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Abstract

We present a simple extension of the GloVe
representation learning model that begins with
general-purpose representations and updates
them based on data from a specialized domain.
We show that the resulting representations can
lead to faster learning and better results on a
variety of tasks.

1 Introduction

Many NLP tasks have benefitted from the pub-
lic availability of general-purpose vector repre-
sentations of words trained on enormous datasets,
such as those released by the GloVe (Pennington
et al., 2014) and fastText (Bojanowski et al., 2016)
teams. These representations, when used as model
inputs, have been shown to lead to faster learning
and better results in a wide variety of settings (Er-
han et al., 2009, 2010; Cases et al., 2017).

However, many domains require more special-
ized representations but lack sufficient data to train
them from scratch. We address this problem with
a simple extension of the GloVe model (Penning-
ton et al., 2014) that synthesizes general-purpose
representations with specialized data sets. The
guiding idea comes from the retrofitting work of
Faruqui et al. (2015), which updates a space of ex-
isting representations with new information from
a knowledge graph while also staying faithful to
the original space (see also Yu and Dredze 2014;
Mrkšić et al. 2016; Pilehvar and Collier 2016). We
show that the GloVe objective is amenable to a
similar retrofitting extension. We call the resulting
model ‘Mittens’, evoking the idea that it is ‘GloVe
with a warm start’ or a ‘warmer GloVe’.

Our hypothesis is that Mittens representations
synthesize the specialized data and the general-
purpose pretrained representations in a way that
gives us the best of both. To test this, we con-
ducted a diverse set of experiments. In the first, we

learn GloVe and Mittens representations on IMDB
movie reviews and test them on separate IMDB re-
views using simple classifiers. In the second, we
learn our representations from clinical text and ap-
ply them to a sequence labeling task using recur-
rent neural networks, and to edge detection using
simple classifiers. These experiments support our
hypothesis about Mittens representations and help
identify where they are most useful.

2 Mittens

This section defines the Mittens objective. We first
vectorize GloVe to help reveal why it can be ex-
tended into a retrofitting model.

2.1 Vectorizing GloVe
For a word i from vocabulary V occurring in
the context of word j, GloVe learns representa-
tionswi and w̃j whose inner product approximates
the logarithm of the probability of the words’ co-
occurrence. Bias terms bi and b̃j absorb the over-
all occurrences of i and j. A weighting function f
is applied to emphasize word pairs that occur fre-
quently and reduce the impact of noisy, low fre-
quency pairs. This results in the objective

J =
V∑

i,j=1

f (Xij)
(
w>
i w̃j + bi + b̃j − logXij

)2

where Xij is the co-occurrence of i and j. Since
logXij is only defined for Xij > 0, the sum ex-
cludes zero-count word pairs. As a result, exist-
ing implementations of GloVe use an inner loop to
compute this cost and associated derivatives.

However, since f(0) = 0, the second bracket
is irrelevant whenever Xij = 0, and so replacing
logXij with

g(Xij) =

{
k, for Xij = 0

log(Xij), otherwise
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Vocabulary size
CPU GPU

Implementation 5K 10K 20K 5K 10K 20K

Non-vectorized TensorFlow 14.02 63.80 252.65 13.56 55.51 226.41
Vectorized Numpy 1.48 7.35 50.03 − − −
Vectorized TensorFlow 1.19 5.00 28.69 0.27 0.95 3.68
Official GloVe (in C) 0.66 1.24 3.50 − − −

Table 1: Speed comparisons. The values are seconds per iteration, averaged over 10 iterations each on 5 simulated
corpora that produced count matrices with about 10% non-zero cells. Only the training step for each model is
timed. The CPU experiments were done on a machine with a 3.1 GHz Intel Core i7 chip and 16 GB of memory,
and the GPU experiments were done on machine with a 16 GB NVIDIA Tesla V100 GPU and 61 GB of memory.
Dashes mark tests that aren’t applicable because the implementation doesn’t perform GPU computations.

