
Proceedings of NAACL-HLT 2018, pages 2113–2121
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Binarized LSTM Language Model

Xuan Liu∗, Di Cao∗ , Kai Yu
Key Laboratory of Shanghai Education Commission for

Intelligent Interaction and Cognitive Engineering,
SpeechLab, Department of Computer Science and Engineering,

Brain Science and Technology Research Center,
Shanghai Jiao Tong University, Shanghai, China

{liuxuan0526, caodi0207, ky219.cam}@gmail.com

Abstract

The long short-term memory (LSTM) lan-
guage model (LM) has been widely investi-
gated for automatic speech recognition (ASR)
and natural language processing (NLP). Al-
though excellent performance is obtained for
large vocabulary tasks, tremendous memory
consumption prohibits the use of LSTM LMs
in low-resource devices. The memory con-
sumption mainly comes from the word em-
bedding layer. In this paper, a novel binarized
LSTM LM is proposed to address the problem.
Words are encoded into binary vectors and
other LSTM parameters are further binarized
to achieve high memory compression. This
is the first effort to investigate binary LSTMs
for large vocabulary language modeling. Ex-
periments on both English and Chinese LM
and ASR tasks showed that binarization can
achieve a compression ratio of 11.3 without
any loss of LM and ASR performance and a
compression ratio of 31.6 with acceptable mi-
nor performance degradation.

1 Introduction

Language models (LMs) play an important role
in natural language processing (NLP) tasks. N-
gram language models used to be the most pop-
ular language models. Considering the previous
N-1 words, N-gram language models predict the
next word. However, this leads to the loss of long-
term dependencies. The sample space size in-
creases exponentially as N grows, which induces
data sparseness (Cao and Yu, 2017).

Neural network (NN) based models were first
introduced into language modeling in 2003 (Ben-
gio et al., 2003). Given contexts with a fixed
size, the model can calculate the probability dis-
tribution of the next word. However, the prob-
lem of long-term dependencies still remained, be-

∗Both authors contributed equally to this work.

cause the context window is fixed. Currently, re-
current neural network (RNN) based models are
widely used on natural language processing (NLP)
tasks for excellent performance (Mikolov et al.,
2010). Recurrent structures in neural networks can
solve the problem of long-term dependencies to
a great extent. Some gate based structures, such
as long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and gated recurrent unit
(GRU) (Chung et al., 2014) improve the recur-
rent structures and achieve state-of-the-art perfor-
mance on most NLP tasks.

However, neural network models occupy
tremendous memory space so that it is almost im-
possible to put the models into low-resource de-
vices. In practice, the vocabulary is usually very
large. So the memory consumption mainly comes
from the embedding layers. And, the word embed-
ding parameters are floating point values, which
adds to the memory consumption.

The first contribution in this paper is that a
novel language model, the binarized embedding
language model (BELM) is proposed to reduce the
memory consumption. Words are represented in
the form of binarized vectors. Thus, the consump-
tion of memory space is significantly reduced. An-
other contribution in the paper is that we binarize
the LSTM language model combined with the bi-
narized embeddings to further compress the pa-
rameter space. All the parameters in the LSTM
language model are binarized.

Experiments are conducted in language mod-
eling and automatic speech recognition (ASR)
rescoring tasks. Our model performs well with-
out any loss of performance at a compression ratio
of 11.3 and still has acceptable results with only
a minor loss of performance even at a compres-
sion ratio of 31.6. Investigations are also made
to evaluate whether the binarized embeddings lose
information. Experiments are conducted on word

2113



similarity tasks. The results show the binarized
embeddings generated by our models still perform
well on the two datasets.

The rest of the paper is organized as follows,
section 2 is the related work. Section 3 explains
the proposed language model and section 4 shows
the experimental setup and results. Finally, con-
clusions will be given in section 5 and we describe
future work in section 6.

2 Related Work

Nowadays, with the development of deep learn-
ing, neural networks have yielded good results in
many areas. However, neural networks may re-
quire tremendous memory space, making it diffi-
cult to run such models on low-resource devices.
Thus, it is necessary to compress neural networks.

In recent years, many methods of compress-
ing neural networks have been proposed. Pruning
(Han et al., 2015) reduces the number of parame-
ters of the neural network by removing all connec-
tions with the weights below a threshold. Quanti-
zation (Han et al., 2015) clusters weights to sev-
eral clusters. A few bits are used to represent the
neurons and to index a few float values.

