
Proceedings of NAACL-HLT 2018, pages 2227–2237
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Deep contextualized word representations

Matthew E. Peters†, Mark Neumann†, Mohit Iyyer†, Matt Gardner†,
{matthewp,markn,mohiti,mattg}@allenai.org

Christopher Clark⇤, Kenton Lee⇤, Luke Zettlemoyer†⇤

{csquared,kentonl,lsz}@cs.washington.edu

†Allen Institute for Artificial Intelligence
⇤Paul G. Allen School of Computer Science & Engineering, University of Washington

Abstract

We introduce a new type of deep contextual-
ized word representation that models both (1)
complex characteristics of word use (e.g., syn-
tax and semantics), and (2) how these uses
vary across linguistic contexts (i.e., to model
polysemy). Our word vectors are learned func-
tions of the internal states of a deep bidirec-
tional language model (biLM), which is pre-
trained on a large text corpus. We show that
these representations can be easily added to
existing models and significantly improve the
state of the art across six challenging NLP
problems, including question answering, tex-
tual entailment and sentiment analysis. We
also present an analysis showing that exposing
the deep internals of the pre-trained network is
crucial, allowing downstream models to mix
different types of semi-supervision signals.

1 Introduction

Pre-trained word representations (Mikolov et al.,
2013; Pennington et al., 2014) are a key compo-
nent in many neural language understanding mod-
els. However, learning high quality representa-
tions can be challenging. They should ideally
model both (1) complex characteristics of word
use (e.g., syntax and semantics), and (2) how these
uses vary across linguistic contexts (i.e., to model
polysemy). In this paper, we introduce a new type
of deep contextualized word representation that
directly addresses both challenges, can be easily
integrated into existing models, and significantly
improves the state of the art in every considered
case across a range of challenging language un-
derstanding problems.

Our representations differ from traditional word
type embeddings in that each token is assigned a
representation that is a function of the entire input
sentence. We use vectors derived from a bidirec-
tional LSTM that is trained with a coupled lan-

guage model (LM) objective on a large text cor-
pus. For this reason, we call them ELMo (Em-
beddings from Language Models) representations.
Unlike previous approaches for learning contextu-
alized word vectors (Peters et al., 2017; McCann
et al., 2017), ELMo representations are deep, in
the sense that they are a function of all of the in-
ternal layers of the biLM. More specifically, we
learn a linear combination of the vectors stacked
above each input word for each end task, which
markedly improves performance over just using
the top LSTM layer.

Combining the internal states in this manner al-
lows for very rich word representations. Using in-
trinsic evaluations, we show that the higher-level
LSTM states capture context-dependent aspects
of word meaning (e.g., they can be used with-
out modification to perform well on supervised
word sense disambiguation tasks) while lower-
level states model aspects of syntax (e.g., they can
be used to do part-of-speech tagging). Simultane-
ously exposing all of these signals is highly bene-
ficial, allowing the learned models select the types
of semi-supervision that are most useful for each
end task.

Extensive experiments demonstrate that ELMo
representations work extremely well in practice.
We first show that they can be easily added to
existing models for six diverse and challenging
language understanding problems, including tex-
tual entailment, question answering and sentiment
analysis. The addition of ELMo representations
alone significantly improves the state of the art
in every case, including up to 20% relative error
reductions. For tasks where direct comparisons
are possible, ELMo outperforms CoVe (McCann
et al., 2017), which computes contextualized rep-
resentations using a neural machine translation en-
coder. Finally, an analysis of both ELMo and
CoVe reveals that deep representations outperform

2227

those derived from just the top layer of an LSTM.
Our trained models and code are publicly avail-
able, and we expect that ELMo will provide simi-
lar gains for many other NLP problems.1

2 Related work

Due to their ability to capture syntactic and se-
mantic information of words from large scale un-
labeled text, pretrained word vectors (Turian et al.,
2010; Mikolov et al., 2013; Pennington et al.,
2014) are a standard component of most state-of-
the-art NLP architectures, including for question
answering (Liu et al., 2017), textual entailment
(Chen et al., 2017) and semantic role labeling
(He et al., 2017). However, these approaches for
learning word vectors only allow a single context-
independent representation for each word.

Previously proposed methods overcome some
of the shortcomings of traditional word vectors
by either enriching them with subword informa-
tion (e.g., Wieting et al., 2016; Bojanowski et al.,
2017) or learning separate vectors for each word
sense (e.g., Neelakantan et al., 2014). Our ap-
proach also benefits from subword units through
the use of character convolutions, and we seam-
lessly incorporate multi-sense information into
downstream tasks without explicitly training to
predict predefined sense classes.

