The weight of each feature
in this unit is automatically learned from previ-
ous layers, needing no extra supervision, so there
is more selectivity across the tasks. By filtering
out useless features, tasks receive less interference
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Figure 2: Illustration of Gated Sharing Unit

from each other.

2.2 Gated Sharing Unit
For reducing interference, it important to filter the
information flows among the tasks. Hence, in
this section, we introduce the mechanism of gate,
which originates from the cells of recurrent neural
networks like Long-Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), Gated Re-
current Unit (GRU) (Chung et al., 2014). Gated
mechanism in existing studies not only shows its
convenience for training (Srivastava et al., 2015),
but also behaves as tool to route the information
(He et al., 2016).

Inspirited by gate mechanism, we propose a
new module GSU to control the information flows
and selectively share the features among tasks.
The details of this module is shown in Figure 2.
For notation, we refer to C as the collection of N
tasks and C = {1, 2, · · · , N}. For a sample from
arbitrary task j, a series of feature maps are gener-
ated in subnets. When task j borrows the features
from task k, a gate g is inserted to select the help-
ful ones, which is calculated from the prior layer
by

gl
jk = σ(Wl

jk · Fl
k + bl

jk) (1)

where l means the level of the layers and σ denotes
the nonlinear activation of sigmoid, which guaran-
tees the values of g in the [0, 1]. Note that the gate
gl

jk is vector. Each component in it controls the
pass of a corresponding feature. Their states move
between pass and interception, or choose a middle
ground if needed.

For task j, the output Fl+1
j of gates is calculated

by fusing the lower layers Fl from all the tasks by

Fl+1
j =

∑

k∈C,k ̸=j

gl
jk ⊙ Fl

k + Fl
j (2)

where ⊙ denotes element-wise multiplication. To
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represent the output for all the tasks C, we can
stack Eq. (2) in matrix form
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(3)
From Eq. (2) and (3), we know that, in the GSU,

the feature map for current task directly passes
into the next layer. But the features from other
tasks are merged into current task after the se-
lection by gates. In this way, the shared features
tend to be pure and helpful for current task, which
avoids the harmful interference existing in conven-
tional models.

For comparison, here we briefly introduce the
methods that share the features by proportional ad-
dition (Misra et al., 2016; Ruder et al., 2017; Fang
et al., 2017). They can be constructed by insert-
ing a scaler weight αl

jk between every two tasks
i, j. αl

jk is updated by back-propagation and re-
flects the degree of association between tasks, but
do not select the features. In this paper, this kind
of models is alluded to as PA-CNN.

2.3 Output Layer and Loss
In the last layer of task j, vector representations
F̂j of input sequences are ultimately fed into cor-
responding softmax layers to fit the number of
classes, which emits the prediction of probability
distribution for the task j

ŷj = softmax(WjF̂j + bj) (4)

where ŷj is predictive result; Wj is the weight of
the full-connected layer; and bj is the bias term.

Given the prediction of all tasks, a global loss
function forces the model to minimize the cross-
entropy of prediction and true distribution for all
the tasks:

Φ =
N∑

j=1

λjL(ŷj , yj) (5)

where λj is the weight for the task j. In this paper,
we set λj to 1/N for all N tasks to make a balance.

3 Experiments

In this section, we demonstrate the empirical per-
formance of our model on 9 related benchmark
tasks for text classification. And the results are
compared with the state-of-the-art models.

Dataset Train Dev. Test V L
Books 1398 200 400 22K 159
Electronics 1398 200 400 11K 111
DVDs 1400 200 400 22K 189
Kitchen 1400 200 400 10K 93
Apparel 1400 200 400 8K 64
Baby 1300 200 400 9K 173
RN 7860 1122 2246 29K 147
SUBJ 8000 1000 1000 21K 23
TREC 4907 545 500 10K 10

Table 1: Statistics of the text classification datasets.
Train, Dev. and Test denote the size of train, devel-
opment and test set respectively; C: Vocabulary size;
L: Average sentence length.

3.1 Datasets

As Table 1 shows, we select 9 related benchmark
datasets for text classification.

The first 6 datasets are all about product re-
views, which are comprised of Amazon product
reviews in 6 domains, including books, DVDs,
cameras, etc. These corpora are classified accord-
ing to the sentiment of positiveness or negative-
ness. They are collected from the raw data pub-
lished by (Blitzer et al., 2007).

The rest 3 datasets are RN, SUBJ and TREC.
RN is a dataset about news topic classification,
which is collected from Reuters Newswire and
published by (Velasco et al., 1994); SUBJ is a sub-
jectivity dataset, whose task is to classify a sen-
tence level text as being subjective or objective
(Pang et al., 2004); TREC dataset has the task of
classifying a question into 6 types (the questions
are about location, person, numeric information,
etc.)(Li and Roth, 2002).

