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Abstract

In this paper we explore the use of Learn-
ing Hidden Unit Contribution for the task of
neural machine translation. The method was
initially proposed in the context of speech
recognition for adapting a general system to
the specific acoustic characteristics of each
speaker. Similar in spirit, in a machine trans-
lation framework we want to adapt a general
system to a specific domain. We show that
the proposed method achieves improvements
of up to 2.6 BLEU points over a general sys-
tem, and up to 6 BLEU points if the initial sys-
tem has only been trained on out-of-domain
data, a situation which may easily happen in
practice. The good performance together with
its short training time and small memory foot-
print make it a very attractive solution for do-
main adaptation.

1 Introduction

Domain adaptation for neural machine transla-
tion (NMT) is starting to get more attention from
the scientific community. Often researchers and
machine translation practitioners want to improve
the performance of their systems on a domain for
which they were not explicitly optimized. Due to
the high training times needed to develop NMT
systems, often up to several weeks, efficient meth-
ods for improving an existing system for a specific
domain can have important practical applications.

In this paper we review “Learning Hidden Unit
Contribution” (§ 3), a method developed initially
for speaker adaptation in speech recognition sys-
tems, and apply it to the task of neural machine
translation (§§ 4 and 5). We show that it improves
translation quality on in-domain data, while at the
same time keeping the translation quality of out-
of-domain data intact (§ 6). Due to its small mem-
ory footprint and short training time it can be re-
alistically applied to adapt large, general domain
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systems in order to improve their performance on
specific domains.

2 Neural Machine Translation

In this section we will provide a short overview of
NMT. For a more detailed description the reader
is referred to existing literature. An NMT system
is mainly composed of two parts. The first one,
called the encoder, produces a sequence of vectors
which constitute a representation of the input sen-
tence in a continuous vector space. The decoder
takes this sequence of vectors and generates a new
sequence of words in the target language, which
corresponds to the translation of the given sen-
tence. An additional attention mechanism helps
guiding the translation process.

Most NMT systems are based on recurrent net-
works, usually LSTMs or GRUs (Bahdanau et al.,
2014), although recently new approaches to neural
machine translation have been proposed (Vaswani
et al., 2017; Gehring et al., 2017) which are not
based on recurrent networks, but keep the encoder-
decoder structure. All the approaches described in
this paper are equally applicable to these models.

3 Learning Hidden Unit Contribution

Learning Hidden Unit Contribution (LHUC) is a
method first introduced by Swietojanski and Re-
nals (2014) and Swietojanski et al. (2016) for
speaker adaptation in neural speech recognition
systems. The goal of speaker adaptation is to tai-
lor an existing speech recognition system to the
specific acoustic characteristics of a given speaker.
In normal conditions, the amount of training data
available for one speaker is rather limited; there-
fore, the authors’ goal was to develop a method
that would be able to adapt with a small sample
size. Additionally, when adapting a system, there
is the danger that the system’s performance on the
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Figure 1: Illustration of the LHUC approach. Three
units of a hidden layer are depicted. Each unit has an
additional component that can scale the value of the
original output. The number of additional parameters
is linear in the number of hidden units (see Eq. 2).

general domain degrades significantly due to over-
fitting, what in neural network literature is some-
times called “catastrophic forgetting” (McCloskey
and Cohen, 1989; Ratcliff, 1990).

The intuition behind LHUC is that different net-
work units specialize on different aspects of the
task, and thus, when shifting domain the impor-
tance of each unit may change from the original
domain on which the system was trained. An ex-
ample of this behaviour (unrelated to translation)
is shown by Radford et al. (2017). They trained a
character-level language model on product review
texts and found out that one specific neuron pro-
vided a quite accurate representation of the senti-
ment (positive or negative) of the text. While this
neuron can provide valuable information for this
task, it may not be so relevant for other domains
where sentiment is not as important (e.g. news).
At the same time, other neurons may become more
important (e.g. ensuring a more formal style of the
text).