Other recent work has also focused on
learning context-dependent representations.
context2vec (Melamud et al., 2016) uses a
bidirectional Long Short Term Memory (LSTM;
Hochreiter and Schmidhuber, 1997) to encode the
context around a pivot word. Other approaches
for learning contextual embeddings include the
pivot word itself in the representation and are
computed with the encoder of either a supervised
neural machine translation (MT) system (CoVe;
McCann et al., 2017) or an unsupervised lan-
guage model (Peters et al., 2017). Both of these
approaches benefit from large datasets, although
the MT approach is limited by the size of parallel
corpora. In this paper, we take full advantage of
access to plentiful monolingual data, and train
our biLM on a corpus with approximately 30
million sentences (Chelba et al., 2014). We also
generalize these approaches to deep contextual
representations, which we show work well across
a broad range of diverse NLP tasks.

1http://allennlp.org/elmo

Previous work has also shown that different lay-
ers of deep biRNNs encode different types of in-
formation. For example, introducing multi-task
syntactic supervision (e.g., part-of-speech tags) at
the lower levels of a deep LSTM can improve
overall performance of higher level tasks such as
dependency parsing (Hashimoto et al., 2017) or
CCG super tagging (Søgaard and Goldberg, 2016).
In an RNN-based encoder-decoder machine trans-
lation system, Belinkov et al. (2017) showed that
the representations learned at the first layer in a 2-
layer LSTM encoder are better at predicting POS
tags then second layer. Finally, the top layer of an
LSTM for encoding word context (Melamud et al.,
2016) has been shown to learn representations of
word sense. We show that similar signals are also
induced by the modified language model objective
of our ELMo representations, and it can be very
beneficial to learn models for downstream tasks
that mix these different types of semi-supervision.

Dai and Le (2015) and Ramachandran et al.
(2017) pretrain encoder-decoder pairs using lan-
guage models and sequence autoencoders and then
fine tune with task specific supervision. In con-
trast, after pretraining the biLM with unlabeled
data, we fix the weights and add additional task-
specific model capacity, allowing us to leverage
large, rich and universal biLM representations for
cases where downstream training data size dictates
a smaller supervised model.

3 ELMo: Embeddings from Language
Models

Unlike most widely used word embeddings (Pen-
nington et al., 2014), ELMo word representations
are functions of the entire input sentence, as de-
scribed in this section. They are computed on top
of two-layer biLMs with character convolutions
(Sec. 3.1), as a linear function of the internal net-
work states (Sec. 3.2). This setup allows us to do
semi-supervised learning, where the biLM is pre-
trained at a large scale (Sec. 3.4) and easily incor-
porated into a wide range of existing neural NLP
architectures (Sec. 3.3).

3.1 Bidirectional language models

Given a sequence of N tokens, (t1, t2, ..., tN), a
forward language model computes the probability
of the sequence by modeling the probability of to-

2228

ken tk given the history (t1, ..., tk�1):

p(t1, t2, . . . , tN) =
NY

k=1

p(tk | t1, t2, . . . , tk�1).

Recent state-of-the-art neural language models
(Józefowicz et al., 2016; Melis et al., 2017; Mer-
ity et al., 2017) compute a context-independent to-
ken representation xLM

k (via token embeddings or
a CNN over characters) then pass it through L lay-
ers of forward LSTMs. At each position k, each
LSTM layer outputs a context-dependent repre-
sentation

�!
h LM

k,j where j = 1, . . . , L. The top layer

LSTM output,
�!
h LM

k,L , is used to predict the next
token tk+1 with a Softmax layer.

A backward LM is similar to a forward LM, ex-
cept it runs over the sequence in reverse, predict-
ing the previous token given the future context:

p(t1, t2, . . . , tN) =
NY

k=1

p(tk | tk+1, tk+2, . . . , tN).

It can be implemented in an analogous way to a
forward LM, with each backward LSTM layer j
in a L layer deep model producing representations �
h LM

k,j of tk given (tk+1, . . . , tN).
A biLM combines both a forward and backward

LM. Our formulation jointly maximizes the log
likelihood of the forward and backward directions:

NX

k=1

(log p(tk | t1, . . . , tk�1;⇥x,
�!
⇥LSTM ,⇥s)

+ log p(tk | tk+1, . . . , tN ;⇥x,
 �
⇥LSTM ,⇥s)) .

We tie the parameters for both the token represen-
tation (⇥x) and Softmax layer (⇥s) in the forward
and backward direction while maintaining sepa-
rate parameters for the LSTMs in each direction.
Overall, this formulation is similar to the approach
of Peters et al. (2017), with the exception that we
share some weights between directions instead of
using completely independent parameters. In the
next section, we depart from previous work by in-
troducing a new approach for learning word rep-
resentations that are a linear combination of the
biLM layers.

