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Abstract

Recent success of deep learning models for the
task of extractive Question Answering (QA) is
hinged on the availability of large annotated
corpora. However, large domain specific an-
notated corpora are limited and expensive to
construct. In this work, we envision a system
where the end user specifies a set of base doc-
uments and only a few labelled examples. Our
system exploits the document structure to cre-
ate cloze-style questions from these base doc-
uments; pre-trains a powerful neural network
on the cloze style questions; and further fine-
tunes the model on the labeled examples. We
evaluate our proposed system across three di-
verse datasets from different domains, and find
it to be highly effective with very little labeled
data. We attain more than 50% F1 score on
SQuAD and TriviaQA with less than a thou-
sand labelled examples. We are also releasing
a set of 3.2M cloze-style questions for practi-
tioners to use while building QA systems'.

1 Introduction

Deep learning systems have shown a lot of
promise for extractive Question Answering (QA),
with performance comparable to humans when
large scale data is available. However, practition-
ers looking to build QA systems for specific ap-
plications may not have the resources to collect
tens of thousands of questions on corpora of their
choice. At the same time, state-of-the-art machine
reading systems do not lend well to low-resource
QA settings where the number of labeled question-
answer pairs are limited (c.f. Table 2). Semi-
supervised QA methods like (Yang et al., 2017)
aim to improve this performance by leveraging un-
labeled data which is easier to collect.

In this work, we present a semi-supervised QA
system which requires the end user to specify a
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set of base documents and only a small set of
question-answer pairs over a subset of these doc-
uments. Our proposed system consists of three
stages. First, we construct cloze-style questions
(predicting missing spans of text) from the unla-
beled corpus; next, we use the generated clozes
to pre-train a powerful neural network model for
extractive QA (Clark and Gardner, 2017; Dhingra
et al., 2017); and finally, we fine-tune the model
on the small set of provided QA pairs.

Our cloze construction process builds on a typ-
ical writing phenomenon and document structure:
an introduction precedes and summarizes the main
body of the article. Many large corpora follow
such a structure, including Wikipedia, academic
papers, and news articles. We hypothesize that we
can benefit from the un-annotated corpora to bet-
ter answer various questions — at least ones that are
lexically similar to the content in base documents
and directly require factual information.

We apply the proposed system on three datasets
from different domains — SQuAD (Rajpurkar
et al., 2016), TriviaQA-Web (Joshi et al., 2017)
and the BioASQ challenge (Tsatsaronis et al.,
2015). We observe significant improvements in a
low-resource setting across all three datasets. For
SQuAD and TriviaQA, we attain an F1 score of
more than 50% by merely using 1% of the train-
ing data. Our system outperforms the approaches
for semi-supervised QA presented in Yang et al.
(2017), and a baseline which uses the same unla-
beled data but with a language modeling objective
for pretraining. In the BioASQ challenge, we out-
perform the best performing system from previous
year’s challenge, improving over a baseline which
does transfer learning from the SQuAD dataset.
Our analysis reveals that questions which ask for
factual information and match to specific parts of
the context documents benefit the most from pre-
training on automatically constructed clozes.
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2 Related Work

