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Abstract

Supervised summarization systems usually
rely on supervision at the sentence or n-
gram level provided by automatic metrics like
ROUGE, which act as noisy proxies for human
judgments. In this work, we learn a summary-
level scoring function θ including human judg-
ments as supervision and automatically gener-
ated data as regularization. We extract sum-
maries with a genetic algorithm using θ as a fit-
ness function. We observe strong and promis-
ing performances across datasets in both auto-
matic and manual evaluation.

1 Introduction

The task of extractive summarization can naturally
be cast as a discrete optimization problem where
the text source is considered as a set of sentences
and the summary is created by selecting an opti-
mal subset of the sentences under a length con-
straint (McDonald, 2007). This view entails defin-
ing an objective function which is to be maximized
by some optimization technique. In the ideal case,
this objective function would encode all the rel-
evant quality aspects of a summary, such that by
maximizing all these quality aspects we would ob-
tain the best possible summary.

However, we find several issues with the ob-
jective function in previous work on optimization-
based summarization. First, the choice of the ob-
jective function is based on ad-hoc assumptions
about which quality aspects of a summary are rel-
evant (Kupiec et al., 1995). This bias can be miti-
gated via supervised techniques guided by data. In
practice, these approaches use signals at the sen-
tence (Conroy and O’leary, 2001; Cao et al., 2015)
or n-gram (Hong and Nenkova, 2014; Li et al.,
2013) level and then define a combination func-
tion to estimate the quality of the whole summary
(Carbonell and Goldstein, 1998; Ren et al., 2016).

This combination θ determines the trade-off be-
tween conflicting quality aspects (importance vs
redundancy) encoded in the objective function by
making simplistic assumptions to ensure conve-
nient mathematical properties of θ like linearity
or submodularity (Lin and Bilmes, 2011). This
restriction comes from computational considera-
tions without conceptual justifications. More im-
portantly, the supervision signal comes from au-
tomatic metrics like ROUGE (Lin, 2004) which
are convenient but noisy approximations for hu-
man judgment.

In this work, we propose to learn the objec-
tive function θ at the summary-level from a pool
of manually annotated system summaries to en-
sure the extraction of summaries considered good
by humans. This explicitly targets the extraction
of high-quality summaries as measured by hu-
mans and limits undesired gaming of the target
evaluation metric. However, the number of data
points is relatively low and the learned θ might
not be well-behaved (high θ scores for bad sum-
maries) pushing the optimizer to explore regions
of the feature space unseen during training where
θ wrongly assumes high scores. To prevent this
scenario, we rely on a large amount of noisy but
automatic training data providing supervision on a
larger span of the feature space. Intuitively, it can
be viewed as a kind of regularization.

By defining θ directly at the summary-level, one
has access to features like redundancy or global
information content without the need to define
a combination function from individual sentence
scores. Any feature available at the sentence or
n-gram level can be transferred to the summary-
level (by summation), while the summary-level
perspective provides access to new features cap-
turing the interactions between sentences. Further-
more, recent works have demonstrated that global
optimization using genetic algorithms without im-
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posing any mathematical restrictions on θ is feasi-
ble (Peyrard and Eckle-Kohler, 2016).

In summary, our contributions are: (1) We pro-
pose to learn a summary-level scoring function
θ and use human judgments as supervision. (2)
We demonstrate a simple regularization strategy
based on automatic data generation to improve the
behavior of θ under optimization. (3) We per-
form both automatic and manual evaluation of the
extracted summaries, which indicate competitive
performances.

2 Approach

2.1 Learning setup
Let θ∗ be the observed human judgments. θ∗ can
be manual Pyramid (Nenkova et al., 2007) or over-
all responsiveness on a 0 to 5 LIKERT scale. We
learn a function θw with parametersw approximat-
ing θ∗ based on a feature set Φ. Φ(S) ∈ Rd is the
feature representation of a summary S.

Let T be the set of topics in the training set, and
ST the set of scored summaries for the topic T .
The learning problem consists in minimizing the
following loss function:

Lω =
∑

T∈T

∑

s∈ST
‖θω(Φ(S))− θ∗(S)‖2 (1)

While any regression algorithm could be ap-
plied, we observed strong performances for the
simple linear regression. It is particularly simple
and not prone to overfitting.

2.2 Automatic data generation
Few annotated summaries are available (50 per
topic) and they cover a small region of the feature
space (low variability). θ may wrongly assume
high scores in some parts of the feature space de-
spite lack of evidence. The optimizer will explore
these regions and output low-quality summaries.