3.2 ELMo

ELMo is a task specific combination of the in-
termediate layer representations in the biLM. For

each token tk, a L-layer biLM computes a set of
2L + 1 representations

Rk = {xLM
k ,
�!
h LM

k,j ,
 �
h LM

k,j | j = 1, . . . , L}
= {hLM

k,j | j = 0, . . . , L},

where hLM
k,0 is the token layer and hLM

k,j =

[
�!
h LM

k,j ;
 �
h LM

k,j], for each biLSTM layer.
For inclusion in a downstream model, ELMo

collapses all layers in R into a single vector,
ELMok = E(Rk;⇥e). In the simplest case,
ELMo just selects the top layer, E(Rk) = hLM

k,L ,
as in TagLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a
task specific weighting of all biLM layers:

ELMotask
k = E(Rk;⇥

task) = �task
LX

j=0

stask
j hLM

k,j .

(1)
In (1), stask are softmax-normalized weights and
the scalar parameter �task allows the task model to
scale the entire ELMo vector. � is of practical im-
portance to aid the optimization process (see sup-
plemental material for details). Considering that
the activations of each biLM layer have a different
distribution, in some cases it also helped to apply
layer normalization (Ba et al., 2016) to each biLM
layer before weighting.

3.3 Using biLMs for supervised NLP tasks
Given a pre-trained biLM and a supervised archi-
tecture for a target NLP task, it is a simple process
to use the biLM to improve the task model. We
simply run the biLM and record all of the layer
representations for each word. Then, we let the
end task model learn a linear combination of these
representations, as described below.

First consider the lowest layers of the super-
vised model without the biLM. Most supervised
NLP models share a common architecture at the
lowest layers, allowing us to add ELMo in a
consistent, unified manner. Given a sequence
of tokens (t1, . . . , tN), it is standard to form a
context-independent token representation xk for
each token position using pre-trained word em-
beddings and optionally character-based represen-
tations. Then, the model forms a context-sensitive
representation hk, typically using either bidirec-
tional RNNs, CNNs, or feed forward networks.

To add ELMo to the supervised model, we
first freeze the weights of the biLM and then

2229

concatenate the ELMo vector ELMotask
k with

xk and pass the ELMo enhanced representation
[xk;ELMotask

k] into the task RNN. For some
tasks (e.g., SNLI, SQuAD), we observe further
improvements by also including ELMo at the out-
put of the task RNN by introducing another set
of output specific linear weights and replacing hk

with [hk;ELMotask
k]. As the remainder of the

supervised model remains unchanged, these addi-
tions can happen within the context of more com-
plex neural models. For example, see the SNLI
experiments in Sec. 4 where a bi-attention layer
follows the biLSTMs, or the coreference resolu-
tion experiments where a clustering model is lay-
ered on top of the biLSTMs.

Finally, we found it beneficial to add a moder-
ate amount of dropout to ELMo (Srivastava et al.,
2014) and in some cases to regularize the ELMo
weights by adding �kwk22 to the loss. This im-
poses an inductive bias on the ELMo weights to
stay close to an average of all biLM layers.

3.4 Pre-trained bidirectional language model
architecture

The pre-trained biLMs in this paper are similar to
the architectures in Józefowicz et al. (2016) and
Kim et al. (2015), but modified to support joint
training of both directions and add a residual con-
nection between LSTM layers. We focus on large
scale biLMs in this work, as Peters et al. (2017)
highlighted the importance of using biLMs over
forward-only LMs and large scale training.

To balance overall language model perplexity
with model size and computational requirements
for downstream tasks while maintaining a purely
character-based input representation, we halved all
embedding and hidden dimensions from the single
best model CNN-BIG-LSTM in Józefowicz et al.
(2016). The final model uses L = 2 biLSTM lay-
ers with 4096 units and 512 dimension projections
and a residual connection from the first to second
layer. The context insensitive type representation
uses 2048 character n-gram convolutional filters
followed by two highway layers (Srivastava et al.,
2015) and a linear projection down to a 512 repre-
sentation. As a result, the biLM provides three lay-
ers of representations for each input token, includ-
ing those outside the training set due to the purely
character input. In contrast, traditional word em-
bedding methods only provide one layer of repre-
sentation for tokens in a fixed vocabulary.

After training for 10 epochs on the 1B Word
Benchmark (Chelba et al., 2014), the average for-
ward and backward perplexities is 39.7, compared
to 30.0 for the forward CNN-BIG-LSTM. Gener-
ally, we found the forward and backward perplex-
ities to be approximately equal, with the backward
value slightly lower.

