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Abstract

We propose USIM, a semantic measure for
Grammatical Error Correction (GEC) that
measures the semantic faithfulness of the out-
put to the source, thereby complementing
existing reference-less measures (RLMs) for
measuring the output’s grammaticality. USIM
operates by comparing the semantic sym-
bolic structure of the source and the correc-
tion, without relying on manually-curated ref-
erences. Our experiments establish the validity
of USIM, by showing that (1) semantic anno-
tation can be consistently applied to ungram-
matical text; (2) valid corrections obtain a high
USIM similarity score to the source; and (3)
invalid corrections obtain a lower score.1

1 Introduction

Evaluation in Monolingual Translation, and particu-
larly in Grammatical Error Correction (GEC) is a chal-
lenging research field, much due to the difficulty in
integrating different types of rewriting operations into
a single measure, and the vast number of valid out-
puts (Tetreault and Chodorow, 2008; Madnani et al.,
2011; Chodorow et al., 2012; Bryant and Ng, 2015).
These difficulties have recently motivated a number of
proposals for new, improved reference-based measures
(RBMs) (Dahlmeier and Ng, 2012; Felice and Briscoe,
2015; Napoles et al., 2015).

Nevertheless, the size and heterogeneity of the space
of valid outputs per sentence often prohibits obtaining
a reference set that covers this space well, thereby lim-
iting the applicability of RBMs (Bryant and Ng, 2015).
To address this we propose a semantic RLM, USIM,
that operates by measuring the graph distance between
the semantic representations of the source and the out-
put. Reliable RLMs are appealing both in not relying
on references, which are costly to collect, and in avoid-
ing the biases incurred by selecting references that nec-
essarily cannot exhaust the vast space of valid correc-
tions.

1Our code is available in https://github.com/
borgr/USim.

Our proposal complements the RLM proposed by
Napoles et al. (2016), which uses grammatical error de-
tection techniques to assess the grammaticality of the
output, and the work of Asano et al. (2017), who advo-
cate the use of RLMs for fluency, grammaticality and
meaning preservation, but state that a meaning preser-
vation measure for GEC is currently lacking. A similar
decomposition of output quality to its adequacy (simi-
lar to faithfulness) and fluency (related to grammatical-
ity), has been used in machine translation (MT) evalu-
ation (e.g., Banchs et al., 2015).

As a test case, we use the UCCA semantic scheme
(Abend and Rappoport, 2013), motivated by its recent
use in semantic evaluation of MT (Birch et al., 2016)
and text simplification (Sulem et al., 2018) systems.
Nevertheless, USIM can be easily adapted to other se-
mantic schemes, such as AMR (Banarescu et al., 2013).
USIM is conceptually related to RLMs developed for
MT (Reeder, 2006; Albrecht and Hwa, 2007; Specia
et al., 2009, 2010). Notably, XMEANT (Lo et al.,
2014) compares the source to the output in terms of
their semantic role labeling structures. Our use of
UCCA is motivated by its wider coverage of predicate
types, as opposed to MEANT’s focus on verbal pred-
icates, and UCCA’s preservation of structure across
translations (Sulem et al., 2015). See (Birch et al.,
2016) for further discussion.

We conduct experiments to confirm USIM’s valid-
ity. Specifically, we show that (1) UCCA can be con-
sistently and automatically applied to learner language
(LL) (§4.2), (2) USIM is not prone to unduly penalize
valid corrections (§4.2), and (3) USIM assigns a lower
score to corrections of poor quality (§4.5). Our exper-
iments also indicate that UCCA parsing technology is
already sufficiently mature for an automatic variant of
USIM to provide reliable results (§4.3).