To address this issue, we generate summaries
distributed across the feature space. For each
feature x, we sample a set of k = 100 sum-
maries covering the range of possible values of
x. For sampling, we use the genetic algorithm
recently introduced by Peyrard and Eckle-Kohler
(2016).1 Their solver implements a Genetic Algo-
rithm (GA) to create and iteratively optimize sum-
maries over time. We use default values for the

1https://github.com/UKPLab/
coling2016-genetic-swarm-MDS

reproduction and mutation rate and set the popu-
lation size to 50. With x as fitness function, the
resulting population is a set of summaries ranging
from random to (close to) maximal value. After
both maximization and minimization, we obtain
100 summaries covering the full range of x.

In total, we sample m · k summaries per topic,
wherem is the number of features. We score these
summaries with ROUGE-2 recall (R2), which is a
noisy approximation of human judgments but pro-
vides indications preventing bad regions from get-
ting high scores.

2.3 Summary Extraction

We trained 3 different scoring functions: θpyr with
manual pyramid annotations; θresp with respon-
siveness annotations; and θR2 with our automat-
ically generated data. 2 The final scoring function
is a linear combination:

θ(S) = α1 · θpyr(S) +α2 · θresp(S) +α3 · θR2(S)

Therefore θR2 acts as a regularizer for the θ’s
learned with human judgments. 3 It is a simple
form of model averaging which combine the dif-
ferent information of the 3 different models.

We didn’t constrain θ to have specific proper-
ties like linearity with respect to sentence scores,
thus extracting high scoring summaries cannot be
done with Integer Linear Programming. Instead,
we search an approximate solution by employing
the same meta-heuristic solver we used for sam-
pling with θ as the fitness function.

2.4 Features

Learning a scoring function at the summary-level
gives us access to both n-gram/sentence-level fea-
tures and summary-level features. Sentence-level
features can be transferred to the summary-level,
while new features capturing the interactions be-
tween sentences in the summary become available.

As sentence-level features, we used the stan-
dard: TF*IDF, n-gram frequency and overlap with
the title. As new summary-level features, we used:
number of sentences, summary-level redundancy
and summary-level n-gram distributions: Jensen-
Shannon (JS) divergence with n-gram distribution
in the source (Louis and Nenkova, 2013).

2We train these models separately because the different
annotations do not lie on the same scale

3We didn’t automatically tune the different values of α
but observed that [1, 0.5, 0.5] works well in practice.
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N-gram Coverage. Each n-gram gi in the doc-
uments has a frequency tf(gi), the summary S is
scored by:

Covn(S) =
∑

g∈Sn

tf(gi)

Here Sn is the multiset of n-grams (with repeti-
tions) composing S. Also, the frequency can be
computed either by counting the number of occur-
rence of the n-gram or by counting the number
of documents in which the n-gram appears. For
both frequency computations, we extract features
for unigrams, bigrams and trigrams.

TF*IDF. Each n-gram gi is also associated its
Inverse Document Frequence: idf(gi). The sum-
mary S is scored by:

TF ∗ IDFn(S) =
∑

g∈Sn

tf(gi) ∗ idf(gi)

Here Sn is the multiset of n-grams (with repeti-
tions) composing the summary S. We also extract
features for both frequency computations for uni-
grams, bigrams and trigrams.

Overlap with title. We measure the proportion
of n-grams from the title that appear in the sum-
mary:

Overlapn(S) =
|Tn ∩ Sn|

Tn

Where Tn is the multiset of n-grams in the title,
and Sn is the multiset of n-grams in the sum-
mary. We compute it for unigrams, bigrams and
trigrams.

Number of sentences. We also use the number
of sentences in S as a feature because summaries
with a lot of sentences tend to have very short and
meaningless sentences.

Redundancy. Previous features were at the
sentence-level, we obtained features for the whole
summary by summation over sentences. How-
ever, the redundancy of S cannot be computed at
the sentence-level. This is an example of features
available at the summary-level but not available
at the sentence-level. We define it as the number
of unique n-gram types (|Un|) in the summary di-
vided by the total number of n-gram tokens (the
length of S)

Redn(S) =
|Un|
|Sn|

Where Un is the set of n-grams (without repeti-
tions) composing S and Sn is the multiset of n-
grams (with repetitions).

Divergences. This is another feature that can
only be computed at the summary-level inspired
by Haghighi and Vanderwende (2009) and Peyrard
and Eckle-Kohler (2016). We compute the KL di-
vergence and JS divergence between n-gram prob-
ability distributions of the summaries and of the
documents. The probability distributions are built
from the two kinds of frequency distributions and
for unigrams, bigrams and trigrams.

3 Experiments

Dataset We use two multi-document summa-
rization datasets from the Text Analysis Confer-
ence (TAC) shared tasks: TAC-2008 and TAC-
2009.4 TAC-2008 and TAC-2009 contain 48 and
44 topics, respectively. Each topic consists of 10
news articles to be summarized in a maximum of
100 words. We use only the so-called initial sum-
maries (A summaries), but not the update part.