(for any k) does not affect the objective and reveals
that the cost function can be readily vectorized as

J = f(X)M>M

where M = W>W̃ + b1> + 1b̃> − g(X). W

and W̃ are matrices whose columns comprise the
word and context embedding vectors, and g is ap-
plied elementwise. Because f(Xij) is a factor of
all terms of the derivatives, the gradients are iden-
tical to the original GloVe implementation too.

To assess the practical value of vectorizing
GloVe, we implemented the model1 in pure
Python/Numpy (van der Walt et al., 2011) and in
TensorFlow (Abadi et al., 2015), and we compared
these implementations to a non-vectorized Tensor-
Flow implementation and to the official GloVe C
implementation (Pennington et al., 2014).2 The
results of these tests are in tab. 1. Though the C
implementation is the fastest (and scales to mas-
sive vocabularies), our vectorized TensorFlow im-
plementation is a strong second-place finisher, es-
pecially where GPU computations are possible.

2.2 The Mittens Objective Function

This vectorized implementation makes it apparent
that we can extend GloVe into a retrofitting model
by adding a term to the objective that penalizes the
squared euclidean distance from the learned em-
bedding ŵi = wi + w̃i to an existing one, ri:

JMittens = J + µ
∑

i∈R
‖ŵi − ri‖2.

1
https://github.com/roamanalytics/mittens

2We also considered a non-vectorized Numpy implemen-
tation, but it was too slow to be included in our tests (a single
iteration with a 5K vocabulary took 2 hrs 38 mins).

Here, R contains the subset of words in the new
vocabulary for which prior embeddings are avail-
able (i.e., R = V ∩ V ′ where V ′ is the vocabulary
used to generate the prior embeddings), and µ is a
non-negative real-valued weight. When µ = 0 or
R is empty (i.e., there is no original embedding),
the objective reduces to GloVe’s.

As in retrofitting, this objective encodes two op-
posing pressures: the GloVe objective (left term),
which favors changing representations, and the
distance measure (right term), which favors re-
maining true to the original inputs. We can control
this trade off by decreasing or increasing µ.

In our experiments, we always begin with
50-dimensional ‘Wikipedia 2014 + Gigaword 5’
GloVe representations3 – henceforth ‘External
GloVe’ – but the model is compatible with any
kind of “warm start”.

2.3 Notes on Mittens Representations

GloVe’s objective is that the log probability of
words i and j co-occurring be proportional to the
dot product of their learned vectors. One might
worry that Mittens distorts this, thereby diminish-
ing the effectiveness of GloVe. To assess this, we
simulated 500-dimensional square count matrices
and original embeddings for 50% of the words.
Then we ran Mittens with a range of values of µ.
The results for five trials are summarized in fig. 1:
for reasonable values of µ, the desired correlation
remains high (fig. 1a), even as vectors with initial
embeddings stay close to those inputs, as desired
(fig. 1b).

3
http://nlp.stanford.edu/data/glove.6B.zip
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(a) Correlations between the dot product of pairs of learned
vectors and their log probabilities.
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(b) Distances between initial and learned embeddings, for
words with and without pretrained initializations. As µ gets
larger, the pressure to stay close to the original increases.

Figure 1: Simulations assessing Mittens’ faithfulness
to the original GloVe objective and to its input embed-
dings. µ = 0 is regular GloVe.

3 Sentiment Experiments

For our sentiment experiments, we train our repre-
sentations on the unlabeled part of the IMDB re-
view dataset released by Maas et al. (2011). This
simulates a common use-case: Mittens should
enable us to achieve specialized representations
for these reviews while benefiting from the large
datasets used to train External GloVe.