Once pretrained, the biLM can compute repre-
sentations for any task. In some cases, fine tuning
the biLM on domain specific data leads to signifi-
cant drops in perplexity and an increase in down-
stream task performance. This can be seen as a
type of domain transfer for the biLM. As a result,
in most cases we used a fine-tuned biLM in the
downstream task. See supplemental material for
details.

4 Evaluation

Table 1 shows the performance of ELMo across a
diverse set of six benchmark NLP tasks. In every
task considered, simply adding ELMo establishes
a new state-of-the-art result, with relative error re-
ductions ranging from 6 - 20% over strong base
models. This is a very general result across a di-
verse set model architectures and language under-
standing tasks. In the remainder of this section we
provide high-level sketches of the individual task
results; see the supplemental material for full ex-
perimental details.

Question answering The Stanford Question
Answering Dataset (SQuAD) (Rajpurkar et al.,
2016) contains 100K+ crowd sourced question-
answer pairs where the answer is a span in a given
Wikipedia paragraph. Our baseline model (Clark
and Gardner, 2017) is an improved version of the
Bidirectional Attention Flow model in Seo et al.
(BiDAF; 2017). It adds a self-attention layer af-
ter the bidirectional attention component, simpli-
fies some of the pooling operations and substitutes
the LSTMs for gated recurrent units (GRUs; Cho
et al., 2014). After adding ELMo to the baseline
model, test set F1 improved by 4.7% from 81.1%
to 85.8%, a 24.9% relative error reduction over the
baseline, and improving the overall single model
state-of-the-art by 1.4%. A 11 member ensem-
ble pushes F1 to 87.4, the overall state-of-the-art
at time of submission to the leaderboard.2 The
increase of 4.7% with ELMo is also significantly
larger then the 1.8% improvement from adding
CoVe to a baseline model (McCann et al., 2017).

2As of November 17, 2017.

2230

TASK PREVIOUS SOTA OUR
BASELINE

ELMO +
BASELINE

INCREASE
(ABSOLUTE/
RELATIVE)

SQuAD Liu et al. (2017) 84.4 81.1 85.8 4.7 / 24.9%
SNLI Chen et al. (2017) 88.6 88.0 88.7 ± 0.17 0.7 / 5.8%
SRL He et al. (2017) 81.7 81.4 84.6 3.2 / 17.2%
Coref Lee et al. (2017) 67.2 67.2 70.4 3.2 / 9.8%
NER Peters et al. (2017) 91.93 ± 0.19 90.15 92.22 ± 0.10 2.06 / 21%
SST-5 McCann et al. (2017) 53.7 51.4 54.7 ± 0.5 3.3 / 6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks – accuracy for SNLI and SST-5; F1 for
SQuAD, SRL and NER; average F1 for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.

Textual entailment Textual entailment is the
task of determining whether a “hypothesis” is
true, given a “premise”. The Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015) provides approximately 550K hypoth-
esis/premise pairs. Our baseline, the ESIM se-
quence model from Chen et al. (2017), uses a biL-
STM to encode the premise and hypothesis, fol-
lowed by a matrix attention layer, a local infer-
ence layer, another biLSTM inference composi-
tion layer, and finally a pooling operation before
the output layer. Overall, adding ELMo to the
ESIM model improves accuracy by an average of
0.7% across five random seeds. A five member
ensemble pushes the overall accuracy to 89.3%,
exceeding the previous ensemble best of 88.9%
(Gong et al., 2018).

Semantic role labeling A semantic role label-
ing (SRL) system models the predicate-argument
structure of a sentence, and is often described as
answering “Who did what to whom”. He et al.
(2017) modeled SRL as a BIO tagging problem
and used an 8-layer deep biLSTM with forward
and backward directions interleaved, following
Zhou and Xu (2015). As shown in Table 1, when
adding ELMo to a re-implementation of He et al.
(2017) the single model test set F1 jumped 3.2%
from 81.4% to 84.6% – a new state-of-the-art on
the OntoNotes benchmark (Pradhan et al., 2013),
even improving over the previous best ensemble
result by 1.2%.

Coreference resolution Coreference resolution
is the task of clustering mentions in text that re-
fer to the same underlying real world entities. Our
baseline model is the end-to-end span-based neu-
ral model of Lee et al. (2017). It uses a biLSTM

and attention mechanism to first compute span
representations and then applies a softmax men-
tion ranking model to find coreference chains. In
our experiments with the OntoNotes coreference
annotations from the CoNLL 2012 shared task
(Pradhan et al., 2012), adding ELMo improved the
average F1 by 3.2% from 67.2 to 70.4, establish-
ing a new state of the art, again improving over the
previous best ensemble result by 1.6% F1.