Binarization is also a method to compress neu-
ral networks. BNNs(Courbariaux et al., 2016) are
binarized deep neural networks. The weights and
activations are constrained to 1 or −1. BNNs can
drastically reduce memory size and replace most
arithmetic operations with bit-wise operations.
Different from pruning and quantization, bina-
rization does not necessarily require pre-training
and can achieve a great compression ratio. Many
binarization methods have been proposed (Cour-
bariaux et al., 2015, 2016; Rastegari et al., 2016;
Xiang et al., 2017). However, only a few (Hou
et al., 2016; Edel and Köppe, 2016) are related to
recurrent neural network. (Hou et al., 2016) imple-
ments a character level binarized language model
with a vocabulary size of 87. However, they did
not do a comprehensive study on binarized large
vocabulary LSTM language models.

3 Binarized Language Model

3.1 LSTM Language Model
The RNN language model is proposed to deal with
sequential data. Due to the vanishing and explod-
ing gradients problem, it is difficult for a RNN
language model to learn long-term dependencies.
The LSTM, which strengthens the recurrent neural

model with a gating mechanism, tackles this prob-
lem and is widely used in natural language pro-
cessing tasks.

The goal of a language model is to compute the
probability of a sentence (x1, . . . , xN ). A typical
method is to decompose this probability word by
word.

P (x1, ..., xN ) =

N∏

t=1

P (xt|x1, ..., xt−1) (1)

(Hochreiter and Schmidhuber, 1997) proposed
a Long Short-Term Memory Network, which can
be used for sequence processing tasks. Con-
sider an one-layer LSTM network, where N is the
length of the sentence, and xt is the input at the
t-th moment. yt is the output at the t-th moment,
which is equal to xt+1 in a language model. De-
note ht and ct as the hidden vector and the cell
vector at the t-th moment, which is used for repre-
senting the history of (x1, ..., xt−1). h0 and c0 are
initialized with zero. Given xt, ht−1 and ct−1,
the model calculates the probability of outputting
yt.

The first step of an LSTM language model is to
extract the representation et of the input xt from
the embeddings We. Since xt is a one-hot vec-
tor, this operation can be implemented by indexing
rather than multiplication.

et = Wext (2)

After that, et, along with ht−1 and ct−1 are fed
into the LSTM cell. The hidden vector ht and the
cell vector ct can be computed according to:

ft =sigmoid (Wf {ht−1, et} + bf )

it =sigmoid (Wi {ht−1, et} + bi)

ot =sigmoid (Wo {ht−1, et} + bo)

ĉt =tanh (Wĉ {ht−1, et} + bĉ)

ct =ft · ct−1 + it · ĉt

ht =ot · tanh (ct)

(3)

The word probability distribution at the t-th mo-
ment can be calculated by:

P (yt|x1, ..., xt) = pt = softmax(Wyht) (4)

The probability of taking yt as the output at the
t-th moment is:

pyt = pt × yt (5)

2114



3.2 Binarized Embedding Language Model

The binarized embedding language model
(BELM) is a novel LSTM language model with
binarized input embeddings and output embed-
dings. For a one-layer LSTM language model
with a vocabulary size of V , embedding and
hidden layer size of H . The size in bytes of the
input embeddings, the output embeddings, and the
LSTM cells are 4V H , 4V H and 32H2 + 16H .
When V is much larger than H , which is often
the case for language models, the parameters of
the input embeddings and the output embeddings
occupy most of the space. If the embeddings of
the input layer and the output layer are binarized,
the input layer and the output layer will only take
1/32 of the original memory consumption, which
can greatly reduce the memory consumption of
running neural language model.

It is important to find good binary embeddings.
Directly binarizing well-trained word embeddings
cannot yield good binarized representations. In-
stead, we train good binary embeddings from
scratch. The training approach is similar to the
methods proposed in (Courbariaux et al., 2016;
Rastegari et al., 2016). At run-time, the input em-
bedding and the output embedding are binarized
matrices. However, at train-time, float versions of
the embeddings, which are used for calculating the
binarized version of embeddings, are still main-
tained. In the propagation step, a deterministic
function sign is used to binarize the float versions
of the embeddings. In the back-propagation step,
the float versions of the embeddings are updated
according to the gradient of the binarized embed-
ding.

wb = sign (w) =

{
+ 1 if w > 0,

− 1 otherwise.
(6)

The derivative of the sign function is zero al-
most everywhere, and it is impossible to back-
propagate through this function. As introduced in
(Hubara et al., 2016), a straight-through estimator
is used to get the gradient. Assume the gradient of
the binarized weight ∂C