LHUC introduces an additional multiplicative
amplitude element to the output of each hidden
unit in the network. As such the contribution of
the hidden unit can be amplified (values greater
than 1) for the units that are more relevant to the
task, or dampened (values close to 0) for units
that are not as important. The approach is illus-
trated in Figure 1. Coming back to the sentiment
neuron example above, for tasks where sentiment
is important (product reviews), LHUC will assign
a high weight to the sentiment neuron, while for
other tasks (news), the corresponding weight will
be low. The weights are learned automatically
from the available in-domain data.
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More formally, let
h®) = g1 ) (1)

be a general equation for the output of a layer in a
neural network, parametrized by the set 6. In case
of a feed-forward layer, ¢ would be an affine trans-
formation followed by a non-linearity, # would be
the parameter matrix of the linear transformation
and the bias vector, and no additional arguments
would be required. Other models like LSTM lay-
ers (Hochreiter and Schmidhuber, 1997) have a
more complex structure and a memory state as an
additional argument.

As the LHUC method is very general, the actual
form of the layer activations does not need to be
specified in complete detail; it is only important to
note that it produces a vector, and is dependent of
the previous layer. LHUC modifies the activation
function by introducing a multplicative element

h'e =a(pD) o g, ..) @

where p(®) is a layer-dependent vector of new pa-
rameters (independent of ), of the same dimen-
sion as h(), and o denotes element-wise vec-
tor multiplication. The a(-) function is a scaled
element-wise sigmoid function. The range of the
scaled sigmoid is limited to the interval [0, 2]'
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The parameter vectors p") are trained using stan-
dard backpropagation, keeping the initial parame-
ter set 6 constant during the LHUC training pass.
As can be seen, the number of parameters grows
only linearly in the number of units in each layer,
instead as the usual quadratic growth for the num-
ber of parameters in most neural models.

4 Domain Adaptation for NMT

Domain adaptation for phrase-based and related
approaches to machine translation has been ex-
tensively investigated, e.g. (Schwenk, 2008; Ax-
elrod et al., 2011; Carpuat et al., 2013). Neu-
ral machine translation, being a relatively new ap-
proach to MT, has not seen so many works going
into this direction yet. Previous methods can of
course still be applied as long as they are model-
independent, e.g. data selection methods as shown

"The value of 2 is chosen as to be able to amplify the value

(it can be doubled) but without overshadowing the value of
the other units, which could happen with bigger values.



in (van der Wees et al., 2017) or self-training ap-
proaches like (Bertoldi and Federico, 2009), of
which back-translation (Sennrich et al., 2015) can
be considered a special case.

Specific for neural machine translation, Fre-
itag and Al-Onaizan (2016) present a really sim-
ple method, where the parameters of an already
trained system are taken as the starting point of an-
other training run using only in-domain data. This
simple method achieves good results and has the
advantage that no additional implementation work
has to be carried out. Chu et al. (2017) propose
a refinement of this method where the in-domain
data is mixed with the out-of-domain data.

Chen et al. (2017) propose to use a domain clas-
sifier to weight the cost of the training data differ-
ently according to the similarity to the in-domain
data, in what can be considered a tighter integra-
tion of previous data-selection methods.

Sennrich et al. (2016) introduce a simple
method for controlling the politeness of an NMT
system, which can also be used for domain adapta-
tion. They add a special tag to the source sentence
denoting the politeness level of the source sen-
tence and the system is able to use this information
to improve the translation output. This technique
can be extended to domain adaptation by combin-
ing the text of the different domains and marking
them with a specific, domain-dependent tag. John-
son et al. (2016) use this technique in an “extreme”
domain adaptation setting, where the domains are
actually different languages.

5 LHUC for Domain Adaptation of NMT

In this paper we propose to use LHUC for domain
adaptation of NMT systems. For this, we first train
a system on the general domain data. Once such a
system is available, we add the LHUC component
and adapt it for the characteristics of the domain,
similar to the adaptation to the acoustic character-
istics of a speaker in the case of speech recogni-
tion.