Named entity extraction The CoNLL 2003
NER task (Sang and Meulder, 2003) consists of
newswire from the Reuters RCV1 corpus tagged
with four different entity types (PER, LOC, ORG,
MISC). Following recent state-of-the-art systems
(Lample et al., 2016; Peters et al., 2017), the base-
line model uses pre-trained word embeddings, a
character-based CNN representation, two biLSTM
layers and a conditional random field (CRF) loss
(Lafferty et al., 2001), similar to Collobert et al.
(2011). As shown in Table 1, our ELMo enhanced
biLSTM-CRF achieves 92.22% F1 averaged over
five runs. The key difference between our system
and the previous state of the art from Peters et al.
(2017) is that we allowed the task model to learn a
weighted average of all biLM layers, whereas Pe-
ters et al. (2017) only use the top biLM layer. As
shown in Sec. 5.1, using all layers instead of just
the last layer improves performance across multi-
ple tasks.

Sentiment analysis The fine-grained sentiment
classification task in the Stanford Sentiment Tree-
bank (SST-5; Socher et al., 2013) involves select-
ing one of five labels (from very negative to very
positive) to describe a sentence from a movie re-
view. The sentences contain diverse linguistic
phenomena such as idioms and complex syntac-

2231

Task Baseline Last Only
All layers

�=1 �=0.001
SQuAD 80.8 84.7 85.0 85.2
SNLI 88.1 89.1 89.3 89.5
SRL 81.6 84.1 84.6 84.8

Table 2: Development set performance for SQuAD,
SNLI and SRL comparing using all layers of the biLM
(with different choices of regularization strength �) to
just the top layer.

Task
Input
Only

Input &
Output

Output
Only

SQuAD 85.1 85.6 84.8
SNLI 88.9 89.5 88.7
SRL 84.7 84.3 80.9

Table 3: Development set performance for SQuAD,
SNLI and SRL when including ELMo at different lo-
cations in the supervised model.

tic constructions such as negations that are diffi-
cult for models to learn. Our baseline model is
the biattentive classification network (BCN) from
McCann et al. (2017), which also held the prior
state-of-the-art result when augmented with CoVe
embeddings. Replacing CoVe with ELMo in the
BCN model results in a 1.0% absolute accuracy
improvement over the state of the art.

5 Analysis

This section provides an ablation analysis to vali-
date our chief claims and to elucidate some inter-
esting aspects of ELMo representations. Sec. 5.1
shows that using deep contextual representations
in downstream tasks improves performance over
previous work that uses just the top layer, regard-
less of whether they are produced from a biLM or
MT encoder, and that ELMo representations pro-
vide the best overall performance. Sec. 5.3 ex-
plores the different types of contextual informa-
tion captured in biLMs and uses two intrinsic eval-
uations to show that syntactic information is better
represented at lower layers while semantic infor-
mation is captured a higher layers, consistent with
MT encoders. It also shows that our biLM consis-
tently provides richer representations then CoVe.
Additionally, we analyze the sensitivity to where
ELMo is included in the task model (Sec. 5.2),
training set size (Sec. 5.4), and visualize the ELMo
learned weights across the tasks (Sec. 5.5).

5.1 Alternate layer weighting schemes

There are many alternatives to Equation 1 for com-
bining the biLM layers. Previous work on con-
textual representations used only the last layer,
whether it be from a biLM (Peters et al., 2017) or
an MT encoder (CoVe; McCann et al., 2017). The
choice of the regularization parameter � is also
important, as large values such as � = 1 effec-
tively reduce the weighting function to a simple
average over the layers, while smaller values (e.g.,
� = 0.001) allow the layer weights to vary.

Table 2 compares these alternatives for SQuAD,
SNLI and SRL. Including representations from all
layers improves overall performance over just us-
ing the last layer, and including contextual rep-
resentations from the last layer improves perfor-
mance over the baseline. For example, in the
case of SQuAD, using just the last biLM layer im-
proves development F1 by 3.9% over the baseline.
Averaging all biLM layers instead of using just the
last layer improves F1 another 0.3% (comparing
“Last Only” to �=1 columns), and allowing the
task model to learn individual layer weights im-
proves F1 another 0.2% (�=1 vs. �=0.001). A
small � is preferred in most cases with ELMo, al-
though for NER, a task with a smaller training set,
the results are insensitive to � (not shown).

The overall trend is similar with CoVe but with
smaller increases over the baseline. For SNLI, av-
eraging all layers with �=1 improves development
accuracy from 88.2 to 88.7% over using just the
last layer. SRL F1 increased a marginal 0.1% to
82.2 for the �=1 case compared to using the last
layer only.