Semi-supervised learning augments the labeled
dataset L with a potentially larger unlabeled
dataset U. Yang et al. (2017) presented a model,
GDAN, which trained an auxiliary neural net-
work to generate questions from passages by re-
inforcement learning, and augment the labeled
dataset with the generated questions to train the
QA model. Here we use a much simpler heuris-
tic to generate the auxiliary questions, which also
turns out to be more effective as we show supe-
rior performance compared to GDAN. Several ap-
proaches have been suggested for generating nat-
ural questions (Tang et al., 2017; Subramanian
et al., 2017; Song et al., 2017), however none of
them show a significant improvement of using the
generated questions in a semi-supervised setting.
Recent papers also use unlabeled data for QA by
training large language models and extracting con-
textual word vectors from them to input to the
QA model (Salant and Berant, 2017; Peters et al.,
2018; McCann et al., 2017). The applicability of
this method in the low-resource setting is unclear
as the extra inputs increase the number of parame-
ters in the QA model, however, our pretraining can
be easily applied to these models as well.
Domain adaptation (and Transfer learning)
leverage existing large scale datasets from a source
domain (or task) to improve performance on a tar-
get domain (or task). For deep learning and QA,
a common approach is to pretrain on the source
dataset and then fine-tune on the target dataset
(Chung et al., 2017; Golub et al., 2017). Wiese
et al. (2017) used SQuAD as a source for the
target BioASQ dataset, and Kadlec et al. (2016)
used Book Test (Bajgar et al., 2016) as source
for the target SQUAD dataset. Mihaylov et al.
(2017) transfer learned model layers from the
tasks of sequence labeling, text classification and
relation classification to show small improvements
on SQuAD. All these works use manually curated
source datatset, which in themselves are expen-
sive to collect. Instead, we show that it is possible
to automatically construct the source dataset from
the same domain as the target, which turns out to
be more beneficial in terms of performance as well
(c.f. Section 4). Several cloze datasets have been
proposed in the literature which use heuristics for
construction (Hermann et al., 2015; Onishi et al.,
2016; Hill et al., 2016). We further see the usabil-
ity of such a dataset in a semi-supervised setting.
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3 Methodology

Our system comprises of following three steps:

Cloze generation: Most of the documents typ-
ically follow a template, they begin with an in-
troduction that provides an overview and a brief
summary for what is to follow. We assume such a
structure while constructing our cloze style ques-
tions. When there is no clear demarcation, we treat
the first K% (hyperparameter, in our case 20%)
of the document as the introduction. While noisy,
this heuristic generates a large number of clozes
given any corpus, which we found to be beneficial
for semi-supervised learning despite the noise.

We use a standard NLP pipeline based on
Stanford CoreNLP? (for SQuAD, TrivaQA and
PubMed) and the BANNER Named Entity Rec-
ognizer’ (only for PubMed articles) to identify en-
tities and phrases. Assume that a document com-
prises of introduction sentences {q1, ¢, ...q» }, and
the remaining passages {p1,p2,..pm}. Addition-
ally, let’s say that each sentence ¢; in introduction
is composed of words {w1, w, ...wy, }, where [,
is the length of ¢;. We consider a match(g;, p;),
if there is an exact string match of a sequence of
words {wy, wg41, ..wlqi} between the sentence g;
and passage p;. If this sequence is either a noun
phrase, verb phrase, adjective phrase or a named
entity in p;, as recognized by CoreNLP or BAN-
NER, we select it as an answer span A. Addition-
ally, we use p; as the passage P and form a cloze
question @) from the answer bearing sentence ¢;
by replacing A with a placeholder. As a result, we
obtain passage-question-answer (P, Q, A) triples
(Table 1 shows an example). As a post-processing
step, we prune out (P,Q,A) triples where the
word overlap between the question (Q) and pas-
sage (P) is less than 2 words (after excluding the
stop words).

Passage (P) : Autism is a neurodevelopmental disor-
der characterized by impaired social interaction, verbal
and non-verbal communication, and ...

Question (Q) : People with autism tend to be a little
aloof with little to no
Answer (A) : social interaction ]

Table 1: An example constructed cloze.

The process relies on the fact that answer can-
didates from the introduction are likely to be dis-
cussed in detail in the remainder of the article.

Zhttps://stanfordnlp.github.io/CoreNLP/
*http://banner.sourceforge.net



In effect, the cloze question from the introduc-
tion and the matching paragraph in the body forms
a question and context passage pair. We create
two cloze datasets, one each from Wikipedia cor-
pus (for SQuAD and TriviaQA) and PUBMed aca-
demic papers (for the BioASQ challenge), consist-
ing of 2.2M and 1M clozes respectively. From an-
alyzing the cloze data manually, we were able to
answer 76% times for the Wikipedia set and 80%
times for the PUBMed set using the information in
the passage. In most cases the cloze paraphrased
the information in the passage, which we hypothe-
sized to be a useful signal for the downstream QA
task.