We will explore two different scenarios, in the
first one all the data, both in-domain and out-of-
domain, is available from the beginning. As such
the initial system already has seen in-domain ex-
amples at training time and the domain adaptation
step is mainly a “fine tuning” step.

In the second scenario we will assume that the
initial system has been trained only on out-of-
domain data. This system will then be adapted
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Corpus  Sents Words Voc
WMT SM  135M/141M 1.8M/877K
IWSLT 197K 3.7M/4M  122K/55K

Table 1: Training corpora statistics. “Sents” denotes
number of sentences, “Words” refers to number of run-
ning words after tokenization and “Voc” is the size of
the vocabulary, e.g. the number of unique words in the
corresponding corpus.

for the new in-domain data, which has not been
seen at the initial training stage. This scenario has
an important role in practical applications, e.g. a
general domain system has been trained and tuned
to offer general domain translation, but it needs to
be adapted to specific domains in order to provide
better quality. In some cases, the time necessary
for adapting such a system may also play a critical
role on the applicability of the method.

LHUC provides an elegant solution for domain
adaptation. Due to its reduced number of param-
eters it can be trained in a much shorter time than
a full system. Furthermore, because it is an “add-
on” for an already existing system it can be acti-
vated or de-activated on-demand. This effectively
solves the catastrophic forgetting effect found in
other adaptation techniques, as the general system
can still be accessed at any time.

6 Experimental Results

Similar to Freitag and Al-Onaizan (2016), we
present results on the IWSLT 2016%> German to
English TED dataset (Cettolo et al., 2016), con-
sisting of transcribed and translated TED talks. As
out-of-domain data we use the same year’s WMT
data (Bojar et al., 2016). We report results on the
TED 2013 and TED 2014 (the newest ones with
provided references) and additionally on the new-
stest 2016 dataset for measuring the performance
on out-of-domain data. Statistics for the training
corpora are given in Table 1. It can be seen that the
WMT data (out-of-domain) is an order of magni-
tude bigger that the in-domain IWSLT data.

Our system is a recurrent encoder-decoder
NMT model, with one bidirectional LSTM layer
with 1024 units in the encoder and one layer with
1024 units in the decoder. The data has been BPE-
encoded using 32K merge operations, and the em-

2Frf:itag and Al-Onaizan (2016) used an older version of
the corpora.



bedding layer has a dimension of 512. Train-
ing has been performed with the Adam algorithm
(Kingma and Ba, 2014). The provided TED dev
set was used as stopping criterion (or newstest14
for the case of a WMT-only system). Experiments
have been carried out using Sockeye (Hieber et al.,
2017), and the LHUC code has been open sourced
as part of it.

For LHUC experiments, both the encoder and
decoder hidden units have been expanded with the
additional scaling.

As discussed in Section 5 we will differentiate
two conditions: in the “full training data” condi-
tion, both the out-of-domain and in-domain data
are available for training the initial system. In the
“growing training data” condition, the initial sys-
tem is trained only on out-of-domain data.

We will compare the performance of the LHUC
method with the “continuation of training” pro-
posed by Freitag and Al-Onaizan (2016). Both
methods can start from an already trained system
and refine the training on the in-domain data. For
the full training data condition we also explore
the tagging technique similar to the one proposed
by Sennrich et al. (2016).

6.1 Full Training Data Condition

In this data condition, both the WMT and IWSLT
training data have been combined together. Each
mini-batch in training is selected randomly, so that
potentially samples from both domains are pre-
sented to the system. In this way there is no im-
plicit domain adaptation effect due to the presen-
tation of the data.

The results, in terms of BLEU score, can be
seen in Table 2. Even when the in-domain data
is already included in the set used for training the
original system, the domain adaptation techniques
are able to increase translation quality. Using con-
tinuation of training we are able to improve the
performance by up to 1.2% absolute. However if
we look at the translation quality on the out-of-
domain data set we see the catastrophic forgetting
effect, with a drop of 1.7 BLEU points.

