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Abstract

We combine two of the most popular ap-
proaches to automated Grammatical Er-
ror Correction (GEC): GEC based on Sta-
tistical Machine Translation (SMT) and
GEC based on Neural Machine Translation
(NMT). The hybrid system achieves new
state-of-the-art results on the CoNLL-2014
and JFLEG benchmarks. This GEC system
preserves the accuracy of SMT output and,
at the same time, generates more fluent sen-
tences as it typical for NMT. Our analysis
shows that the created systems are closer
to reaching human-level performance than
any other GEC system reported so far.

1 Introduction

Currently, the most effective GEC systems are
based on phrase-based statistical machine trans-
lation (Rozovskaya and Roth, 2016; Junczys-
Dowmunt and Grundkiewicz, 2016; Chollampatt
and Ng, 2017). Systems that rely on neural ma-
chine translation (Yuan and Briscoe, 2016; Xie
et al., 2016; Schmaltz et al., 2017; Ji et al., 2017)
are not yet able to achieve as high performance
as SMT systems according to automatic evalua-
tion metrics (see Table 1 for comparison on the
CoNLL-2014 test set). However, it has been shown
that the neural approach can produce more fluent
output, which might be desirable by human eval-
uators (Napoles et al., 2017). In this work, we
combine both MT flavors within a hybrid GEC sys-
tem. Such a GEC system preserves the accuracy of
SMT output and at the same time generates more
fluent sentences achieving new state-of-the-art re-
sults on two different benchmarks: the annotation-
based CoNLL-2014 and the fluency-based JFLEG
benchmark. Moreover, comparison with human
gold standards shows that the created systems are
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Figure 1: Comparison of SMT, NMT and hybrid GEC
systems on the CONLL-2014 test set (M?).

closer to reaching human-level performance than
any other GEC system described in the literature
so far.

Using consistent training data and preprocess-
ing (§ 2), we first create strong SMT (§ 3) and
NMT (§ 4) baseline systems. Then, we experiment
with system combinations through pipelining and
reranking (§ 5). Finally, we compare the perfor-
mance with human annotations and identify issues
with current state-of-the-art systems (§ 6).

2 Data and preprocessing

Our main training data is NUCLE (Dahlmeier et al.,
2013). English sentences from the publicly avail-
able Lang-8 Corpora (Mizumoto et al., 2012) serve
as additional training data.

We use official test sets from two CoNLL shared
tasks from 2013 and 2014 (Ng et al., 2013, 2014)
as development and test data, and evaluate using
M? (Dahlmeier and Ng, 2012). We also report
results on JFLEG (Napoles et al., 2017) with the
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Corpus Sentences Tokens
NUCLE 57,151 1,162K
Lang-8 NAIST 1,943,901 25,026K
CoNLL-2013 (dev) 1,381 29K
CoNLL-2014 (test) 1,312 30K
JFLEG Dev 754 14K
JFLEG Test 747 13K

Table 1: Statistics for training and testing data sets.

GLEU metric (Napoles et al., 2015). The data set
is provided with a development and test set split.
All data sets are listed in Table 1.

We preprocess Lang-8 with the NLTK tokenizer
(Bird and Loper, 2004) and preserve the original
tokenization in NUCLE and JFLEG. Sentences are
truecased with scripts from Moses (Koehn et al.,
2007). For dealing with out-of-vocabulary words,
we split tokens into 50k subword units using Byte
Pair Encoding (BPE) by Sennrich et al. (2016b).
BPE codes are extracted only from correct sen-
tences from Lang-8 and NUCLE.

3 SMT systems

For our SMT-based systems, we follow recipes
proposed by Junczys-Dowmunt and Grundkiewicz
(2016), and use a phrase-based SMT system with
a log-linear combination of task-specific features.
We use word-level Levenshtein distance and edit
operation counts as dense features (Dense), and cor-
rection patterns on words with one word left/right
context on Word Classes (WC) as sparse features
(Sparse). We also experiment with additional
character-level dense features (Char. ops). All
systems use a 5-gram Language Model (LM) and
OSM (Durrani et al., 2011) both estimated from
the target side of the training data, and a 5-gram
LM and 9-gram WCLM trained on Common Crawl
data (Buck et al., 2014).