5.2 Where to include ELMo?

All of the task architectures in this paper include
word embeddings only as input to the lowest layer
biRNN. However, we find that including ELMo at
the output of the biRNN in task-specific architec-
tures improves overall results for some tasks. As
shown in Table 3, including ELMo at both the in-
put and output layers for SNLI and SQuAD im-
proves over just the input layer, but for SRL (and
coreference resolution, not shown) performance is
highest when it is included at just the input layer.
One possible explanation for this result is that both
the SNLI and SQuAD architectures use attention
layers after the biRNN, so introducing ELMo at
this layer allows the model to attend directly to the
biLM’s internal representations. In the SRL case,

2232

Source Nearest Neighbors

GloVe play
playing, game, games, played, players, plays, player,
Play, football, multiplayer

biLM

Chico Ruiz made a spec-
tacular play on Alusik ’s
grounder {. . . }

Kieffer , the only junior in the group , was commended
for his ability to hit in the clutch , as well as his all-round
excellent play .

Olivia De Havilland
signed to do a Broadway
play for Garson {. . . }

{. . . } they were actors who had been handed fat roles in
a successful play , and had talent enough to fill the roles
competently , with nice understatement .

Table 4: Nearest neighbors to “play” using GloVe and the context embeddings from a biLM.

Model F1

WordNet 1st Sense Baseline 65.9
Raganato et al. (2017a) 69.9
Iacobacci et al. (2016) 70.1
CoVe, First Layer 59.4
CoVe, Second Layer 64.7
biLM, First layer 67.4
biLM, Second layer 69.0

Table 5: All-words fine grained WSD F1. For CoVe
and the biLM, we report scores for both the first and
second layer biLSTMs.

the task-specific context representations are likely
more important than those from the biLM.

5.3 What information is captured by the
biLM’s representations?

Since adding ELMo improves task performance
over word vectors alone, the biLM’s contextual
representations must encode information gener-
ally useful for NLP tasks that is not captured
in word vectors. Intuitively, the biLM must
be disambiguating the meaning of words using
their context. Consider “play”, a highly poly-
semous word. The top of Table 4 lists near-
est neighbors to “play” using GloVe vectors.
They are spread across several parts of speech
(e.g., “played”, “playing” as verbs, and “player”,
“game” as nouns) but concentrated in the sports-
related senses of “play”. In contrast, the bottom
two rows show nearest neighbor sentences from
the SemCor dataset (see below) using the biLM’s
context representation of “play” in the source sen-
tence. In these cases, the biLM is able to disam-
biguate both the part of speech and word sense in
the source sentence.

These observations can be quantified using an

Model Acc.
Collobert et al. (2011) 97.3
Ma and Hovy (2016) 97.6
Ling et al. (2015) 97.8
CoVe, First Layer 93.3
CoVe, Second Layer 92.8
biLM, First Layer 97.3
biLM, Second Layer 96.8

Table 6: Test set POS tagging accuracies for PTB. For
CoVe and the biLM, we report scores for both the first
and second layer biLSTMs.

intrinsic evaluation of the contextual representa-
tions similar to Belinkov et al. (2017). To isolate
the information encoded by the biLM, the repre-
sentations are used to directly make predictions for
a fine grained word sense disambiguation (WSD)
task and a POS tagging task. Using this approach,
it is also possible to compare to CoVe, and across
each of the individual layers.

Word sense disambiguation Given a sentence,
we can use the biLM representations to predict
the sense of a target word using a simple 1-
nearest neighbor approach, similar to Melamud
et al. (2016). To do so, we first use the biLM
to compute representations for all words in Sem-
Cor 3.0, our training corpus (Miller et al., 1994),
and then take the average representation for each
sense. At test time, we again use the biLM to com-
pute representations for a given target word and
take the nearest neighbor sense from the training
set, falling back to the first sense from WordNet
for lemmas not observed during training.

Table 5 compares WSD results using the eval-
uation framework from Raganato et al. (2017b)
across the same suite of four test sets in Raganato
et al. (2017a). Overall, the biLM top layer rep-

2233

resentations have F1 of 69.0 and are better at
WSD then the first layer. This is competitive with
a state-of-the-art WSD-specific supervised model
using hand crafted features (Iacobacci et al., 2016)
and a task specific biLSTM that is also trained
with auxiliary coarse-grained semantic labels and
POS tags (Raganato et al., 2017a). The CoVe
biLSTM layers follow a similar pattern to those
from the biLM (higher overall performance at the
second layer compared to the first); however, our
biLM outperforms the CoVe biLSTM, which trails
the WordNet first sense baseline.