3.2 Hyperparameters and Training

For all the experiments, we employ Word2Vec
(Mikolov et al., 2013) to initialized the word vec-
tors, which is trained on Google News with 100
billion words. The vectors have dimensionality of
300 and are trained by continuous bag-of-words
architecture. All the other parameters are initial-
ized with random values from uniform distribution
in [-0.1, 0.1]. For every subnet we use: rectified
linear units, filter windows of 3,4,5 with 100 fea-
ture maps each, mini-batch size of 50, dropout rate
of 0.5, l2 constrain of 3, learning rate of 10−3. All
the hyper-parameters are chosen via a small grid
search on dev set. For the dataset without a stan-
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Dataset Single-Task (%) Multi-Task (%)
DCNN LSTM BiLSTM MT-DNN MT-RNN MT-CNN PA-CNN GMT-CNN

Books 80.7 79.5 81.0 82.3 83.3 84.0 82.2 84.4
Electronics 78.3 80.5 78.5 81.6 84.6 83.1 84.8 86.9
DVDs 80.6 81.7 80.5 83.8 84.2 84.0 83.7 85.4
Kitchen 79.8 78.0 81.2 80.8 86.0 83.4 85.1 85.9
Apparel 84.2 83.2 86.0 85.1 86.3 83.6 87.2 87.0
Baby 84.1 84.7 84.5 88.0 87.6 87.8 86.5 88.3
RN 83.6 83.5 83.7 83.9 84.2 84.3 83.6 85.0
SUBJ 93.0 93.1 93.2 92.7 94.1 92.9 93.1 94.0
TREC 93.0 92.7 93.0 93.2 93.5 93.7 93.3 94.2
Avg. 84.1 84.1 84.6 85.7(+1.1) 87.0(+2.4) 86.3(+1.7) 86.6(+2.0) 87.9(+3.3)

Table 2: Accuracies of our model against other state-of-the-art methods. Single-Task column shows the results of
plain DCNN(Kalchbrenner et al., 2014), LSTM(Jozefowicz et al., 2015) and BiLSTM. First 3 models in the Multi-
Task column shows the results of multi-task models: MT-DCNN (Liu et al., 2015), MT-RNN (Zhang et al., 2017),
MT-CNN (Collobert and Weston, 2008). The remaining columns of PA-CNN and GMT-CNN shows the perfor-
mance of proportional addition or gate mechanism. Number in round bracket denotes the average improvement
over BiLSTM.

dard dev set we randomly select 10% as dev set.
The whole network is trained through stochastic
gradient decent using Adadelta update rule (Zeiler,
2012).

3.3 Performance of Multi-task CNN

Table 2 shows the comparison of the accuracies.
All the results for multi-task learning models are
achieved by training simultaneously on 9 datasets.
From the table, we can see that the models em-
ploying multi-task learning improve the perfor-
mance on most tasks beyond the single-task mod-
els, in which our model achieves the highest ac-
curacies. Specifically, our model boosts the per-
formance by 3.3% over the best single-task model
BiLSTM, outstripping other multi-task models by
at least 0.9%. Additionally, we also compare our
model with the PA-CNN, a variant keeps the struc-
ture of GMT-CNN but shares the features by pro-
portional additions. For PA-CNN, performance on
several datasets is decreased than single-task due
to the interference. In contract, our model shows
steady improvement in all the datasets and sur-
passes PA-CNN by 1.3%, which indicates the ef-
fectiveness of gate mechanism.

3.4 Visualization

To intuitively show the selection process, we de-
sign an experiment to show the values of gates and
how they block the useless features. For the first
convolutional layer and GSU, we visualize the ac-
tivations F1

j of the filters with normalized values
and show their corresponding weights g1

jk in the
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Five stars 
̔ my baby can fall asleep soon in the stroller
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Figure 3: Features line illustrates feature weights in
F1

dvds in DVDs subnet. And Gate line shows the value
of g1

baby←dvds that filters the features from DVDs sub-
net to Baby subnet. PA-CNN line visualizes the feature
weights in the first layer of PA-CNN.

gate units. By that we can easily find what kind of
features are discarded as interference.

Figure 3 illustrates the behavior of GSU on a
random selected sentence from Baby task. We
visualize the results of the first feature map for
DVDs subnet and the gate unit that filters the fea-
tures from DVDs to Baby task. For the positive
sentence “Five stars, my baby can fall asleep soon
in the stroller”, we can see that subnet for DVDs
task focuses on two critical positions “Five stars”
and “asleep”. The word “asleep” is negative for
DVDs task, but actually neutral for Baby task.
Successfully, our gated unit lowers the intensity
of the interference “asleep”, making a correct pre-
diction. However, PA-CNN wrongly makes a neg-
ative prediction for lacking resistance to interfer-
ence. This indicates the effectiveness of our gate
mechanism for the feature selection in MTL.
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4 Conclusion and Future Work

In this paper, we introduce gate mechanism in
multi-task CNN to reduce the interference. The
proposed model has an ability to select the po-
tentially useful features, which can reduce the in-
terference among tests. The effectiveness of our
method is fully validated on 9 datasets for text
classification and further illustrated by visualiza-
tion experiment.

In future work, we would like to investigate the
effect of memory mechanism for multi-task learn-
ing, which is similar to gate mechanism but more
complex. It originates from recurrent neural net-
work and have been proven effective for feature
selection.
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