Experiment settings Translation models are
trained with Moses (Koehn et al., 2007), word-
alignment models are produced with MGIZA++
(Gao and Vogel, 2008), and no reordering models
are used. Language models are built using KenLM
(Heafield, 2011), while word classes are trained
with word2vec!.

We tune the systems separately for M? and
GLEU metrics. MERT (Och, 2003) is used for
tuning dense features and Batch Mira (Cherry and
Foster, 2012) for sparse features. For M? tunning

'"https://github.com/dav/word2vec
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CoNLL JFLEG

System P R M? GLEU
SMT Dense 56.91 30.25 48.38 54.68
+ Sparse 60.28 29.40 49.82 5525
+Char. ops  60.27 30.21 50.27 55.79

Table 2: Results for SMT baseline systems on the
CoNLL-2014 (M?) and JFLEG Test (GLEU) sets.

we follow the 4-fold cross-validation on NUCLE
with adapted error rate recommended by Junczys-
Dowmunt and Grundkiewicz (2016). Models evalu-
ated on GLEU are optimized on JFLEG Dev using
the GLEU scorer, which we added to Moses. We
report results for models using feature weights av-
eraged over 4 tuning runs.

Results Other things being equal, using the orig-
inal tokenization, applying subword units, and
extending edit-based features result in a similar
system to Junczys-Dowmunt and Grundkiewicz
(2016): 49.82 vs 49.49 M? (Table 2).

The phrase-based SMT systems do not deal well
with orthographic errors (Napoles et al., 2017) —
if a source word has not been seen in the train-
ing corpus, it is likely copied as a target word.
Subword units can help to solve this problem par-
tially. Adding features based on character-level edit
counts increases the results on both test sets.

A result of 55.79 GLEU on JFLEG Test is al-
ready 2 points better than the GLEU-tuned NMT
system of Sakaguchi et al. (2017) and only 1 point
worse than the best reported result by Chollampatt
and Ng (2017) with their M?-tuned SMT system,
even though no additional spelling correction has
been used at this point. We experiment with spe-
cialized spell-checking methods in later sections.

4 NMT systems

The model architecture we choose for our NMT-
based systems is an attentional encoder-decoder
model with a bidirectional single-layer encoder and
decoder, both using GRUs as their RNN variants
(Sennrich et al., 2017). A similar architecture has
been already tested for the GEC task by Sakaguchi
et al. (2017), but we use different hyperparameters.

To improve the performance of our NMT models,
similarly to Xie et al. (2016) and Ji et al. (2017), we
combine them with an additional large-scale lan-
guage model. In contrast to previous studies, which
use an n-gram probabilistic LM, we build a 2-layer
Recurrent Neural Network Language Model (RNN



CoNLL JFLEG
System P R M? GLEU
NMT 66.61 17.58 4276 50.08
NMT + RNN-LM 61.05 26.71 48.56 56.04
NMT x4 71.10 1542 4129 50.30
NMTx4 + RNN-LM  60.27 30.08 50.19 56.74

Table 3: Results for NMT systems on the CoNLL-2014
(M?) and JFLEG Test (GLEU) sets.

LM) with GRU cells which we train again on En-
glish Common Crawl data (Buck et al., 2014).

Experimental settings We train with the Marian
toolkit (Junczys-Dowmunt et al., 2018) on the same
data we used for the SMT baselines, i.e. NUCLE
and Lang-8. The RNN hidden state size is set to
1024, embedding size to 512. Source and target
vocabularies as well as subword units are the same.

Optimization is performed with Adam (Kingma
and Ba, 2014) and the mini-batch size fitted into
4GB of GPU memory. We regularize the model
with scaling dropout (Gal and Ghahramani, 2016)
with a dropout probability of 0.2 on all RNN in-
puts and states. Apart from that we dropout entire
source and target words with probabilities of 0.2
and 0.1 respectively. We use early stopping with a
patience of 10 based on the cross-entropy cost on
the CoNLL-2013 test set. Models are validated and
saved every 10,000 mini-batches. As final mod-
els we choose the one with the best performance
on the development set among the last ten model
check-points based on the M? or GLEU metrics.

Size of RNN hidden state and embeddings, target
vocabulary, and optimization options for the RNN
LM are identical to those used for our NMT models.
Decoding is done by beam search with a beam size
of 12. We normalize scores for each hypothesis by
sentence length.

