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Abstract

Reading a document and extracting an answer
to a question about its content has attracted
substantial attention recently. While most
work has focused on the interaction between
the question and the document, in this work
we evaluate the importance of context when
the question and document are processed inde-
pendently. We take a standard neural architec-
ture for this task, and show that by providing
rich contextualized word representations from
a large pre-trained language model as well as
allowing the model to choose between context-
dependent and context-independent word rep-
resentations, we can obtain dramatic improve-
ments and reach performance comparable to
state-of-the-art on the competitive SQUAD
dataset.

1 Introduction

Reading comprehension (RC) is a high-level task
in natural language understanding that requires
reading a document and answering questions
about its content. RC has attracted substantial
attention over the last few years with the ad-
vent of large annotated datasets (Hermann et al.,
2015; Rajpurkar et al., 2016; Trischler et al.,
2016; Nguyen et al., 2016; Joshi et al., 2017),
computing resources, and neural network models
and optimization procedures (Weston et al., 2015;
Sukhbaatar et al., 2015; Kumar et al., 2015).

Reading comprehension models must invari-
ably represent word tokens contextually, as a func-
tion of their encompassing sequence (document or
question). The vast majority of RC systems en-
code contextualized representations of words in
both the document and question as hidden states
of bidirectional RNNs (Hochreiter and Schmid-
huber, 1997; Schuster and Paliwal, 1997; Cho
et al., 2014), and focus model design and capac-
ity around question-document interaction, carry-

ing out calculations where information from both
is available (Seo et al., 2016; Xiong et al., 2017b;
Huang et al., 2017; Wang et al., 2017).

Analysis of current RC models has shown that
models tend to react to simple word-matching be-
tween the question and document (Jia and Liang,
2017), as well as benefit from explicitly provid-
ing matching information in model inputs (Hu
et al., 2017; Chen et al., 2017; Weissenborn et al.,
2017). In this work, we hypothesize that the still-
relatively-small size of RC datasets drives this be-
havior, which leads to models that make limited
use of context when representing word tokens.

To illustrate this idea, we take a model that car-
ries out only basic question-document interaction
and prepend to it a module that produces token
embeddings by explicitly gating between contex-
tual and non-contextual representations (for both
the document and question). This simple addi-
tion already places the model’s performance on
par with recent work, and allows us to demonstrate
the importance of context.

Motivated by these findings, we turn to a semi-
supervised setting in which we leverage a lan-
guage model, pre-trained on large amounts of data,
as a sequence encoder which forcibly facilitates
context utilization. We find that model perfor-
mance substantially improves, reaching accuracy
comparable to state-of-the-art on the competitive
SQuAD dataset, showing that contextual word
representations captured by the language model
are beneficial for reading comprehension. 1

2 Contextualized Word Representations

Problem definition We consider the task of ex-
tractive reading comprehension: given a para-
graph of text p = (p1, . . . , pn) and a question q =

1Our complete code base is available at http://
github.com/shimisalant/CWR.
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(q1, . . . , qm), an answer span (pl, . . . , pr) is to be
extracted, i.e., a pair of indices 1 ≤ l ≤ r ≤ n into
p are to be predicted.

When encoding a word token in its encompass-
ing sequence (question or passage), we are inter-
ested in allowing extra computation over the se-
quence and evaluating the extent to which con-
text is utilized in the resultant representation.
To that end, we employ a re-embedding compo-
nent in which a contextual and a non-contextual
representation are explicitly combined per token.
Specifically, for a sequence of word-embeddings
w1, . . . , wk with wt ∈ Rdw , the re-embedding of
the t-th token w′t is the result of a Highway layer
(Srivastava et al., 2015) and is defined as:

w′t = gt � wt + (1− gt)� zt
gt = σ(Wgxt + Ugut)

zt = tanh(Wzxt + Uzut)

where xt is a function strictly of the word-type of
the t-th token, ut is a function of the enclosing se-
quence, Wg,Wz, Ug, Uz are parameter matrices,
and � the element-wise product operator. We set
xt = [wt; ct], a concatenation of wt with ct ∈ Rdc

where the latter is a character-based representation
of the token’s word-type produced via a CNN over
character embeddings (Kim, 2014). We note that
word-embeddings wt are pre-trained (Pennington
et al., 2014) and are kept fixed during training, as
is commonly done in order to reduce model ca-
pacity and mitigate overfitting. We next describe
different formulations for the contextual term ut.