We also investigate the utility of forming sub-
sets of the large cloze corpus, where we select the
top passage-question-answer triples, based on the
different criteria, like i) jaccard similarity of an-
swer bearing sentence in introduction and the pas-
sage ii) the tf-idf scores of answer candidates and
iii) the length of answer candidates. However, we
empirically find that we were better off using the
entire set rather than these subsets.

Pre-training: We make use of the generated
cloze dataset to pre-train an expressive neural net-
work designed for the task of reading comprehen-
sion. We work with two publicly available neural
network models — the GA Reader (Dhingra et al.,
2017) (to enable comparison with prior work) and
BiDAF + Self-Attention (SA) model from Clark
and Gardner (2017) (which is among the best per-
forming models on SQuAD and TriviaQA). After
pretraining, the performance of BiDAF+SA on a
dev set of the (Wikipedia) cloze questions is 0.58
F1 score and 0.55 Exact Match (EM) score. This
implies that the cloze corpus is neither too easy,
nor too difficult to answer.

Fine Tuning: We fine tune the pre-trained
model, from the previous step, over a small set of
labelled question-answer pairs. As we shall later
see, this step is crucial, and it only requires a hand-
ful of labelled questions to achieve a significant
proportion of the performance typically attained
by training on tens of thousands of questions.

4 Experiments & Results

4.1 Datasets

We apply our system to three datasets from dif-
ferent domains. SQuAD (Rajpurkar et al., 2016)
consists of questions whose answers are free form
spans of text from passages in Wikipedia articles.
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We follow the same setting as in (Yang et al.,
2017), and split 10% of training questions as the
test set, and report performance when training on
subsets of the remaining data ranging from 1% to
90% of the full set. We also report the perfor-
mance on the dev set when trained on the full train-
ing set (1* in Table 2). We use the same hyper-
parameter settings as in prior work. We compare
and study four different settings: 1) the Supervised
Learning (SL) setting, which is only trained on
the supervised data, 2) the best performing GDAN
model from Yang et al. (2017), 3) pretraining on
a Language Modeling (LM) objective and fine-
tuning on the supervised data, and 4) pretraining
on the Cloze dataset and fine-tuning on the super-
vised data. The LM and Cloze methods use ex-
actly the same data for pretraining, but differ in the
loss functions used. We report F1 and EM scores
on our test set using the official evaluation scripts
provided by the authors of the dataset.

TriviaQA (Joshi et al., 2017) comprises of over
95K web question-answer-evidence triples. Like
SQuAD, the answers are spans of text. Similar to
the setting in SQuAD, we create multiple smaller
subsets of the entire set. For our semi-supervised
QA system, we use the BIDAF+SA model (Clark
and Gardner, 2017) — the highest performing pub-
licly available system for TrivaQA. Here again,
we compare the supervised learning (SL) settings
against the pretraining on Cloze set and fine tun-
ing on the supervised set. We report F1 and EM
scores on the dev set”.

We also test on the BioASQ 5b dataset, which
consists of question-answer pairs from PubMed
abstracts. We use the publicly available system?
from Wiese et al. (2017), and follow the exact
same setup as theirs, focusing only on factoid and
list questions. For this setting, there are only 899
questions for training. Since this is already a low-
resource problem we only report results using 5-
fold cross-validation on all the available data. We
report Mean Reciprocal Rank (MRR) on the fac-
toid questions, and F1 score for the list questions.

4.2 Main Results

Table 2 shows a comparison of the discussed set-
tings on both SQuAD and TriviaQA. Without any

“We use a sample of dev questions, which is the default
setting for the code by Clark and Gardner (2017). Since our
goal is only to compare the models, this is not problematic.