Results A single NMT model achieves lower per-
formance than the SMT baselines (Table 3). How-
ever, the M2 score of 42.76 for CoNLL-2014 is
already higher than the best published result of
41.53 M? for a strictly neural GEC system of Ji
et al. (2017) that has not been enhanced by an addi-
tional language model.

Our RNN LM is integrated with NMT models
through ensemble decoding (Sennrich et al., 2016a).
Similarly to Ji et al. (2017), we choose the weight
of the language model using grid search on the
development set?>. This strongly improves recall,

2Used weights are 0.2 and 0.25 for M? and GLEU evalua-
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Figure 2: Contribution of a language model (LM) for
SMT and NMT GEC systems.

and thus boosts the results significantly on both test
sets (+5.8 M? and +5.96 GLEU).

An ensemble of four independently trained mod-
els’ (NMT x4), on the other hand, increases preci-
sion at the expense of recall, which may even lead
to a performance drop. Adding the RNN LM to that
ensemble balances this negative effect, resulting in
50.19 M2. These are by far the highest results re-
ported on both benchmarks for pure neural GEC

systems.

Comparison to SMT systems

With model en-

sembling, the neural systems achieve performance
similar to SMT baselines (Figure 2). A stripped-
down SMT system without CCLM, quite surpris-
ingly gives better results on JFLEG than the NMT
system, and the opposite is true for CoNLL-2014.
The reason for the lower performance on JFLEG
might be a large amount of spelling errors, which
are more efficiently corrected by the SMT system
using subword units.
If both systems are enhanced by a large-scale
language model, the neural system outperforms
the SMT system on JFLEG and it is competitive
with SMT systems on CoNLL-2014. However, it
is not known if the results would preserve if the
NMT model is combined with a probabilistic n-
gram LM instead as it has been proposed in the
previous works (Xie et al., 2016; Ji et al., 2017).

tion, respectively.

3Each model is weighted equally during decoding.
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CoNLL JFLEG

System P R M?  GLEU
Best SMT 60.27 30.21 50.27 55.79
— Pip. NMT 60.25 34.80 52.56 57.21
— Pip. NMT+LM 58.87 39.23 53.51 58.83
+Res. RNN-LM 70.97 24.86 51.77 56.97
+Res. NMT 70.40 26.69 53.03 57.21
+Res. NMT+LM 71.40 28.60 54.95 57.53
— Pip. NMT+LM 65.73 33.36 55.05 58.83
+ Spell SMT 70.80 30.57 56.05 60.09
— Pip. NMT+LM  66.77 34.49 56.25 61.50

Table 4: Results for hybrid SMT-NMT systems on the
CoNLL-2014 (M?) and JFLEG Test (GLEU) sets.

S Hybrid SMT-NMT systems

We experiment with pipelining and rescoring meth-
ods in order to combine our best SMT and NMT
GEC systems®.

SMT-NMT pipelines The output corrected by
an SMT system is passed as an input to the NMT en-
semble with or without RNN LM?>. In this case the
NMT system serves as an automatic post-editing
system. Pipelining improves the results on both
test sets by increasing recall (Table 4). As the per-
formance of the NMT system without a RNN LM
is much lower than the performance of the SMT
system alone, this implies that both approaches
produce complementary corrections.

Rescoring with NMT Rescoring of an n-best list
obtained from one system by another is a com-
monly used technique in GEC, which allows to
combine multiple different systems or even differ-
ent approaches (Hoang et al., 2016; Yannakoudakis
et al., 2017; Chollampatt and Ng, 2017; Ji et al.,
2017). In our experiments, we generate a 1000
n-best list with the SMT system and add separate
scores from each neural component. Scores of
NMT models and the RNN LM are added in the
form of probabilities in negative log space. The
re-scored weights are obtained from a single run
of the Batch Mira algorithm (Cherry and Foster,
2012) on the development set.

As opposed to pipelining, rescoring improves
precision at the expense of recall and is more ef-
fective for the CoNLL data resulting in up to 54.95
M2. On JFLEG, rescoring only with the RNN LM

“The best system combinations are chosen again based on
the development sets, i.e. CONLL-2013 and JFLEG Dev. We
omit these results as they are highly overestimated.