RNN-based token re-embedding (TR) Here we
set {u1, . . . , uk} = BiLSTM(x1, . . . , xk) as the
hidden states of the top layer in a stacked BiLSTM
of multiple layers, each uni-directional LSTM in
each layer having dh cells and uk ∈ R2dh .

LM-augmented token re-embedding (TR+LM)
The simple module specified above allows better
exploitation of the context that a token appears in,
if such exploitation is needed and is not learned
by the rest of the network, which operates over
w′1, . . . , w

′
k. Our findings in Section 4 indicate that

context is crucial but that in our setting it may be
utilized to a limited extent.

We hypothesize that the main determining fac-
tor in this behavior is the relatively small size of
the data and its distribution, which does not re-
quire using long-range context in most examples.
Therefore, we leverage a strong language model

that was pre-trained on large corpora as a fixed
encoder which supplies additional contextualized
token representations. We denote these represen-
tations as {o1, . . . , ok} and set ut = [u′t; ot] for
{u′1, . . . , u′k} = BiLSTM(x1, . . . , xk).

The LM we use is from Józefowicz et al.
(2016),2 trained on the One Billion Words Bench-
mark dataset (Chelba et al., 2013). It consists of an
initial layer which produces character-based word
representations, followed by two stacked LSTM
layers and a softmax prediction layer. The hidden
state outputs of each LSTM layer are projected
down to a lower dimension via a bottleneck layer
(Sak et al., 2014). We set {o1, . . . , ok} to either
the projections of the first layer, referred to as TR
+ LM(L1), or those of the second one, referred to
as TR + LM(L2).

With both re-embedding schemes, we use the
resulting representations w′1, . . . , w

′
k as a drop-in

replacement for the word-embedding inputs fed to
a standard model, described next.

3 Base model

We build upon Lee et al. (2016), who proposed
the RaSoR model. For word-embedding in-
puts q1, . . . , qm and p1, . . . , pn of dimension dw,
RaSoR consists of the following components:

Passage-independent question representa-
tion The question is encoded via a BiLSTM
{v1, . . . , vm} = BiLSTM(q1, . . . , qm) and
the resulting hidden states are summarized via
attention (Bahdanau et al., 2015; Parikh et al.,
2016): qindep =

∑m
j=1 αjvj ∈ R2dh . The

attention coefficients α are normalized log-
its {α1, . . . , αm} = softmax(s1, . . . , sm) where
sj = wT

q ·FF(vj) for a parameter vectorwq ∈ Rdf

and FF(·) a single layer feed-forward network.

Passage-aligned question representations For
each passage position i, the question is encoded
via attention operated over its word-embeddings
qaligni =

∑m
j=1 βijqj ∈ Rdw . The coeffi-

cients βi are produced by normalizing the logits
{si1, . . . , sim}, where sij = FF(qj)T · FF(pi).

Augmented passage token representations
Each passage word-embedding pi is concatenated
with its corresponding qaligni and with the inde-
pendent qindep to produce p∗i = [pi; q

align
i ; qindep],

2Named BIG LSTM+CNN INPUTS in that work
and available at http://github.com/tensorflow/
models/tree/master/research/lm_1b.
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and a BiLSTM is operated over the resulting
vectors: {h1, . . . , hn} = BiLSTM(p∗1, . . . , p

∗
n).

Span representations A candidate answer span
a = (l, r) with l ≤ r is represented as the con-
catenation of the corresponding augmented pas-
sage representations: h∗a = [hl;hr]. In order to
avoid quadratic runtime, only spans up to length
30 are considered.

Prediction layer Finally, each span representa-
tion h∗a is transformed to a logit sa = wT

c · FF(h∗a)
for a parameter vector wc ∈ Rdf , and these log-
its are normalized to produce a distribution over
spans. Learning is performed by maximizing the
log-likelihood of the correct answer span.

4 Evaluation and Analysis

We evaluate our contextualization scheme on the
SQuAD dataset (Rajpurkar et al., 2016) which
consists of 100,000+ paragraph-question-answer
examples, crowdsourced from Wikipedia articles.