POS tagging To examine whether the biLM
captures basic syntax, we used the context repre-
sentations as input to a linear classifier that pre-
dicts POS tags with the Wall Street Journal portion
of the Penn Treebank (PTB) (Marcus et al., 1993).
As the linear classifier adds only a small amount
of model capacity, this is direct test of the biLM’s
representations. Similar to WSD, the biLM rep-
resentations are competitive with carefully tuned,
task specific biLSTMs (Ling et al., 2015; Ma and
Hovy, 2016). However, unlike WSD, accuracies
using the first biLM layer are higher than the
top layer, consistent with results from deep biL-
STMs in multi-task training (Søgaard and Gold-
berg, 2016; Hashimoto et al., 2017) and MT (Be-
linkov et al., 2017). CoVe POS tagging accuracies
follow the same pattern as those from the biLM,
and just like for WSD, the biLM achieves higher
accuracies than the CoVe encoder.

Implications for supervised tasks Taken to-
gether, these experiments confirm different layers
in the biLM represent different types of informa-
tion and explain why including all biLM layers is
important for the highest performance in down-
stream tasks. In addition, the biLM’s representa-
tions are more transferable to WSD and POS tag-
ging than those in CoVe, helping to illustrate why
ELMo outperforms CoVe in downstream tasks.

5.4 Sample efficiency

Adding ELMo to a model increases the sample ef-
ficiency considerably, both in terms of number of
parameter updates to reach state-of-the-art perfor-
mance and the overall training set size. For ex-
ample, the SRL model reaches a maximum devel-
opment F1 after 486 epochs of training without
ELMo. After adding ELMo, the model exceeds
the baseline maximum at epoch 10, a 98% relative
decrease in the number of updates needed to reach

Figure 1: Comparison of baseline vs. ELMo perfor-
mance for SNLI and SRL as the training set size is var-
ied from 0.1% to 100%.

Figure 2: Visualization of softmax normalized biLM
layer weights across tasks and ELMo locations. Nor-
malized weights less then 1/3 are hatched with hori-
zontal lines and those greater then 2/3 are speckled.

the same level of performance.

In addition, ELMo-enhanced models use
smaller training sets more efficiently than mod-
els without ELMo. Figure 1 compares the per-
formance of baselines models with and without
ELMo as the percentage of the full training set is
varied from 0.1% to 100%. Improvements with
ELMo are largest for smaller training sets and
significantly reduce the amount of training data
needed to reach a given level of performance. In
the SRL case, the ELMo model with 1% of the
training set has about the same F1 as the baseline
model with 10% of the training set.

5.5 Visualization of learned weights

Figure 2 visualizes the softmax-normalized
learned layer weights. At the input layer, the
task model favors the first biLSTM layer. For
coreference and SQuAD, the this is strongly
favored, but the distribution is less peaked for
the other tasks. The output layer weights are
relatively balanced, with a slight preference for
the lower layers.

2234

Task GloVe
ELMo

ELMo
ELMo +

type GloVe
SQuAD 80.8 81.4 85.3 85.6
SNLI 88.1 88.5 89.1 89.5
SRL 81.6 81.7 84.5 84.7

Table 7: Development set ablation analysis for
SQuAD, SNLI and SRL comparing different choices
for the context-independent type representation and
contextual representation. From left to right, the table
compares systems with only GloVe vectors; only the
ELMo context-independent type representation with-
out the ELMo biLSTM layers; full ELMo representa-
tions without GloVe; both GloVe and ELMo.

5.6 Contextual vs. sub-word information
In addition to the contextual information cap-
tured in the biLM’s biLSTM layers, ELMo rep-
resentations also contain sub-word information in
the fully character based context insensitive type
layer, xLM

k . To analyze the relative contribu-
tion of the contextual information compared to the
sub-word information, we ran an additional ab-
lation that replaced the GloVe vectors with just
the biLM character based xLM

k layer without the
biLM biLSTM layers. Table 7 summarizes the re-
sults for SQuAD, SNLI and SNLI. Replacing the
GloVe vectors with the biLM character layer gives
a slight improvement for all tasks (e.g. from 80.8
to 81.4 F1 for SQuAD), but overall the improve-
ments are small compared to the full ELMo model.
From this, we conclude that most of the gains in
the downstream tasks are due to the contextual in-
formation and not the sub-word information.

5.7 Are pre-trained vectors necessary with
ELMo?

All of the results presented in Sec.4 include pre-
trained word vectors in addition to ELMo repre-
sentations. However, it is natural to ask whether
pre-trained vectors are still necessary with high
quality contextualized representations. As shown
in the two right hand columns of Table 7, adding
GloVe to models with ELMo generally provides
a marginal improvement over ELMo only models
(e.g. 0.2% F1 improvement for SRL from 84.5 to
84.7).