SWe did not observed any improvements if the order of the
systems is reversed.
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CoNLL-10 JFLEG
System P R M?  GLEU
Human Avg. 73.17 68.75 72.15 62.38
Ch&Ng’17 79.46 4373 6829 56.78
Ratio (%) 1.08 0.64 94.66 91.02
This work 83.15 4697 72.04 6150
Ratio (%) 1.14 0.68 99.85 98.59
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Figure 3: Comparison with human annotators. The fig-
ure presents average M2 and GLEU scores with stan-
dard deviations.

produces similar results as rescoring with the NMT
ensemble. However, the best result for rescoring is
lower than for pipelining on that test set. It seems
the SMT system is not able to produce as diversi-
fied corrections in an n-best list as those generated
by the NMT ensemble.

Spelling correction and final results Pipelining
the NMT-rescored SMT system and the NMT sys-
tem leads to further improvement. We believe this
can be explained by different contributions to pre-
cision and recall trade-offs for the two methods,
similar to effects observed for the combination of
the NMT ensemble and our RNN LM.

On top of our final hybrid system we add a spell-
checking component, which is run before pipelin-
ing. We use a character-level SMT system follow-
ing Chollampatt and Ng (2017) which they deploy
for unknown words in their word-based SMT sys-
tem. As our BPE-based SMT does not really suffer
from unknown words, we run the spell-checking
component on words that would have been seg-
mented by the BPE algorithm. This last system
achieves the best results reported in this paper:
56.25 M? on CoNLL-2014 and 61.50 GLEU on
JFLEG Test.



System Example

Source
Best SMT
Best NMT
Pipeline
Rescoring

+ Pipeline

but now every thing is change , the life becom more dificullty .

But now everything is changed , the life becom more dificullty .
But now everything is changing , the life becomes more difficult .
But now everything is changed , the life becomes more difficult .
But now everything has changed , the life becom more dificullty .
But now everything has changed , the life becomes more difficult .

Reference 1
Reference 2
Reference 3
Reference 4

Now everything has changed , and life becomes more difficult .
Everything has changed now and life has become more difficult .
But now that everything changes , life becomes more difficult .
But now that everything is changing , life becomes more difficult .

Table 5: System outputs for the example source sentence from the JFLEG Test set.

6 Analysis and future work

For both benchmarks our systems are close to au-
tomatic evaluation results that have been claimed
to correspond to human-level performance on the
CoNLL-2014 test set and on JFLEG Test.

Example outputs Table 5 shows system outputs
for an example source sentence from the JFLEG
Test corpus that illustrate the complementarity of
the statistical and neural approaches. The SMT
and NMT systems produce different corrections.
Rescoring is able to generate a unique correction
(is change—has changed), but it fails in generating
some corrections from the neural system, e.g. mis-
spellings (becom and dificullty). Pipelining, on the
other hand, may not improve a local correction
made by the SMT system (is changed). The combi-
nation of the two methods produces output, which
is most similar to the references.

Comparison with human annotations Bryant
and Ng (2015) created an extension of the CoNLL-
2014 test set with 10 annotators in total, JFLEG
already incorporates corrections from 4 annotators.
Human-level results for M? and GLEU were cal-
culated by averaging the scores for each annotator
with regard to the remaining 9 (CoNLL) or 3 (JF-
LEG) annotators, respectively.

Figure 3 contains human level scores, our results,
and previously best reported results by Chollampatt
and Ng (2017). Our best system reaches nearly
100% of the average human score according to M?
and nearly 99% for GLEU being much closer to
that bound than previous works®.

During the camera-ready preparation, Chollampatt and
Ng (2018) have published a GEC system based on a multi-
layer convolutional encoder-decoder neural network with a
character-based spell-checking module improving the previ-
ous best result to 54.79 M? on CoNLL-2014 and 57.47 GLEU
on JFLEG Test.
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Further inspection reveals, however, that the pre-
cision/recall trade-off for the automatic system in-
dicates lower coverage compared to human cor-
rections — lower recall is compensated with high
precision’. Automatic systems might, for example,
miss some obvious error corrections and therefore
easily be distinguishable from human references.
Future work would require a human evaluation ef-
fort to draw more conclusions.
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