Importance of context We are interested in
evaluating the effect of our RNN-based re-
embedding scheme on the performance of the
downstream base model. However, the addition of
the re-embedding module incurs additional depth
and capacity for the resultant model. We there-
fore compare this model, termed RaSoR + TR, to
a setting in which re-embedding is non-contextual,
referred to as RaSoR + TR(MLP). Here we set
ut = MLP(xt), a multi-layered perceptron on xt,
allowing for the additional computation to be car-
ried out on word-level representations without any
context and matching the model size and hyper-
parameter search budget of RaSoR + TR. In Table
1 we compare these two variants over the develop-
ment set and observe superior performance by the
contextual one, illustrating the benefit of contextu-
alization and specifically per-sequence contextual-
ization which is done separately for the question
and for the passage.

Context complements rare words Our formu-
lation lends itself to an inspection of the differ-
ent dynamic weightings computed by the model
for interpolating between contextual and non-
contextual terms. In Figure 1 we plot the average
gate value gt for each word-type, where the av-
erage is taken across entries of the gate vector and
across all occurrences of the word in both passages

Model EM F1

RaSoR (base model) 70.6 78.7

RaSoR + TR(MLP) 72.5 79.9
RaSoR + TR 75.0 82.5

RaSoR + TR + LM(emb) 75.8 83.0
RaSoR + TR + LM(L1) 77.0 84.0
RaSoR + TR + LM(L2) 76.1 83.3

Table 1: Results on SQuAD’s development set. The
EM metric measures an exact-match between a pre-
dicted answer and a correct one and the F1 metric mea-
sures the overlap between their bag of words.

Figure 1: Average gate activations.

and questions. This inspection reveals the follow-
ing: On average, the less frequent a word-type
is, the smaller are its gate activations, i.e., the re-
embedded representation of a rare word places less
weight on its fixed word-embedding and more on
its contextual representation, compared to a com-
mon word. This highlights a problem with main-
taining fixed word representations: albeit pre-
trained on extremely large corpora, the embed-
dings of rare words need to be complemented with
information emanating from their context. Our
specific parameterization allows observing this di-
rectly, but it may very well be an implicit burden
placed on any contextualizing encoder such as a
vanilla BiLSTM.

Incorporating language model representations
Supplementing the calculation of token re-
embeddings with the hidden states of a strong lan-
guage model proves to be highly effective. In
Table 1 we list development set results for using
either the LM hidden states of the first stacked
LSTM layer or those of the second one. We addi-
tionally evaluate the incorporation of that model’s
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Model EM F1

BiDAF + Self Attention + ELMo [1] 78.6 85.8
RaSoR + TR + LM(L1) [2] 77.6 84.2
SAN [3] 76.8 84.4
r-net [4] 76.5 84.3
FusionNet [5] 76.0 83.9
Interactive AoA Reader+ [6] 75.8 83.8
RaSoR + TR [7] 75.8 83.3
DCN+ [8] 75.1 83.1
Conductor-net [9] 73.2 81.9
· · ·
RaSoR (base model) [10] 70.8 78.7

Table 2: Single-model results on SQuAD’s test set.3

[1] Peters et al. (2018) [2,7] This work. [3] Liu et al.
(2017b) [4] Wang et al. (2017) [5] Huang et al. (2017)
[6] Cui et al. (2017) [8] Xiong et al. (2017a) [9] Liu
et al. (2017a) [10] Lee et al. (2016)

word-type representations (referred to as RaSoR
+ TR + LM(emb)), which are based on character-
level embeddings and are naturally unaffected by
context around a word-token.

Overall, we observe a significant improvement
with all three configurations, effectively showing
the benefit of training a QA model in a semi-
supervised fashion (Dai and Le, 2015) with a large
language model. Besides a crosscutting boost in
results, we note that the performance due to utiliz-
ing the LM hidden states of the first LSTM layer
significantly surpasses the other two variants. This
may be due to context being most strongly rep-
resented in those hidden states as the representa-
tions of LM(emb) are non-contextual by definition
and those of LM(L2) were optimized (during LM
training) to be similar to parameter vectors that
correspond to word-types and not to word-tokens.

