
Proceedings of NAACL-HLT 2018, pages 569–574
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Leveraging Context Information for Natural Question Generation

Linfeng Song1∗, Zhiguo Wang2, Wael Hamza2, Yue Zhang3 and Daniel Gildea1

1Department of Computer Science, University of Rochester, Rochester, NY 14627
2IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

3Singapore University of Technology and Design

Abstract

The task of natural question generation is to
generate a corresponding question given the
input passage (fact) and answer. It is useful for
enlarging the training set of QA systems. Pre-
vious work has adopted sequence-to-sequence
models that take a passage with an additional
bit to indicate answer position as input. How-
ever, they do not explicitly model the informa-
tion between answer and other context within
the passage. We propose a model that matches
the answer with the passage before generat-
ing the question. Experiments show that our
model outperforms the existing state of the art
using rich features.

1 Introduction

The task of natural question generation (NQG) is
to generate a fluent and relevant question given a
passage and a target answer. Recently NQG has
received increasing attention from both the indus-
trial and academic communities because of its val-
ues for improving QA systems by automatically
increasing the training data. It can also be used
for educational purposes such as language learn-
ing (Heilman and Smith, 2010).

One example is shown in Table 1, where a ques-
tion “when was nikola tesla born ?” is gener-
ated given a passage and a fact “1856”. Existing
work for NQG uses a sequence-to-sequence model
(Sutskever et al., 2014), which takes a passage as
input for generating a question. They either en-
tirely ignore the target answer (Du et al., 2017), or
directly hard-code answer positions (Zhou et al.,
2017; Yang et al., 2017; Subramanian et al., 2017;
Tang et al., 2017; Wang et al., 2017a; Yuan et al.,
2017). These methods can neglect rich potential

∗ Work done during an internship at IBM.

Passage: nikola tesla (serbian cyrillic :
Nikola Tesla ; 10 july 1856 – 7 january 1943
) was a serbian american inventor , electrical en-
gineer , mechanical engineer , physicist , and
futurist best known for his contributions to the
design of the modern alternating current (ac)
electricity supply system .
Question: when was nikola tesla born ?

Table 1: A QG example, where answer is underlined.

interactions between the passage and the target an-
swer. In addition, they fail when the target answer
does not occur in the passage verbatim. In Table
1 the answer “1856” is the year when nikola tesla
was born. This can be easily determined by lever-
aging the contextual information of “10 july 1856
– 7 january 1943”, while it is relatively hard when
only the answer position information is adopted.

We investigate explicit interaction between the
target answer and the passage, so that contextual
information can be better considered by the en-
coder. In particular, matching is used between the
target answer and the passage for collecting rele-
vant contextual information. We adopt the multi-
perspective context matching (MPCM) algorithm
(Wang et al., 2017b), which takes two texts as in-
put before producing a vector of numbers, repre-
senting similarity under different perspectives.

Results on SQuAD (Rajpurkar et al., 2016)
show that our model gives better BLEU scores
than the state of the art. Furthermore, the ques-
tions generated by our model help to improve a
strong extractive QA system. Our code is available
at https://github.com/freesunshine0316/MPQG.

569

2 Baseline: sequence-to-sequence

Our baseline is a sequence-to-sequence model
(Bahdanau et al., 2015) with the copy mechanism
(Gulcehre et al., 2016; Gu et al., 2016). It uses an
LSTM encoder to encode a passage and an LSTM
decoder to synthesize a question.

2.1 Encoder
The encoder is a bi-directional LSTM (Hochre-
iter and Schmidhuber, 1997), whose input xj at
step j is [ej ; bj], the concatenation of the current
word embedding ej with additional bit bj indicat-
ing whether it belongs to the answer.

2.2 Decoder with the copy mechanism
The decoder is an attentional LSTM model, with
the attention memory H being the concatenation
of all encoder states. Each encoder state hj is the
concatenation of two bi-directional LSTM states:

hj = [
←−
hj ;
−→
hj] (1)

H = [h0; . . . ;hN], (2)

where N is the number of encoder states. At each
step t, the decoder state st and context vector ct are
generated from the previous decoder state st−1,
context vector ct−1 and output xt−1 in the same
way as Bahdanau et al. (2015). The output distri-
bution over a vocabulary is calculated via:

Pvocab = softmax(V1[st; ct] + b1),

where V1 and b1 are model parameters, and the
number of rows in V1 is the size of the vocabulary.