∂Wb has been obtained, the
gradient of the float version of the weight is:

∂C

∂W
=

∂C

∂Wb
(7)

A typical weight initialization method initial-
izes each neuron’s weights randomly from the

Gaussian distribution N(0,
√

1/H). This initial-
ization approach can maximize the gradients and
mitigate the vanishing gradients problem. From
this perspective, 1 or −1 is too large. So, in
practice, we binarize the embeddings to a smaller
scale. Although the weight is binarized to a float-
ing point number, the matrix can also be saved one
bit per neuron, as long as the fixed float value is
memorized separately.

binarize (w) =

{
+

√
1/H if w > 0,

−
√

1/H otherwise.
(8)

Since directly binarizing the input embeddings
We and the output embeddings Wy will limit
the scale of the embeddings, additional linear lay-
ers (without activation) are added behind the input
embedding layer and in front of the output em-
bedding layer to enhance the model. Denote Wb

e

and Wb
y as the binarized weights corresponding

to We and Wy. Denote WTe and bTe , WTy and
bTy as the weights and the biases of the first and
the second linear layer. The input of the LSTM et

and the word probability pt of the binarized em-
bedding language model are calculated according
to:

et =WTe

(
Wb

ext

)
+ bTe

pt =softmax
(
Wb

y

(
WTyht + bTy

)) (9)

The additional linear layer before the output
embedding layer is very important for the bina-
rized embedding language model, especially for
low dimensional models. Removing this layer will
result in an obvious decrease in performance.

3.3 Binarized LSTM Language Model

Subsection 3.2 explains how to binarize the em-
bedding layer, but the LSTM network can also be
binarized. In a binarized LSTM language model,
all the matrices in the parameters are binarized,
which can save much more memory space. Im-
plementing the binarized linear layer is important
for designing a binarized LSTM language model
(BLLM). In a binarized linear layer, there are three
parameters, W, γ and b. W is a matrix, γ and b
are vectors. The matrix W, which takes up most
of the space in a linear layer, is binarized. γ and
b remain floating point values. b is the bias of the
linear layer, and γ is introduced to fix the scale
problem of the binary matrix.

2115



The forward- and back-propagation algorithms
are shown in Algorithm 1 and Algorithm 2. The
structure of this linear layer is very similar to
the structure of batch normalization (Ioffe and
Szegedy, 2015), except the output of each di-
mension over the mini-batches is not normalized.
Batch normalization is hard to apply to a recurrent
neural network, due to the dependency over en-
tire sequences. However, the structure of the batch
normalization is quite useful. Since binarizing W
would fix the scale of the weight, additional free-
dom is needed to overcome this issue. The shift
operation can rescale the output to a reasonable
range.

Algorithm 1 The propagation of linear layer
Input: input x, weights W, γ and b
Output: output y

1: Wb = binarize (W)
2: s = Wbx
3: y = s · exp (γ) + b

Algorithm 2 The back-propagation of linear layer
Input: input x, weights W, γ and b, binarized
weight Wb, temporary value s (calculated in the
propagation period), the gradient of the output ∂C

∂y ,
learning rate η, binary weight range α
Output: the gradient of the input ∂C

∂x , the gra-
dient of the weight ∂C

∂W , ∂C
∂γ , ∂C

∂b , update the
weights

1: ∂C
∂b = ∂C

∂y

2: ∂C
∂γ = ∂C

∂y · s · exp (γ)

3: ∂C
∂s = ∂C

∂y · exp (γ), ∂C
∂Wb = ∂C

∂s x, ∂C
∂W =

∂C
∂Wb

4: ∂C
∂x = ∂C

∂s Wb

5: update W, γ, b according to ∂C
∂W , ∂C

∂γ , ∂C
∂b

with learning rate η.
6: clamp(W, −α, α)
7: return ∂C

∂x

The structure of the input embeddings and the
output embeddings of the binarized LSTM lan-
guage model is similar to the binarized embedding
language model. The embeddings are binarized
and additional linear layers are added after the in-
put embedding layer and in front of the output
embedding layer. However, the additional linear
layers are also binarized according to Algorithm 1
and Algorithm 2.

3.4 Memory Reduction

Denote the size of the vocabulary as V , and the
size of the embedding and hidden layer as H . The
memory consumptions of a one-layer LSTM lan-
guage model, BELM and BLLM are listed in Ta-
ble 1.