In Table 2 we list the top-scoring single-model
published results on SQuAD’s test set, where we
observe RaSoR + TR + LM(L1) ranks second
in EM, despite having only minimal question-
passage interaction which is a core component of
other works. An additional evaluation we carry out
is following Jia and Liang (2017), which demon-
strated the proneness of current QA models to be
fooled by distracting sentences added to the para-
graph. In Table 3 we list the single-model results
reported thus far and observe that the utilization of
LM-based representations carried out by RaSoR +
TR + LM(L1) results in improved robustness to
adversarial examples.

3From SQuAD’s leaderboard per Dec 13, 2017. http:
//rajpurkar.github.io/SQuAD-explorer

Model AddSent AddOneSent

RaSoR + TR + LM(L1) [1] 47.0 57.0
Mnemonic Reader [2] 46.6 56.0
RaSoR + TR [3] 44.5 53.9
MPCM [4] 40.3 50.0
RaSoR (base model) [5] 39.5 49.5
ReasoNet [6] 39.4 50.3
jNet [7] 37.9 47.0

Table 3: Single-model F1 on adversarial SQuAD.
[1,3] This work. [2] Hu et al. (2017) [4] Wang et al.
(2016) [5] Lee et al. (2016) [6] Shen et al. (2017) [7]
Zhang et al. (2017)

5 Experimental setup

We use pre-trained GloVe embeddings (Penning-
ton et al., 2014) of dimension dw = 300 and
produce character-based word representations via
dc = 100 convolutional filters over character
embeddings as in Seo et al. (2016). For all
BiLSTMs, hyper-parameter search included the
following values, with model selection being done
according to validation set results (underlined):
number of stacked BiLSTM layers (1, 2, 3), num-
ber of cells dh (50, 100, 200), dropout rate over
input (0.4, 0.5, 0.6), dropout rate over hidden state
(0.05, 0.1, 0.15). To further regularize models, we
employed word dropout (Iyyer et al., 2015; Dai
and Le, 2015) at rate (0.05, 0.1, 0.15) and cou-
ple LSTM input and forget gate as in Greff et al.
(2016). All feed-forward networks and the MLP
employed the ReLU non-linearity (Nair and Hin-
ton, 2010) with dropout rate (0.2, 0.3), where the
single hidden layer of the FFs was of dimension
df = (50, 100) and the best performing MLP
consisted of 3 hidden layers of dimensions 865,
865 and 400. For optimization, we used Adam
(Kingma and Ba, 2015) with batch size 80.

6 Related Work

Our use of a Highway layer with RNNs is re-
lated to Highway LSTM (Zhang et al., 2016) and
Residual LSTM (Kim et al., 2017). The goal in
those works is to effectively train many stacked
LSTM layers and so highway and residual con-
nections are introduced into the definition of the
LSTM function. Our formulation is external to
that definition, with the specific goal of gating
between LSTM hidden states and fixed word-
embeddings.

Multiple works have shown the efficacy of
semi-supervision for NLP tasks (Søgaard, 2013).
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Pre-training a LM in order to initialize the weights
of an encoder has been reported to improve gener-
alization and training stability for sequence classi-
fication (Dai and Le, 2015) as well as translation
and summarization (Ramachandran et al., 2017).

Similar to our work, Peters et al. (2017) utilize
the same pre-trained LM from Józefowicz et al.
(2016) for sequence tagging tasks, keeping en-
coder weights fixed during training. Their formu-
lation includes a backward LM and uses the hid-
den states from the top-most stacked LSTM layer
of the LMs, whereas we also consider reading the
hidden states of the bottom one, which substan-
tially improves performance. In parallel to our
work, Peters et al. (2018) have successfully lever-
aged pre-trained LMs for several tasks, including
RC, by utilizing representations from all layers of
the pre-trained LM.

In a transfer-learning setting, McCann et al.
(2017) pre-train an attentional encoder-decoder
model for machine translation and show improve-
ments across a range of tasks when incorporating
the hidden states of the encoder as additional fixed
inputs for downstream task training.

7 Conclusion

In this work we examine the importance of con-
text for the task of reading comprehension. We
present a neural module that gates contextual and
non-contextual representations and observe gains
due to context utilization. Consequently, we in-
ject contextual information into our model by in-
tegrating a pre-trained language model through
our suggested module and find that it substantially
improves results, reaching state-of-the-art perfor-
mance on the SQuAD dataset.
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