3.1 Word Representations

All our representations begin from a common
count matrix obtained by tokenizing the unlabeled
movie reviews in a way that splits out punctua-
tion, downcases words unless they are written in
all uppercase, and preserves emoticons and other
common social media mark-up. We say word i
co-occurs with word j if i is within 10 words to

Representations Accuracy 95% CI

Random 62.00 [61.28, 62.53]
External GloVe 72.19 −
IMDB GloVE 76.38 [75.76, 76.72]
Mittens 77.39 [77.23, 77.50]

Table 2: IMDB test-set classification results. A differ-
ence of 1% corresponds to 250 examples. For all but
‘External GloVE’, we report means (with bootstrapped
confidence intervals) over five runs of creating the em-
beddings and cross-validating the classifier’s hyperpa-
rameters, mainly to help verify that the differences do
not derive from variation in the representation learning
phase.

the left or right of j, with the counts weighted by
1/d where d is the distance in words from j. Only
words with at least 300 tokens are included in the
matrix, yielding a vocabulary of 3,133 words.

For regular GloVe representations derived from
the IMDB data – ‘IMDB GloVE’ – we train
50-dimensional representations and use the de-
fault parameters from Pennington et al. 2014:
α = 0.75, xmax = 100, and a learning rate of
0.05. We optimize with AdaGrad (Duchi et al.,
2011), also as in the original paper, training for
50K epochs.

For Mittens, we begin with External GloVe.
The few words in the IMDB vocabulary that are
not in this GloVe vocabulary receive random ini-
tializations with a standard deviation that matches
that of the GloVe representations. Informed by our
simulations, we train representations with the Mit-
tens weight µ = 0.1. The GloVe hyperparameters
and optimization settings are as above. Extend-
ing the correlation analysis of fig. 1a to these real
examples, we find that the GloVe representations
generally have Pearson’s ρ ≈ 0.37, Mittens ρ ≈
0.47. We speculate that the improved correlation
is due to the low-variance external GloVe embed-
ding smoothing out noise from our co-occurrence
matrix.

3.2 IMDB Sentiment Classification

The labeled part of the IMDB sentiment dataset
defines a positive/negative classification problem
with 25K labeled reviews for training and 25K for
testing. We represent each review by the element-
wise sum of the representation of each word in
the review, and train a random forest model (Ho,
1995; Breiman, 2001) on these representations.

214



1. No/O eye/R pain/R or/O eye/R discharge/R ./O
2. Asymptomatic/D bacteriuria/D ,/O could/O be/O neurogenic/C bladder/C disorder/C ./O
3. Small/C embolism/C in/C either/C lung/C cannot/O be/O excluded/O ./O

(a) Short disease diagnosis labeled examples. ‘O’: ‘Other’; ‘D’: ‘Positive Diagnosis’; ‘C’: ‘Concern’; ‘R’: ‘Ruled Out’.

Table 3: Disease diagnosis examples.
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Figure 2: Disease diagnosis test-set accuracy as a function of training epoch, with bootstrapped confidence inter-
vals. Mitten learns fastest for all categories.

The rationale behind this experimental set-up is
that it fairly directly evaluates the vectors them-
selves; whereas the neural networks we evaluate
next can update the representations, this model re-
lies heavily on their initial values.

Via cross-validation on the training data, we op-
timize the number of trees, the number of features
at each split, and the maximum depth of each tree.
To help factor out variation in the representation
learning step (Reimers and Gurevych, 2017), we
report the average accuracies over five separate
complete experimental runs.

Our results are given in tab. 2. Mittens outper-
forms External GloVe and IMDB GloVe, indicat-
ing that it effectively combines complementary in-
formation from both.

4 Clinical Text Experiments

Our clinical text experiments begin with 100K
clinical notes (transcriptions of the reports health-
care providers create summarizing their interac-
tions with patients during appointments) from

Real Health Data.4 These notes are divided into
informal segments that loosely follow the ‘SOAP’
convention for such reporting (Subjective, Objec-
tive, Assessment, Plan). The sample has 1.3 mil-
lion such segments, and these segments provide
our notion of ‘document’.

4.1 Word Representations
The count matrix is created from the clinical text
using the specifications described in sec. 3.1, but
with the count threshold set to 500 to speed up
optimization. The final matrix has a 6,519-word
vocabulary. We train Mittens and GloVe as in
sec. 3.1. The correlations in the sense of fig. 1a
are ρ ≈ 0.51 for both GloVe and Mittens.