2 Background
LL Annotation. While most linguistic theories pro-
pose that each learner makes consistent use of syntax
(Huebner, 1985; Tarone, 1983), this use may not con-
form to the syntax of the learned language, or of any
other known language. This entails difficulties in defin-
ing syntactic annotation for LL, as the annotated syntax
differs between learners.
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Syntactic schemes for LL annotate syntactically er-
roneous sentences in different ways. Berzak et al.
(2016) and Ragheb and Dickinson (2012) annotate ac-
cording to the syntax used by the learner, even if this
use is not grammatical. Such annotation may be unre-
liable for measuring faithfulness, as GEC systems aim
to alter these erroneous syntactic structures. Nagata
and Sakaguchi (2016) take the opposite approach, and
remain faithful to the syntax intended by the learner.
This has also been the tradition in works on parser ro-
bustness (Bigert et al., 2005; Foster, 2004). However,
such approach is prone to inconsistencies due to the va-
riety of different syntactic structures that can be used to
express a similar meaning.

In this paper, we use semantic annotation to struc-
turally represent LL. Semantic structures are faithful to
the intended meaning, and not to the formal realization,
and thus face fewer conflicts where the syntactic struc-
ture used diverges from the one intended. We are not
aware of any previous attempts to semantically anno-
tate LL text.

The UCCA Scheme. UCCA is a semantic annota-
tion scheme that builds on typological and cognitive
linguistic theories. The scheme’s aims are to provide
a coarse-grained, cross-linguistically applicable repre-
sentation. Importantly, UCCA’s categories directly re-
flect semantic, rather than distributional distinctions.
For instance, UCCA is not sensitive to POS distinc-
tions: a Scene’s main relation can be a verb but also
an adjective (“He is thin”) or a noun (“John’s deci-
sion”). Indeed, Sulem et al. (2015) have found that
UCCA structures are preserved remarkably well across
English-French translations.

UCCA structures are directed acyclic graphs, where
the words correspond to (a subset of) their leaves. The
nodes of the graphs, called units, are either leaves or
several elements jointly viewed as a single entity ac-
cording to some semantic or cognitive consideration.
The edges bear one or more categories, indicating the
role of the sub-unit in the relation that the parent repre-
sents.

UCCA views the text as a collection of Scenes and
relations between them. A Scene describes a move-
ment, an action or a state which is persistent in time.
Every Scene contains one main relation, zero or more
Participants, interpreted in a broad sense to include lo-
cations, destinations and complement clauses, and Ad-
verbials, such as manner or aspectual modifiers.

3 Semantic Faithfulness Measures

We start by defining a simplified measure, used for
inter-annotator agreement (IAA). The measure com-
pares two UCCA annotations over the same set of to-
kens. We then proceed to define USIM, which com-
pares two UCCA structures over alignable but different
sets of tokens.

johnfor

R,Empty C,3

applean

E,5 C,6

gveHe

A,1
P,2

A,4 A,3

applean
E,5 C,6

JohngaveHe

A,1

P,2

A,3
A,4

P process
A participant
H linked scene
R relator
C center
E elaborator

Figure 1: UCCA structures of a learner language
(top) and correction (bottom) including word align-
ments (dashed). On the edges are labels and numbers
aligned to (top) or indexes (bottom). Precision is 7

9 Re-
call is 7

7 .

IAA Measure. We define a similarity measure over
UCCA annotations G1 and G2 that share their set of
leaves (tokens) W . For a node v in G1 or G2, define
its yield yield(v) ⊆ W as its set of leaf descendants.
Define a pair of edges (v1, u1) ∈ G1 and (v2, u2) ∈ G2

to be matching if yield(u1) = yield(u2) and they have
the same label. Labeled precision and recall are defined
by dividing the number of matching edges in G1 and
G2 by |E1| and |E2| respectively. DAG F -score is their
harmonic mean. The measure collapses to the common
parsing F -score if G1, G2 are trees.

The USIM Measure. Computing a faithfulness mea-
sure is slightly more involved, as the source sentence
graph Gs and its correction Gc do not share the same
set of leaves. We assume a (possibly partial, possi-
bly many-to-1) alignment between Gs and Gc, A ⊂
Vs × Vc.