Shttps://github.com/georgwiese/
biomedical-ga



Model  Method 0 0.01 0.05 0.1 0.2 05 0.9 1
FI EM F1 EM F1 EM F1 EM F1 EM F1 EM Fl EM Fl EM
SQuAD
GA SL - —0.0882 0.0359 0.3517 0.2275 0.4116 0.2752 0.4797 0.3393 0.5705 0.4224 0.6125 0.4684 — -
GA GDAN - - - - - —  0.4840 0.3270 0.5394 0.3781 0.5831 0.4267 0.6102 0.4531 - -
GA LM - —0.0957 0.0394 0.3141 0.1856 0.3725 0.2365 0.4406 0.2983 0.5111 0.3589 0.5520 0.3964  — -
GA Cloze - — 03090 0.1964 0.4688 0.3385 0.4937 0.3588 0.5575 0.4126 0.6086 0.4679 0.6302 0.4894  — -
BiDAF+SA  SL - — 0.1926 0.1018 0.4764 0.3388 0.5639 0.4258 0.6484 0.5031 0.7044 0.5615 0.7287 0.5874 0.8069 0.7154
BiDAF+SA  Cloze 0.0682 0.032 0.5042 0.3751 0.6324 0.4862 0.6431 0.4995 0.6839 0.5413 0.7151 0.5767 0.7369 0.6005 0.8080 0.7186
TRIVIA-QA
BiDAF+SA  SL - — 02533 0.1898 0.4215 0.3566 0.4971 0.4318 0.5624 0.5077 0.6867 0.6239 0.7131 0.6617 0.7291 0.6786
BiDAF+SA  Cloze 0.1182 0.0729 0.5521 0.4807 0.6245 0.5614 0.6506 0.5893 0.6849 0.6281 0.7196 0.6607 0.7381 0.6823 0.7461 0.6903

Table 2: A holistic view of the performance of our system compared against baseline systems on SQUAD and TriviaQA.
Column groups represent different fractions of the training set used for training.

fine-tuning (column 0) the performance is low,
probably because the model never saw a real ques-
tion, but we see significant gains with Cloze pre-
training even with very little labeled data. The
BiDAF+SA model, exceeds an F1 score of 50%
with only 1% of the training data (454 questions
for SQUAD, and 746 questions for TriviaQA), and
approaches 90% of the best performance with only
10% labeled data. The gains over the SL setting,
however, diminish as the size of the labeled set in-
creases and are small when the full dataset is avail-
able.

Method Factoid MRR  List F1
SL* 0.242 0.211
SQuAD pretraining 0.262 0.211
Cloze pretraining 0.328 0.230

Table 3: 5-fold cross-validation results on BioASQ Task 5b.
*Our SL experiments showed better performance than what
was reported in (Wiese et al., 2017).

Cloze pretraining outperforms the GDAN base-
line from Yang et al. (2017) using the same
SQuAD dataset splits. Additionally, we show im-
provements in the 90% data case unlike GDAN.
Our approach is also applicable in the extremely
low-resource setting of 1% data, which we sus-
pect GDAN might have trouble with since it uses
the labeled data to do reinforcement learning. Fur-
thermore, we are able to use the same cloze dataset
to improve performance on both SQuAD and Triv-
1aQA datasets. When we use the same unlabeled
data to pre-train with a language modeling objec-
tive, the performance is worse®, showing the bias
we introduce by constructing clozes is important.

®Since the GA Reader uses bidirectional RNN layers,
when pretraining the LM we had to mask the inputs to the in-
termediate layers partially to avoid the model being exposed
to the labels it is predicting. This results in a only a subset
of the parameters being pretrained, which is why we believe
this baseline performs poorly.

585

On the BioASQ dataset (Table 3) we again see
a significant improvement when pretraining with
the cloze questions over the supervised baseline.
The improvement is smaller than what we observe
with SQuAD and TriviaQA datasets — we believe
this is because questions are generally more dif-
ficult in BioASQ. Wiese et al. (2017) showed that
pretraining on SQuAD dataset improves the down-
stream performance on BioASQ. Here, we show a
much larger improvement by pretraining on cloze
questions constructed in an unsupervised manner
from the same domain.