4.2 Disease Diagnosis Sequence Modeling
Here we use a recurrent neural network (RNN) to
evaluate our representations. We sampled 3,206
sentences from clinical texts (disjoint from the
data used to learn word representations) contain-
ing disease mentions, and labeled these mentions
as ‘Positive diagnosis’, ‘Concern’, ‘Ruled Out’, or

4
http://www.realhealthdata.com
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Subgraph Nodes Edges

disorder 72, 551 408, 411
procedure 53, 616 264, 000
finding 35, 544 76, 563
organism 33, 721 41, 090
substance 26, 207 46, 333

(a) Subgraph sizes.

Representations disorder procedure finding organism substance

Random 56.05 55.97 75.14 68.15 64.72
External GloVe 69.31 65.89 80 .72 74.12 77.58
Clinical text GloVe 66.19 64.96 79.18 73.42 73.37
Mittens 67.59 66.59 80.74 74.53 76.51

(b) Mean macro-F1 by subgraph (averages from 10 random train/test splits). Italics mark
systems for which p ≥ 0.05 in a comparison with the top system numerically, according
to a Wilcoxon signed-rank test.

Table 4: SNOMED subgraphs and results. For the ‘disorder’ graph (the largest), a difference of 0.1% corresponds
to 408 examples. For the ‘substance’ graph (the smallest), it corresponds to 46 examples.

‘Other’. Tab. 3a provides some examples. We
treat this as a sequence labeling problem, using
‘Other’ for all unlabeled tokens. Our RNN has
a single 50-dimensional hidden layer with LSTM
cells (Hochreiter and Schmidhuber, 1997), and the
inputs are updated during training.

Fig. 2 summarizes the results of these exper-
iments based on 10 random train/test with 30%
of the sentences allocated for testing. Since the
inputs can be updated, we expect all the initial-
ization schemes to converge to approximately the
same performance eventually (though this seems
not to be the case in practical terms for Random or
External GloVE). However, Mittens learns fastest
for all categories, reinforcing the notion that Mit-
tens is a sensible default choice to leverage both
domain-specific and large-scale data.

4.3 SNOMED CT edge prediction

Finally, we wished to see if Mittens representa-
tions would generalize beyond the specific dataset
they were trained on. SNOMED CT is a pub-
lic, widely-used graph of healthcare concepts and
their relationships (Spackman et al., 1997). It
contains 327K nodes, classified into 169 semantic
types, and 3.8M edges. Our clinical notes are more
colloquial than SNOMED’s node names and cover
only some of its semantic spaces, but the Mittens
representations should still be useful here.

For our experiments, we chose the five largest
semantic types; tab. 4a lists these subgraphs along
with their sizes. Our task is edge prediction: given
a pair of nodes in a subgraph, the models predict
whether there should be an edge between them.
We sample 50% of the non-existent edges to cre-
ate a balanced problem. Each node is represented
by the sum of the vectors for the words in its pri-
mary name, and the classifier is trained on the con-
catenation of these two node representations. To

help assess whether the input representations truly
generalize to new cases, we ensure that the sets
of nodes seen in training and testing are disjoint
(which entails that the edge sets are disjoint as
well), and we train on just 50% of the nodes. We
report the results of ten random train/test splits.

The large scale of these problems prohibits the
large hyperparameter search described in sec. 3.2,
so we used the best settings from those experi-
ments (500 trees per forest, square root of the total
features at each split, no depth restrictions).

Our results are summarized in tab. 4b. Though
the differences are small numerically, they are
meaningful because of the large size of the graphs
(tab. 4a). Overall, these results suggest that
Mittens is at its best where there is a highly-
specialized dataset for learning representations,
but that it is a safe choice even when seeking to
transfer the representations to a new domain.

5 Conclusion

We introduced a simple retrofitting-like extension
to the original GloVe model and showed that the
resulting representations were effective in a num-
ber of tasks and models, provided a substantial
(unsupervised) dataset in the same domain is avail-
able to tune the representations. The most natural
next step would be to study similar extensions of
other representation-learning models.
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Stéfan van der Walt, S. Chris Colbert, and Gaël Varo-
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