6 Conclusion

We have introduced a general approach for learn-
ing high-quality deep context-dependent represen-
tations from biLMs, and shown large improve-

ments when applying ELMo to a broad range of
NLP tasks. Through ablations and other controlled
experiments, we have also confirmed that the
biLM layers efficiently encode different types of
syntactic and semantic information about words-
in-context, and that using all layers improves over-
all task performance.

References
Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. 2016.

Layer normalization. CoRR abs/1607.06450.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James R. Glass. 2017. What do neu-
ral machine translation models learn about morphol-
ogy? In ACL.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL 5:135–146.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for mea-
suring progress in statistical language modeling. In
INTERSPEECH.

Qian Chen, Xiao-Dan Zhu, Zhen-Hua Ling, Si Wei,
Hui Jiang, and Diana Inkpen. 2017. Enhanced lstm
for natural language inference. In ACL.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. In
TACL.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. In SSST@EMNLP.

Christopher Clark and Matthew Gardner. 2017. Sim-
ple and effective multi-paragraph reading compre-
hension. CoRR abs/1710.10723.

Kevin Clark and Christopher D. Manning. 2016. Deep
reinforcement learning for mention-ranking corefer-
ence models. In EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. In JMLR.

Andrew M. Dai and Quoc V. Le. 2015. Semi-
supervised sequence learning. In NIPS.

2235

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In EMNLP.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In NIPS.

Yichen Gong, Heng Luo, and Jian Zhang. 2018. Nat-
ural language inference over interaction space. In
ICLR.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple nlp
tasks. In EMNLP 2017.

Luheng He, Kenton Lee, Mike Lewis, and Luke S.
Zettlemoyer. 2017. Deep semantic role labeling:
What works and what’s next. In ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation 9.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for word sense
disambiguation: An evaluation study. In ACL.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. CoRR abs/1602.02410.

Rafal Józefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In ICML.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2015. Character-aware neural language
models. In AAAI 2016.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit
Iyyer, Ishaan Gulrajani James Bradbury, Victor
Zhong, Romain Paulus, and Richard Socher. 2016.
Ask me anything: Dynamic memory networks for
natural language processing. In ICML.

John D. Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In ICML.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL-HLT .

Kenton Lee, Luheng He, Mike Lewis, and Luke S.
Zettlemoyer. 2017. End-to-end neural coreference
resolution. In EMNLP.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luı́s Marujo,
and Tiago Luı́s. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In EMNLP.

Xiaodong Liu, Yelong Shen, Kevin Duh, and Jian-
feng Gao. 2017. Stochastic answer networks for
machine reading comprehension. arXiv preprint
arXiv:1712.03556 .

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In ACL.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional Linguistics 19:313–330.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In NIPS 2017.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional lstm. In CoNLL.

Gábor Melis, Chris Dyer, and Phil Blunsom. 2017. On
the state of the art of evaluation in neural language
models. CoRR abs/1707.05589.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing lstm lan-
guage models. CoRR abs/1708.02182.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS.

George A. Miller, Martin Chodorow, Shari Landes,
Claudia Leacock, and Robert G. Thomas. 1994. Us-
ing a semantic concordance for sense identification.
In HLT .

Tsendsuren Munkhdalai and Hong Yu. 2017. Neural
tree indexers for text understanding. In EACL.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In EMNLP.

Martha Palmer, Paul Kingsbury, and Daniel Gildea.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics 31:71–
106.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

Matthew E. Peters, Waleed Ammar, Chandra Bhaga-
vatula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language mod-
els. In ACL.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using ontonotes. In CoNLL.

2236

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unre-
stricted coreference in ontonotes. In EMNLP-
CoNLL Shared Task.

Alessandro Raganato, Claudio Delli Bovi, and Roberto
Navigli. 2017a. Neural sequence learning models
for word sense disambiguation. In EMNLP.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017b. Word sense disambigua-
tion: A unified evaluation framework and empirical
comparison. In EACL.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Prajit Ramachandran, Peter Liu, and Quoc Le. 2017.
Improving sequence to sequence learning with unla-
beled data. In EMNLP.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
CoNLL.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In ICLR.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In ACL 2016.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research 15:1929–1958.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Training very deep networks.
In NIPS.

Joseph P. Turian, Lev-Arie Ratinov, and Yoshua Ben-
gio. 2010. Word representations: A simple and gen-
eral method for semi-supervised learning. In ACL.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In ACL.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Charagram: Embedding words and
sentences via character n-grams. In EMNLP.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for coref-
erence resolution. In HLT-NAACL.

Matthew D. Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. CoRR abs/1212.5701.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In ACL.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classification
improved by integrating bidirectional lstm with two-
dimensional max pooling. In COLING.

2237