We used these datasets because all system sum-
maries and the 4 reference summaries were man-
ually evaluated by NIST assessors for content se-
lection (with Pyramid) and overall responsiveness.
At the time of the shared tasks, 57 systems were
submitted to TAC-2008 and 55 to TAC-2009. For
our experiments, we use the Pyramid and the re-
sponsiveness annotations.

With our notations, for example with TAC-
2009, we have n = 55 scored system summaries,
m = 44 topics, Di contains 10 documents and θi
contains 4 reference summaries.

We also use the recently created German dataset
DBS (Benikova et al., 2016) which contains 10
heterogeneous topics. For each topic, 5 summaries
were evaluated by trained human annotators but
only for content selection with Pyramid. The sum-
maries have variable sizes and are about 500 words
long.

Baselines (1) ICSI (Gillick and Favre, 2009)
is a global linear optimization approach that ex-
tracts a summary by solving a maximum coverage
problem considering the most frequent bigrams
in the source documents. ICSI has been among
the best systems in a standard ROUGE evalua-
tion (Hong et al., 2014). (2) LexRank (Erkan

4http://tac.nist.gov/2009/
Summarization/, http://tac.nist.gov/2008/
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ρ NDCG

Best-Baseline-R .594 .505
θR2 .663 .536

Best-Baseline-Pyr .492 .715
θpyr .554 .780

Best-Baseline-Resp .367 .710
θresp .391 .741

Table 1: Performance of learned θ’s compared to
the best baselines for each type annotation types.

and Radev, 2004) is a graph-based approach com-
puting sentence centrality based on the PageRank
algorithm. (3) KL-Greedy (Haghighi and Van-
derwende, 2009) minimizes the Kullback-Leibler
(KL) divergence between the word distributions in
the summary and the documents. (3) Peyrard and
Eckle-Kohler (2016) optimize JS divergence with
a genetic algorithm. (4) Finally, SFOUR is a su-
pervised structured prediction approach that trains
an end-to-end on a convex relaxation of ROUGE
(Sipos et al., 2012).

Objective function learning In this section, we
measure how well our models can predict human
judgments. We train each θ in a leave-one-out
cross-validation setup for each dataset and com-
pare their performance to the summary scoring
function of baselines like it was done previously
(Peyrard and Eckle-Kohler, 2017). Each individ-
ual feature is also included in the baselines.

Correlations are measured with two comple-
mentary metrics: Spearman’s ρ and Normalized
Discounted Cumulative Gain (NDCG). Spear-
man’s ρ is a rank correlation metric, which com-
pares the ordering of systems induced by θ and the
ordering of systems induced by human judgments.
NDCG is a metric that compares ranked lists and
puts more emphasis on the top elements with log-
arithmic decay weighting. Intuitively, it captures
how well θ can recognize the best summaries. The
optimization scenario benefits from high NDCG
scores because only summaries with high θ scores
are extracted.

The results are presented in Table 1. For sim-
plicity, we report the average over the 3 datasets.
Each θ is compared against the best performing
baseline for the data annotation type it was trained
on (R2, responsiveness or pyramid).5 The trained
models perform substantially and consistently bet-

5Best baseline for R2 and Responsiveness is: KL diver-
gence on bigrams; for Pyramid: KL divergence on unigrams

ter than the best baselines. They have a high cor-
relation with human judgments and are capable of
identifying good summaries.

However, we need to test whether the combi-
nation of the three θ’s is well behaved under op-
timization. For this, we perform an evaluation of
the summaries extracted by the genetic optimizer.

Summaries Evaluation Now, we evaluate the
summaries extracted by the genetic optimizer with
θ as fitness function (noted (θ, Gen)). We still train
θ with leave-one-out cross-validation.

To evaluate summaries, we report the ROUGE
variant identified by Owczarzak et al. (2012) as
strongly correlating with human evaluation meth-
ods: ROUGE-2 (R2) recall with stemming and
stopwords not removed. We also report JS2, the
Jensen-Shannon divergence between bigrams in
the reference summaries and the candidate system
summary (Lin et al., 2006). The last metric is S3
(Peyrard et al., 2017), a combination of several
existing metrics trained explicitly to maximize its
correlation with human judgments.

Finally, our approach aims at improving sum-
marization systems based on human judgments,
therefore we also set up a manual evaluation for
the two English datasets. Two annotators were
given the summaries of every system for 10 ran-
domly selected topic of both TAC-2008 and TAC-
2009. They annotated (with a Cohen’s kappa of
0.73) summaries on a LIKERT scale following the
responsiveness guidelines.