Model Memory (bytes)
LSTM 8V H + 32H2 + 16H
BELM 0.25V H + 40H2 + 24H
BLLM 0.25V H + 1.25H2 + 48H

Table 1: Memory Requirements

For a language model, the vocabulary size is
usually much larger than the hidden layer size.
The main memory consumption comes from the
embedding layers, which require 8V H bytes for
an LSTM language model. Binarized embeddings
can reduce this term to 0.25V H bytes. Further
compression of the LSTM can drop the coefficient
of H2 from 32 to 1.25.

4 Experiments

4.1 Experimental Setup

Our model is evaluated on the English Penn
TreeBank (PTB) (Marcus et al., 1993), Chinese
short message (SMS) and SWB-Fisher (SWB).
The Penn TreeBank corpus is a famous English
dataset, with a vocabulary size of 10K and 4.8%
words out of vocabulary (OOV), which is widely
used to evaluate the performance of a language
model. The training set contains approximately
42K sentences with 887K words. The Chinese
SMS corpus is collected from short messages. The
corpus has a vocabulary size of about 40K. The
training set contains 380K sentences with 1931K
words. The SWB-Fisher corpus is an English
corpus containing approximately 2.5M sentences
with 24.9M words. The corpus has a vocabulary
size of about 30K. hub5e is the dataset for the
SWB ASR task.

We also evaluate the word embeddings pro-
duced by our models on two word similarity
datasets. The models are trained on the Text8
corpus to extract the word embeddings. The
Text8 corpus is published by Google and col-
lected from Wikipedia. Text8 contains about
17M words with a vocabulary size of about 47k.
The WordSimilarity-353(WS-353) Test Collection
contains two sets of English word pairs along with

2116



human-assigned similarity judgments. The col-
lection can be used to train and test computer al-
gorithms implementing semantic similarity mea-
sures. A combined set (combined) is provided
that contains a list of all 353 words, along with
their mean similarity scores. (Finkelstein et al.,
2001) The MEN dataset consists of 3,000 word
pairs, randomly selected from words that occur at
least 700 times in the freely available ukWaC and
Wackypedia corpora combined (size: 1.9B and
820M tokens, respectively) and at least 50 times
(as tags) in the open-sourced subset of the ESP
game dataset. In order to avoid picking unrelated
pairs only, the pairs are sampled so that they repre-
sent a balanced range of relatedness levels accord-
ing to a text-based semantic score (Bruni et al.,
2014).

First, we conduct experiments on the PTB,
SWB and Text8 corpora respectively to evaluate
language modeling performance. We use perplex-
ity (PPL) as the metric to evaluate models of dif-
ferent sizes. Then, the models are evaluated on
ASR rescoring tasks. Rescoring the 100-best sen-
tences generated by the weighted finite state trans-
ducer (WFST), the model is evaluated by word er-
ror rate (WER). Finally, we conduct experiments
on word similarity tasks to evaluate whether the
word embeddings produced by our models lose
any information.

4.2 Experiments in Language Modeling

For traditional RNN based language models, the
memory consumption mainly comes from the em-
bedding layers (both input and output layers).
However, when the hidden layer size grows, the
memory consumption of the RNN module also be-
comes larger. So the total memory usage relates to
both the vocabulary size and hidden layer size, as
mentioned in section 3.4.

Experiments are conducted in language mod-
eling to evaluate the model on the PTB, SWB,
and SMS corpora respectively. In language mod-
eling tasks, we regularize the networks using
dropout(Zaremba et al., 2014). We use stochas-
tic gradient descent (SGD) for optimization. The
batch size is set to 64. For the PTB corpus, the
dropout rate is tuned for different training settings.
For the SWB corpus, we do not use dropout tech-
nique. For the SMS corpus, the dropout rate is
set to 0.25. We train models of different sizes
on the three corpora and record the memory us-

age of the trained models. The initial learning rate
is set to 1.0 for all settings. Since PTB is a rel-
atively small dataset and the convergence rates of
the BELM and the BLLM are slower than LSTM
language model, we reduce the learning rate by
half every three epochs if the perplexity on the
validation set is not reduced. For the other experi-
ments, the learning rate is always reduced by half
every epoch if the perplexity on the validation set
is not reduced. As introduced in section 3, the bias
of the output embedding layer is omitted. Adding
bias term in the output embedding layer leads to
small performance degradation in the BELM and
the BLLM model, although it leads to a small im-
provement in the LSTM model. This phenomenon
may be related to optimization problems.