An edge (v1, v2) ∈ Ec is said to match an edge
(u1, u2) ∈ Es if they have the same label and
(v2, u2) ∈ A. Recall (Precision) is defined as the ra-
tio of edges in Es (Ec) that have a match in Ec (Es)
respectively, and F -score is their harmonic mean. We
note that this measure collapses to the DAG F -score if
A includes all pairs of nodes in Es and Ec that have the
same yield. See Figure 1.

In order to define the alignment between Vs and Vc,
we begin by aligning the leaves (tokens) in Vs and
Vc. Alignment is cast as a weighted bipartite graph
matching problem. Edge weights are assigned to be
the edit distances between the tokens. We note that
aligning words in GEC (and other monolingual trans-
lation tasks) is much simpler than in MT, as most
of the words are unchanged, deleted fully, added, or
changed slightly. Denote the resulting leaf alignment
with Al ⊂ Leavess×Leavesc. We extend Al to define
the node alignment A, aligning each non-leaf v ∈ Vs

to the node u ∈ Vc that maximizes

w (v, u) =
|Al ∩ (yield (u)× yield (v)) |

|yield (u) | .

We exclude from A zero-weighted pairs. USIM is de-
fined to be the F -score resulting from A. As the align-
ment may differ when aligning nodes from Vc to Vs
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and the other way around, we report USIM in both di-
rections.

USIM is somewhat more relaxed than DAG F -score,
as, unlike DAG F -score, it also aligns nodes whose
yields are not in perfect alignment with one another.
This relaxation is necessary, given that corrections of-
ten add or remove nodes, thus eliminating the possibil-
ity of a perfect alignment. In order to obtain compara-
ble IAA scores, we report IAA using USIM as well.

For completeness, we replicate the protocol used by
Sulem et al. (2015) for comparing the UCCA anno-
tations of standard English-French translations, which
we call Distributional Similarity (DISTSIM). For a
given UCCA label l, ci(l) is the number of l-labeled
UCCA edges in the i-th source sentence, and di(l) is
the number of l-labeled UCCA edges in its correspond-
ing correction. We define DISTSIM(l) between these
sentences to be 1

N

∑N
i=1 |ci(l)− di(l)|, where N is the

total number of sentence pairs.

4 Experiments
We conduct four types of experiments to validate
USIM, showing that: (1) semantic annotation can
be consistently applied to LL through inter-annotator
agreement (IAA) experiments; (2) a valid corrector
scores high on USIM; (3) an automatic UCCA parser
can reliably replace human annotation for USIM; (4)
USIM is sensitive to changes in meaning.

4.1 Experimental Setup.
We train two UCCA annotators, the first author and
a paid in-house annotator by annotating both LL and
standard English passages, until a high enough agree-
ment is reached (6 training hours). Training passages
are excluded from the evaluation. We use UCCA’s an-
notation guidelines2 without any adaptations.

We experiment on 7 essays and their corrections,
each comprising about 500 tokens (see supplementary
material 1). In order to measure IAA, we assigned 4 of
these essays to both annotators. In order to measure the
faithfulness score for a valid correction, we annotate
both the source and the manually corrected versions of
6 essays, 3 of which were annotated by both annotators.

4.2 The Faithfulness of Valid Corrections.
We obtain an IAA DAG F -score of 0.845 (Precision
0.834, Recall 0.857), which is comparable to the IAA
reported for English Wikipedia texts by Abend and
Rappoport (2013). As another point of comparison,
we doubly annotate 3 corrected NUCLE (Dahlmeier
et al., 2013) passages, obtaining a similar IAA. These
results suggest that UCCA annotating LL does not de-
grade IAA: it can be applied as consistently to LL as to
standard English.