Since many passage words also appear in the
question, we adopt the copy mechanism (Gulcehre
et al., 2016; Gu et al., 2016), which integrates the
attention over input words into the final vocabu-
lary distribution. The probability distribution is
defined as the interpolation:

Pfinal = gtPvocab + (1− gt)Pattn,

where gt is the switch for controlling generating
a word from the vocabulary or directly copying it
from the passage. Pvocab is the vocabulary prob-
ability distribution as defined above, and Pattn is
calculated based on the current attention distribu-
tion by merging probabilities of duplicated words.
Finally, gt is defined as:

gt = σ(wT
c ct + wT

s st + wT
x xt−1 + b2),

where the vectors wc, ws, wx and scalar b2 are
model parameters.

…

ℎ"
#

$%

&"
'())

ℎ*+ ℎ,+
…

ℎ"
#

$%

&",+-

ℎ*+ ℎ,+

max

…

ℎ"
#

$%

&".//0

ℎ*+ ℎ,+

weighted-sum

(a)	Full-matching (b)	Attentive-matching (c)	Max-attentive-matching

Figure 1: Matching strategies.

3 Method

Our model follows the baseline encoder-decoder
framework. The encoder reads a passage P =
(p1, . . . , pN) and an answer A = (a1, . . . , qM);
the decoder generates a questionQ = (q1, . . . , qL)
word by word.

3.1 Multi-perspective encoder
Different from the baseline, we first encode both
the passage and the answer by using two separate
bi-directional LSTMs:

hpj = [
←−
hpj ,
−→
hpj] = BiLSTM(

←−−
hpj+1,

−−→
hpj−1, pj)

hai = [
←−
hai ,
−→
hai] = BiLSTM(

←−−
hai+1,

−−→
hai−1, ai)

We use the multi-perspective context matching
algorithm (Wang et al., 2017b) on top of the BiL-
STM outputs, matching each hidden state hpj of the
passage against all hidden states ha1 . . . h

a
M of the

answer. The goal is to detect whether each pas-
sage word belongs to the relevant context of the
answer. Shown in Figure 1, we adopt three strate-
gies to match the passage with the answer, each
investigating different sources of information.

Full-matching considers the last hidden state of
the answer, which encodes all words and the word
order. Attentive-matching synthesizes a vector by
computing a weighted sum of all answer states
against the passage state, then compares the vec-
tor with the passage state. It also considers all
words in the answer but without word order. Fi-
nally, max-attentive-matching only considers the
most relevant answer state to the passage state.

Multi-perspective matching These strategies
require a function fm to match two vectors v1 and
v2. It is defined as:

m = fm(v1, v2;W),

where W is a tunable weight matrix. Each row
Wk ∈ W represents the weights associated with

570

one perspective, and the similarity according to
that perspective is defined as:

mk = cos(Wk � v1,Wk � v2),

where � is the element-wise multiplication op-
eration. So fm(v1, v2;W) represents the match-
ing results between v1 and v2 from all perspec-
tives. Intuitively, each perspective calculates the
cosine similarity between two reweighted input
vectors, associated with a weight vector trained
to highlight different dimensions of the input vec-
tors. This can be regarded as considering a differ-
ent part of the semantics captured in the vector.

The final matching vector mj for the j-th word
in the passage is the concatenation of the matching
results of all three strategies. We employ another
BiLSTM layer on top of the matching layer:

hmj =
←−
hmj ,
−→
hmj = BiLSTM(

←−−
hmj+1,

−−→
hmj−1,mj)

Comparison with the baseline The encoder
states (hj) of the baseline only contains the an-
swer position information in addition to the pas-
sage content. The matching states (hmj) of our
model includes the matching information of all
passage words, and potentially contains the an-
swer position information. The rich matching in-
formation can guide the decoder to generate more
accurate questions.

3.2 Decoder with the copy mechanism

The decoder is identical to the one described
in Section 2.2, except that matching information
(
←−
hmj ,
−→
hmj) is added to the attention memory:

hj = [
←−
hpj ;
−→
hpj ;
←−
hmj ;
−→
hmj] (3)

H = [h0; . . . ;hN] (4)

The attention memory contains not only the pas-
sage content, but also the matching information,
which helps generate more accurate questions.

4 Experiments

Following existing work (Du et al., 2017; Zhou
et al., 2017), experiments are conducted on the
publically accessible part of SQuAD (Rajpurkar
et al., 2016). The dataset contains 536 articles and
over 100k questions, and around 10% is held by
the organizer for fair evaluation.

Models BLEU
M2S+cp 12.63

w/o full-matching 11.57
w/o attentive-matching 11.78
w/o max-attentive-matching 12.11

Table 2: Ablation results for matching strategies.