Hidden
size LSTM BELM BLLM

Memory
PPL 500

48.0M
91.8

11.3M
88.0

1.6M
95.2

Memory
PPL 1000

112.0M
89.4

42.5M
85.7

3.8M
94.9

Table 2: Performances on the English PTB corpus

Hidden
size LSTM BELM BLLM

Memory
PPL 500

129.1M
57.6

13.8M
58.4

4.1M
60.4

Memory
PPL 1000

274.2M
56.1

47.6M
55.6

8.9M
56.2

Table 3: Performance on the English SWB corpus

Hidden
size LSTM BELM BLLM

Memory
PPL 500

170.8M
90.0

15.1M
89.8

5.4M
96.8

Memory
PPL 1000

357.6M
89.5

50.2M
87.8

11.5M
94.3

Table 4: Performance on the Chinese SMS corpus

Because the total memory usage relates to both
the vocabulary size and hidden layer size, the
memory reduction on various corpora is quite dif-
ferent. For our BELM model, the floating point
embedding parameters are replaced by single bits,
which could significantly reduce the memory us-
age. On the PTB corpus, the BELM models even

2117



outperform the baseline LSTM LM. The small
model (500 LSTM units) has a relative PPL im-
provement of 4.1% and achieves a compression ra-
tio of 4.3 and the large model (1000 LSTM units)
also has a relative PPL improvement of 4.1% and
achieves a compression ratio of 2.6. On the SWB
corpus, the BELM models still perform well com-
pared with the baseline model and achieve com-
pression ratios of 9.4 and 5.8 respectively for the
small and large models. On the SMS corpus, the
BELMs model also gains relative PPL improve-
ments of 0.2% and 1.9%, and achieves compres-
sion ratios of 11.3 and 7.1 respectively. In sum-
mary, the BELM model performs as well as the
baseline model both on English and Chinese cor-
pora, and reduces the memory consumption to a
large extent.

The BLLM model, however, does not outper-
form the baseline model, but still has acceptable
results with a minor loss of performance. Since
both the LSTM model and the embeddings are bi-
narized, the total compression ratio is quite sig-
nificant. The average compression ratio is about
32.0, so the memory consumption of the language
model is significantly reduced.

We also study the performance of pruning the
LSTM language model. We prune each parame-
ter matrix and the embedding layers with various
pruning rates respectively, and fine-tune the model
with various dropout rates. In our experiments,
pruning 75% parameter nodes hardly affects the
performance. However, if we try pruning more
parameter nodes, the perplexity increases rapidly.
For example, for the English PTB dataset, when
we prune 95% parameter nodes of the embedding
layers of an LSTM language model (500 LSTM
units), the perpexity will increase from 91.8 to
112.3. When we prune 95% parameter nodes of
an LSTM language model (500 LSTM units), the
perplexity will increase from 91.8 to 132.3. There-
fore, the effect of pruning is not as good as bina-
rization for the language modeling task.

Binarization can be considered as a special case
of quantization, which quantizes the parameters to
pairs of opposite numbers. So, compared to nor-
mal quantization, binarization can achieve a better
compression ratio. In addition, for binarization,
we do not need to determine the position of each
unique values in advance. Therefore, binarization
is more flexible than quantization.

We then study the effect of extra binary linear

layers in the BLLM. The additional binary linear
layer after the input embedding layer and the ad-
ditional binary linear layer in front of the output
embedding layer are removed respectively in this
experiment. We use well-trained embeddings to
initialize the corresponding embedding layers and
do the binarization using the method proposed in
(Rastegari et al., 2016) when the additional binary
linear layer is removed. The perplexities are listed
in Table 5. No-i means no additional binary linear
layer after the input embedding layer. No-o means
no additional binary linear layer in front of the out-
put embedding layer. No-io means no additional
binary linear layers. The experiment is conducted
on the PTB corpus.

Hidden
size BLLMBLLM

no-i
BLLM

no-o
BLLM
no-io

PPL 500 95.2 95.2 101.7 100.3
PPL 1000 94.9 94.5 96.7 96.3

Table 5: Performances on the English PTB corpus

If the additional binary linear layer after the in-
put embedding layer is removed, the performance
does not drop, and even becomes better when the
hidden layer size is 1000. Although the additional
binary layer after the input embedding layer is re-
moved, the float version of the input embeddings
of BLLM no-i is initialized with well-trained em-
beddings, while the BLLM is not initialized with
the well-trained embeddings. We think initializa-
tion is the reason why the BLLM no-i performs
comparatively to the BLLM. We also observe a
PPL increase of 1-2 points for BLLM no-i if the
input embeddings are not pre-trained (not listed in
the table). This phenomenon prompts us to pre-
train embeddings, which we leave to future work.
Once the additional binary linear layer in front of
the output embedding layer is removed, the perfor-
mance degradation is serious. This shows that the
output embeddings of the language model should
not be directly binarized; the additional binary lin-
ear layer should be inserted to enhance the model’s
capacity, especially for low dimensional models.