Table 1 (left-hand side) presents the USIM scores
obtained by comparing the NUCLE references and the

2http://www.cs.huji.ac.il/~oabend/
ucca.html

USIM DISTSIM
s→r r→s Avg A+D Scene

Different 0.85 0.83 0.84 0.96 0.93
Same 0.92 0.91 0.92 0.97 0.96
IAA 0.85 0.81 0.83 - -

SAR15 - - - 0.95 0.96

Table 1: The faithfulness of valid corrections. The
left-hand side presents USIM, where s→r is the set-
ting where alignment is computed from the source to
the reference, r→s is the other way around, and Avg is
their average. The right-hand side presents DISTSIM
for the UCCA categories Participants and Adverbials
together (A+D), and for Scenes (Scene). Rows indi-
cate whether the same annotator annotated the source
and reference or not. For comparison, the IAA row is
the IAA computed using USIM. Results show that the
valid corrector’s faithfulness is comparable with IAA.
SAR15 are reported by Sulem et al. on English-French
translations; similarity is comparable to ours.

source, or equivalently the score of a valid correction.
To control for differences between the annotators, we
explore both a setting where both sides are annotated
by the same annotator, and a setting where they are an-
notated by different ones. As an upper bound on the
score of a valid corrector (using different annotators),
we also report the USIM IAA on source sentences.

Our results indicate that a valid correction obtains
a score comparable to the IAA, which indicates that
USIM is indeed insensitive to the surface divergence
between a source sentence and its valid corrections.
Finally, we compute the DISTSIM measure between
the source and reference sentences (Table 1, right-hand
side), obtaining similar results to those obtained by
Sulem et al. (2015). It suggests that on a coarse grained
level, UCCA structures are as robust to grammatical er-
ror corrections as they are to translation from English
to French, which was shown to be very robust, specifi-
cally more robust than syntactic representation (Sulem
et al., 2015).

4.3 Automatic USIM.
We experiment with an automatic variant of USIM,
where UCCA structures are parsed automatically. We
use the TUPA parser (Hershcovich et al., 2017) to gen-
erate UCCA structures, instead of the human annota-
tors. Otherwise the setup is as above. TUPA is used
with its biLSTM model, trained on the UCCA English
Wikipedia corpus.

We obtain a USIM score of 0.7 between the parses
of the reference correction and the source, which is
comparable to the parser’s reported performance (0.73
in-domain, 0.68 out-of-domain), despite not perform-
ing any domain adaptation to LL. That is, the UCCA
parses of the source and the correction are roughly as
similar to each other as they are to their gold standard
parse. This supports the hypothesis that semantic pars-
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ing technology is sufficiently mature to be applicable to
USIM. Results also suggest an improvement in parsing
performance may further improve these scores.

4.4 Sensitivity to Error Types

To provide another perspective on automated USIM’s
behaviour, we examined the measure’s sensitivity to
different error types, using MAEGE (Choshen and
Abend, 2018a). For each NUCLE sentence and set of
edits (replacements of sub-strings that contain an er-
ror by corrected ones. Such edit for the example in
fig. 1 might be ”gva”→ ”gave”, with type spelling),
we sample an order in which edits are applied. We se-
lect the source randomly to be one of the resulting sen-
tences. We then compare the difference in USIM before
and after applying each edit, and average these differ-
ences by the applied edit type. We denote the average
difference in USIM due to correction of errors of type
t with ∆t. The hypothesis is that ∆t should be close
to 0 for all t, as edits are manual and are thus assumed
to be faithful. We focus on edit types with high |∆t| to
better understand where USIM fails. See table 2 in the
supplementary material for complete results.

We find that among the 5 most penalized error types
by USIM are “unclear meaning” and corrections of
type “other”, that fit no specific type; these correc-
tions may actually change the meaning of the origi-
nal sentence. In the most penalized and most rewarded
changes we see ”Dangling Modifier“, ”Pronoun Refer-
ence“ and ”Word Tone“ errors, the first usually changes
a word into a more complex structure and the latter two
the opposite. Such changes alter the lower levels of the
UCCA structure (near the leaves); a similarity measure
that focuses on the top of the DAG, or one that performs
a better lexical semantic abstraction, may address this
sensitivity. Corrections of incorrect word order are also
highly rewarded (high ∆t), probably due to parser per-
formance (the UCCA structures themselves are not af-
fected by word order). Training the parser with LL an-
notated data may address this sensitivity.