1 2 3 4 5
Number of perspectives (l)

11.0

11.5

12.0

12.5

BL
EU

 sc
or

es
 (%

)

Figure 2: Effectiveness on the number of perspectives.

4.1 Settings
We evaluate our model for question quality against
gold questions, as well as their effectiveness in
improving an extractive QA system. Since Du
et al. (2017) and Zhou et al. (2017) conducted their
experiments using different training/dev/test split,
we conduct experiments on both splits, and com-
pare with their reported performance. For improv-
ing an extractive QA system, we use the data split
of Du et al. (2017), and conduct experiments on
low-resource settings, where only (10%, 20%, or
50%) of the human-labeled questions in the train-
ing data are available. We choose Wang et al.
(2016) as the extractive QA system.

Both the baseline and our model are trained
with cross-entropy loss. Greedy search is adopted
for generating questions.

4.2 Development experiments
Matching strategies In Table 2, we analyze

the importance of each matching strategy by per-
forming an ablation experiment on the devset ac-
cording to the data split of Du et al. (2017). We
can see that there is a performance decrease when
removing each of the three matching strategies,
which means that all three strategies are comple-
mentary. In addition, w/o max-attentive-matching
shows the least performance decrease. One likely
reason is that max-attentive-matching considers
only the most similar hidden state of the answer,
while the other two consider all hidden states. Fi-
nally, w/o full-matching shows more performance
decrease than w/o attentive-matching. A reason

571

Models Split 1 Split 2
BLEU METEOR ROUGE-L BLEU

S2S-ans 12.28 16.62 39.75 –
S2S+cp+f – – – 13.29
S2S+cp 12.22 17.38 39.03 12.59
M2S+cp 13.98 18.77 42.72 13.91

Table 3: Test results.

may be that full-matching captures word order in-
formation, while attentive-matching does not.

Number of perspectives Figure 2 shows the
performance changes with different numbers of
perspectives. There is a large performance im-
provement when increasing the number from 1 to
3, which becomes small when further increasing
the number from 3 to 5. This shows that our multi-
perspective matching algorithm is effective, as we
do not need a large number of perspectives for
reaching our reported performance.

4.3 Results
In Table 3, we compare our model with the pre-
vious state of the art: S2S-ans (Du et al., 2017)
and S2S+cp+f (Zhou et al., 2017). Both methods
use the sequence-to-sequence model. S2S-ans en-
codes only the passage, yet does not use answer
position information. S2S+cp+f uses both answer
position and rich features (NE and POS tags) by
concatenating their embeddings with the word em-
bedding on the encoder side (Peng et al., 2016),
adopting the copy mechanism for their decoder.
S2S+cp is our sequence-to-sequence baseline with
the copy mechanism, and M2S+cp is our model,
which further uses multi-perspective encoder.

M2S+cp outperforms S2S+cp on both data
splits, showing that modeling contextual infor-
mation is helpful for generating better questions.
In addition, only taking word embedding fea-
tures, M2S+cp shows better performance than
S2S+cp+f. Both multi-perspective matching and
rich features play a similar role of leveraging more
information than the answer position information.
However, M2S+cp can be applied to low-resource
languages and domains, where there is not suf-
ficient labeled data for training the taggers for
generating rich features. M2S+cp is also free
from feature engineering, which is necessary for
S2S+cp+f on new domains.

Finally, unlike S2S-ans, S2S+cp+f and S2S+cp,
M2S+cp can be useful when the answer is not ex-
plicitly contained in the passage, as it matches the
target answer against the passage rather than using

Passage: nikola tesla (serbian cyrillic : Nikola Tesla
; 10 july 1856 – 7 january 1943) was a serbian american
inventor , electrical engineer , mechanical engineer , physi-
cist , and futurist best known for his contributions to the
design of the modern alternating current (ac) electricity
supply system .
Reference: when was nikola tesla born ?
S2S+cp: when was nikola tesla ’s inventor ?
M2S+cp: when was nikola tesla born ?
Passage: zhèng (chinese : 正) meaning “ right ” , “ just
” , or “ true ” , would have received the mongolian adjec-
tival modifiers , creating “ jenggis ” , which in medieval
romanization would be written “ genghis ” .
Reference: what does zhèng mean ?
S2S+cp: what are the names of the “ jenggis ” ?
M2S+cp: what does zhèng mean ?
Passage: the university of chicago (uchicago , chicago , or
u of c) is a private research university in chicago .
Answer: in illinois
M2S+cp: where is the university of chicago located ?