The results are reported in Table 2. We per-
form significance testing with Approximate Ran-
dom Testing to compare differences between two
means in cross-validation 6.

While θ’s trained on human judgments have a
high correlation with human judgments, they be-
have badly under optimization. This effect is much
less visible for θR2 because the data points have
been sampled to cover the feature space. We ob-
serve the effectiveness of the regularization be-
cause each θR2/pyr/resp performs much worse in-
dividually than the combined θ. We also note that
(θR2, Gen) performs on par with the other super-
vised baseline SFOUR but both are outperformed
by exploiting human judgments. (θ, Gen) is con-
sistently and often significantly better than base-
lines across datasets and metrics. In particular,
humans tend to prefer the summaries extracted by

6The symbol * indicates that the difference compared to
the previous best baseline is significant with p ≤ 0.05

657



TAC-2008 TAC-2009 DBS
R2↑ JS2↓ S3↑ H↑ R2↑ JS2↓ S3↑ H↑ R2↑ JS2↓ S3↑

LexRank .078 .635 .336 3.74 .090 .625 .360 3.75 .105 .594 .354
(KL, Greedy) .068 .644 .294 3.42 .061 .648 .288 3.21 .078 .620 .293
(JS, Gen) .098 .618 .376 3.99 .101 .618 .370 3.89 .112 .584 .362
SFOUR .101 .623 .372 3.88 .101 .622 .367 3.85 .114 .591 .357
ICSI .101 .620 .377 4.03 .103 .619 .369 3.91 .115 .586 .361

(θR2, Gen) .100 .620 .375 3.89 .104 .618 .373 3.82 .116 .585 .363
(θpyr , Gen) .096 .623 .369 3.65 .085 .631 .339 3.77 .078 .615 .312
(θresp, Gen) .096 .622 .364 3.78 .085 .635 .342 3.88 - - -

(θ, Gen) .105 .615* .382 4.09* .104 .617 .376 4.03* .117 .584 .367*

Table 2: Comparison of systems across 3 datasets evaluated with ROUGE-2 recall; JS divergence on
bigrams; S3 and Human annotations.

(θ, Gen). Manual inspection of summaries reveals
that (θ, Gen) has lower redundancy than previous
baselines thanks to summary-level features.

Important Features Since we used a linear re-
gression, we can estimate the contribution of a
feature by the amplitude of its associated weight.
The two best features (n-gram distributions and
redundancy) are summary-level features, which
confirms the advantage of using a summary-level
scoring function.

4 Related Work and Discussion

Supervised summarization started with Kupiec
et al. (1995) who observed that there is no prin-
cipled method to select and weight relevant fea-
tures. Previous work focused on predicting sen-
tence (Conroy and O’leary, 2001; Cao et al., 2015)
or n-gram (Hong and Nenkova, 2014; Li et al.,
2013) scores and then defining a composition
function to get a score for the summary. This
combination usually accounts for redundancy or
coherence (Nishikawa et al., 2014) in an ad-hoc
fashion (Carbonell and Goldstein, 1998; Ren et al.,
2016). Structure prediction has been investigated
to learn the composition function as well (Sipos
et al., 2012; Takamura and Okumura, 2010). The
supervision is always provided by automatic met-
rics, whereas we incorporate human judgments
as supervision and learn from it directly at the
summary-level. We note that He et al. (2006) and
Peyrard and Eckle-Kohler (2016) have used a scor-
ing function at the summary-level but these ap-
proaches are unsupervised.

One of the challenges we face is the lack of data
with human judgments. We hope that this work
will encourage efforts to create new and large
datasets as they will be decisive for the progress

of summarization. Indeed, systems trained only
with automatic metrics can only be as good as the
metrics are as a proxy for humans.

We used simple features but using more com-
plex and semantic features is promising. Indeed,
two syntactically similar but semantically different
summaries cannot be distinguished by ROUGE,
which diminishes the usefulness of semantic fea-
tures. However, humans can distinguish them,
thus inducing better usage of such features.

Another promising direction is to investigate
more sophisticated ways of combining the human
judgments with the automatically generated data.
For example, by exploiting techniques from semi-
supervised learning (Zhu et al., 2009) or by dy-
namically sampling unseen regions of the feature
space with active learning (Settles, 2009).

5 Conclusion

We proposed an approach to learn a summary-
level scoring function θ with human judgments as
supervision and automatically generated data as
regularization. The summaries subsequently ex-
tracted with a genetic algorithm are of high qual-
ity according to both automatic and manual evalu-
ation. We hope this work will encourage more re-
search directed towards the generation and usage
of human judgment datasets.
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