Among the most rewarded changes we also see er-
rors of replacing rare or misconstructed words with
proper English words (Acronym and Mechanical er-
rors). We assume this is due to parser performance,
as TUPA only extracts features over complete words,
and has no character-level encoding at this point. Thus,
all misconstructed words fall into an out-of-vocabulary
category and can only be labeled by the context.

Lastly, adding a missing verb is shown to be highly
rewarded. Under the UCCA guidelines, a missing verb
should be annotated as an implicit unit, but as TUPA
does not generate implicit units, it is not surprising that
when corrections transforms an implicit unit into an
explicit word, the parser’s output changes (and hence
USIM). Future improvements to TUPA may address
this.

4.5 Sensitivity to Unfaithfulness.

We have shown that UCCA is insensitive to differences
between a source sentence and its valid correction. We
now present an evaluation of the sensitivity of USIM
to proposed corrections that diverge semantically from
the source. A semantic measure is, by its definition,
sensitive to variation in the semantic dimensions which
it encodes. In UCCA’s case, these distinctions focus on
predicate-argument structures, the inter-relations be-
tween them, and the semantic heads of complex argu-
ments. These distinctions are widely regarded as fun-
damental in the NLP and linguistic literature.

In order to empirically validate this claim, we
present an experiment which shows that corrections
of a fairly low quality indeed receive a much lower
USIM faithfulness score. Current state-of-the-art sys-
tems rarely alter the source sentences enough to yield
semantically unfaithful outputs (Choshen and Abend,
2018b). Consequently, their human rankings are not
determined by their semantic faithfulness, rendering
them unuseful for validating USIM. We instead exper-
iment with 5 partially trained correctors, trained and
evaluated on the JFLEG corpus (Napoles et al., 2017)
by Sakaguchi et al. (2017).

USIM is computed automatically for each system’s
output on 754 source sentences. Low faithfulness
results are expected, as these outputs include major
changes, sometimes deleting full phrases from the out-
put or changing every other word. Indeed, automatic
USIM obtains scores of 0.32-0.39 for 4 of the systems,
and 0.19 for the system that obtains the lowest GLEU
(Napoles et al., 2015) score. For completeness, we
run USIM on the 4 references provided by JFLEG for
each source and obtain scores of 0.72-0.78, suggesting
the domain change is not the reason for the low USIM
score.

Taken together, these results indicate that USIM,
even in its automatic variant, is sensitive to semantic
changes. Consider the example:

Source the good student must know how to under-
stand and work hard to get the iede.

Reference A good student must be able to understand
and work hard to get the idea.

Corrector The good student must know how to under-
stand and work hard to get on.

USIM assigns the reference 0.71 and only 0.33 to
the corrector. Moreover, although the reference makes
more word changes than the proposed correction, it still
obtains a higher USIM score.

5 Conclusion

We propose a measure of semantic faithfulness of a
correction to the source, thereby avoiding the pitfalls
of reference-based evaluation. We believe that using
RLMs in conjunction with RBMs in the training and
development of GEC systems will better address the
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challenge of over-conservatism, and the high costs of
acquiring many references.

Future work will conduct user studies to assess
the relative importance of different evaluation criteria.
Specifically, we will explore to what extent users are
tolerant to invalid changes to the sentence’s structure,
i.e., violation of conservatism, relative to their toler-
ance to invalid changes to the sentence’s meaning, i.e.,
violation of faithfulness. A better understanding of
how these interact may lead to improved semantic eval-
uation that will alleviate the need for a high number of
references.
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