Table 4: QG example, where answers are underlined.

the answer position information.

4.4 Example Output

Table 4 shows example outputs of M2S+cp and
S2S+cp. For the first case, M2S+cp recognizes
that “1856” is the year when “nikola tesla” is
born, while S2S+cp fails to. The matching algo-
rithm of M2S+cp gives high matching numbers
for the phrase “10 july 1856 – 7 january 1943”
with “1856” having the highest matching num-
ber, while S2S+cp only highlights “1856”. Simply
highlighting “1856” can be ambiguous, while rec-
ognizing a pattern “day month year – day month
year” with the first year being the answer is more
definite. It is similar in the second case, where
M2S+cp recognize “zhèng meaning right”, which
fits into the pattern “A meaning B” with B being
the answer.

The third example is a case where the answer is
not explicitly contained in the passage.1 M2S+cp
generates a precise question, even though the an-
swer “in illinois” does not appear in the passage.
On the other hand, S2S+cp fails in this case, as the
answer position information can not be obtained
from the input.

4.5 Question generation for extractive QA

Table 5 shows data augmentation results for ex-
tractive QA, where the gold questions of only a
part of the training data are available. Only-gold
uses only the available gold questions to train the

1This is modified from SQuAD, as all the original answers
in the SQuAD dataset are explicitly contained in the passage.

572

Methods
Exact Match (EM) F1 score

10% 20% 50% 10% 20% 50%
only-gold 47.87 57.98 63.60 59.64 68.05 73.02
S2S+cp 57.80 60.26 64.79 67.01 69.71 73.74
M2S+cp 59.11 61.40 65.95 67.73 70.60 75.08

Table 5: Results on improving extractive QA with automatically generated questions.

extractive QA model, while S2S+cp and M2S+cp
use all training data, adopting the model-generated
questions if the gold question is not available. For
evaluation metrics, F1 score treats the prediction
and ground-truth answer as bags of tokens, and
compute their F1 score; Exact Match measures the
percentage of predictions that match the ground
truth answer exactly (Rajpurkar et al., 2016).

M2S+cp is consistently better than S2S+cp both
under F1 score and Exact Match, showing that
contextual information helps to generate more
accurate questions. Besides, using 10% gold
data, the automatically generated questions from
M2S+cp help to reach a better performance than
that using only 20% gold data, and it is 11 points
better than that using only 10% gold data.

5 Conclusion

We demonstrated that natural question generation
can benefit from contextual information. Lever-
aging a multi-perspective matching algorithm, our
model outperforms the existing state of the art, and
our automatically generated questions help to im-
prove a strong extractive QA system.

Acknowledgments

We would like to thank the anonymous reviewers
for their feedback.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2017). pages 1342–1352.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2016).

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (ACL 2016). Berlin, Germany.

Michael Heilman and Noah A. Smith. 2010. Good
Question! Statistical ranking for question genera-
tion. In The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL-2010). pages 609–617.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Xi Peng, Rogerio S Feris, Xiaoyu Wang, and Dim-
itris N Metaxas. 2016. A recurrent encoder-decoder
network for sequential face alignment. In European
Conference on Computer Vision. pages 38–56.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
EMNLP 2016. Austin, Texas, pages 2383–2392.

Sandeep Subramanian, Tong Wang, Xingdi Yuan, and
Adam Trischler. 2017. Neural models for key phrase
detection and question generation. arXiv preprint
arXiv:1706.04560 .

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS 2014. pages 3104–3112.

Duyu Tang, Nan Duan, Tao Qin, and Ming Zhou. 2017.
Question answering and question generation as dual
tasks. arXiv preprint arXiv:1706.02027 .

Tong Wang, Xingdi Yuan, and Adam Trischler. 2017a.
A joint model for question answering and question
generation. arXiv preprint arXiv:1706.01450 .

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017b.
Bilateral multi-perspective matching for natural lan-
guage sentences. In IJCAI 2017.

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, and
William Cohen. 2017. Semi-supervised QA with
generative domain-adaptive nets. In Proceedings
of the 55th Annual Meeting of the Association for

573

Computational Linguistics (ACL-2017). Vancouver,
Canada, pages 1040–1050.

Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessan-
dro Sordoni, Philip Bachman, Saizheng Zhang,
Sandeep Subramanian, and Adam Trischler. 2017.
Machine comprehension by text-to-text neural ques-
tion generation. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP. Vancou-
ver, Canada, pages 15–25.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural ques-
tion generation from text: A preliminary study.
arXiv preprint arXiv:1704.01792 .

574