4.3 Analysis

Regression Analysis: To understand which types
of questions benefit from pre-training, we pre-
specified certain features (see Figure 1 right) for
each of the dev set questions in SQuAD, and then
performed linear regression to predict the F1 score
for that question from these features. We pre-
dict the F1 scores from the cloze pretrained model
(y°1°%®), the supervised model (3*), and the differ-
ence of the two (¢ — ¢*!), when using 10% of
labeled data. The coefficients of the fitted model
are shown in Figure 1 (left) along with their std
errors. Positive coefficients indicate that a high
value of that feature is predictive of a high F1
score, and a negative coefficient indicates that a
small value of that feature is predictive of a high
F1 score (or a high difference of F1 scores from
the two models in the case of y°1°%® — y*h).

The two strongest effects we observe are that
a high lexical overlap between the question and
the sentence containing the answer is indicative of
high boost with pretraining, and that a high lex-
ical overlap between the question and the whole
passage is indicative of the opposite. This is
hardly surprising, since our cloze construction
process is biased towards questions which have a



Regression Analysis

0.05

Coefficients

0.00

0.05

N N N A e

4##““f“ pr FF“

oof @QS oF P

Answer Length

Answer Location in Passage

Answer Location in Sentence

Answer Rareness w.r.t Cloze corpus

Answer Rareness w.r.t Squad corpus

Answer Sentence Length

Document Length

Frequency of Answer in Passage

Lexical Overlap Question and Passage

Lexical Overlap Question and Answer Sentence
Lexical Similarity Question and Passage

Lexical Similarity Question and Answer Sentence
Passage Rareness w.r.t Cloze corpus

Passage Rareness w.r.t Squad corpus
Question Length

Question Rareness w.r.t Cloze corpus

Question Rareness w.r.t Squad corpus

oC

% Q@

Figure 1: Left: Regression coefficients, along with std-errors, when predicting F1 score of cloze model, or s/ model, or the
difference of the two, from features computed from SQuAD dev set questions. Right: Descriptions of the features.
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Figure 2: Performance gain with pretraining for differ-
ent subsets of question types.

similar phrasing to the answer sentences in con-
text. Hence, test questions with a similar property
are answered correctly after pretraining, whereas
those with a high overlap with the whole passage
tend to have lower performance. The pretraining
also favors questions with short answers because
the cloze construction process produces short an-
swer spans. Also passages and questions which
consist of tokens infrequent in the SQuAD train-
ing corpus receive a large boost after pretraining,
since the unlabeled data covers a larger domain.
Performance on question types: Figure 2
shows the average gain in F1 score for different
types of questions, when we pretrain on the clozes
compared to the supervised case. This analysis
is done on the 10% split of the SQUAD training
set. We consider two classifications of each ques-
tion — one determined on the first word (usually
a wh-word) of the question (Figure 2 (bottom))
and one based on the output of a separate ques-
tion type classifier’ adapted from (Li and Roth,

https://github.com/brmson/question-classification
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2002). We use the coarse grain labels namely
Abbreviation (ABBR), Entity (ENTY), Descrip-
tion (DESC), Human (HUM), Location (LOC),
Numeric (NUM) trained on a Logistic Regres-
sion classification system . While there is an im-
provement across the board, we find that abbrevi-
ation questions in particular receive a large boost.
Also, "why” questions show the least improve-
ment, which is in line with our expectation, since
these usually require reasoning or world knowl-
edge which cloze questions rarely require.

5 Conclusion

In this paper, we show that pre-training QA mod-
els with automatically constructed cloze questions
improves the performance of the models signifi-
cantly, especially when there are few labeled ex-
amples. The performance of the model trained
only on the cloze questions is poor, validating the
need for fine-tuning. Through regression analy-
sis, we find that pretraining helps with questions
which ask for factual information located in a spe-
cific part of the context. For future work, we plan
to explore the active learning setup for this task —
specifically, which passages and / or types of ques-
tions can we select to annotate, such that there is a
maximum performance gain from fine-tuning. We
also want to explore how to adapt cloze style pre-
training to NLP tasks other than QA.
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