LHUC achieves an even bigger improvement
in translation quality: up to 2.6%. If we would
blindly apply the LHUC enhanced system to the
out-of-domain data we would again observe the
catastrophic forgetting effect, in fact even more
pronounced as with continuation of training (num-
ber in parenthesis in the corresponding column in
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Table 2). However in practice this is a non-issue,
as the LHUC can easily be deactivated, as dis-
cussed in Section 5.

Adding labels to the training data also proves to
be an efficient domain adaptation method, with the
advantage that it can be combined with the other
methods. The improvements due to continuation
of training or LHUC are not as big in this case.

For reference, the results of training on in-
domain data only have also been included.

6.2 Growing Training Data Condition

In this condition the initial system has only been
trained on WMT data. It is also worth noting
that this also applies to the BPE vocabulary. It is
trained only on the WMT data and then applied to
the IWSLT data for the adaptation techniques.

In this case we see even bigger improvements
with respect to the baseline system, up to 6 BLEU
points. This is mainly due to the baseline sys-
tem being trained only on out-of-domain data. In
this way, in the domain adaptation step, new, un-
seen training data is added to system. The results
are reported in Table 3. Interestingly, the abso-
lute scores of the adapted systems are very close to
those reported in Table 2, showing that the domain
adaptation techniques can efficiently include new
information into the original model. The catas-
trophic forgetting effect is also more pronounced
in this data condition, but we note again that it
does not effect the LHUC method.

It is also interesting to note that the performance
of the baseline systems on out-of-domain data in
both data conditions is the same, indicating that
the in-domain data does not really help for the
out-of-domain set. This is also indicated by the
low score of the in-domain only system on out-
of-domain data. Both effects can be explained
by comparing the relative sizes of the datasets, as
shown in Table 1.

6.3 Efficiency Considerations

As pointed out before, the number of parameters
is linear in the number of units in the network. In
our specific case we have a total of 2048 units in
the encoder (a bidirectional layer with 1024 units
in each direction) and 1024 units in the decoder.
Using a 32-bit float representation, the overhead
of LHUC amounts to just 12KB. For comparison
a full model stored on disk in compressed npz for-
mat needs 335MB. This shows that LHUC can re-
alistically be used for storing a large amount of



newstest16 (OOD) TED 2013 (ID)

TED 2014 (ID)

WMT (OOD) + IWSLT (ID) 33.7 359 30.5
+ continuation (ID) 32.0 36.7 31.7
+ LHUC (ID) 33.7 (30.8) 37.9 33.1
OOD + ID labelled 34.4 36.8 32.7
+ continuation (ID) 31.6 37.8 32.9
+ LHUC (ID) 34.4 (32.4) 38.4 33.6
IWSLT only (ID) 16.7 324 27.5

Table 2: BLEU scores [%] for the Full Training Data condition. “OOD” denotes out-of-domain data, “ID” denotes
in-domain data. For LHUC results, the number in parenthesis shows the result of applying the adapted system to
the out-of-domain data (which would not be applied in practice).

newstest16 (OOD) TED 2013 (ID) TED 2014 (ID)
WMT only (OOD) 33.7 31.7 27.3
+ continuation (ID) 30.1 36.8 322
+ LHUC (ID) 33.7 29.7) 37.7 32.8
IWSLT only (ID) 16.7 324 27.5

Table 3: BLEU scores [%] for the Growing Training Data condition.

adapted systems.

As for training time, in most experiments the
best parameters for LHUC were already achieved
in the first checkpoints. On a K80 GPU the best
parameter can be found in under one hour for our
datasets (continuation needs close to 2h).

7 Conclusions

We have shown how to effectively apply LHUC, a
technique first proposed for speaker adaptation in
speech recognition, for adapting neural machine
translation systems. LHUC achieves good results
compared to other domain adaptation methods and
due to its low memory footprint and efficient train-
ing time can be realistically applied for on-demand
adaptation of big systems. In addition it does
not suffer the catastrophic forgetting effect, as the
LHUC component can be activated or deactivated
as needed.
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