4.3 Experiments on ASR Rescoring Tasks

Experiments are conducted on the ASR rescoring
task to evaluate the model on the hub5e and SMS
corpora. Hub5e is a test dataset of the SWB cor-
pus which we use for ASR rescoring tasks. For
the hub5e dateset, A VDCNN (Qian et al., 2016)

2118



(very deep CNN) model on the 300-hour task is
applied as the acoustic model. For the Chinese
SMS dataset, the acoustic model is a CD-DNN-
HMM model. The weighted finite state trans-
ducer (WFST) is produced with a 4-gram language
model. Then our language models are utilized to
rescore the 100-best candidates. The models are
evaluated by the metric of word error rate (WER).

Model Hidden
size hub5e SMS

LSTM 8.7 10.5
BELM 500 8.5 10.3
BLLM 8.7 10.8
LSTM 8.5 10.4
BELM 1000 8.5 10.2
BLLM 8.4 10.3

Table 6: Performances on ASR rescoring tasks

Table 6 shows the results on ASR rescoring
tasks. The BELM model and BLLM model
perform well both on the English and Chinese
datasets. The BELM model achieves an absolute
0.2% WER improvement compared with the base-
line model in three of the experiments. The BLLM
model also has good results, even though it per-
forms not so well in language modeling. The re-
sults show that our language models work well on
ASR rescoring tasks even with much less memory
consumption.

4.4 Investigation of Binarized Embeddings

The experiments above show the good perfor-
mances of our models. We also want to investigate
whether the binarized embeddings lose any infor-
mation. So, the embeddings are evaluated on two
word similarity tasks. Experiments are conducted
on the WS-353 and MEN tasks. We have trained
the baseline LSTM model, the BELM model and
BLLM model of a medium size on the Text8 cor-
pus. We binarize the embeddings of the trained
baseline LSTM model to investigate whether there
is any loss of information by the simple binariza-
tion method (labeled LSTM-bin in the table be-
low). For each dimension, we calculate the mean
and set the value to 1 if it is bigger than the mean,
otherwise, we set it to -1.

The embedding size and the hidden layer size
are set to 500. We use stochastic gradient descent
(SGD) to optimize our models. We use cosine dis-

tance to evaluate the similarity of the word pairs.
Spearman’s rank correlation coefficient is calcu-
lated to evaluate the correlation between the two
scores given by our models and domain experts.

Model PPL
LSTM 166.0
BELM 164.7
BLLM 172.3

Table 7: Language modeling performance on the
Text8 corpus

Model WS-353 MEN
LSTM 53.1 46.3

LSTM-bin 25.5 19.4
BELM 49.1 47.0
BLLM 56.0 52.2

Table 8: Performances on the word similarity tasks

Table 7 shows our models perform well in lan-
guage modeling on the Text8 corpus. Table 8
summarizes the performance of the word embed-
dings in the similarity tasks. The embeddings
generated by the simple binarization method per-
form obviously worse than the other embeddings,
which indicates that much information is lost. The
BELM model outperforms the baseline model on
the MEN task, although it doesnt perform as well
as the baseline model on the WS-353 task. How-
ever, the MEN dataset contains many more word
pairs, which makes the results on this dataset more
convincing. The BLLM model significantly out-
performs the baseline model on the two tasks. The
results indicate that the binarized embeddings of
the BLLM do not lose any semantic information
although the parameters are represented only by
-1 and 1.

We suspect that binarization plays a role in reg-
ularization and produces more robust vectors. We
also give an example visualization of some word
vectors. The dimension of the embeddings of the
BLLM is reduced by TSNE (Maaten and Hinton,
2008). The words which are the closest to father
(according to the cosine distance of word vectors)
are shown in Figure 1.

In this figure, mother and parents are the clos-
est words to father, which is quite understand-
able. The words husband, wife, grandfather
and grandmother also gather together and most
words in the figure are related to father, indicat-

2119



−15 −10 −5 0 5 10

−15

−10

−5

0

5
fathermother

son

eldest

parents

uncle

grandfather
wife husbanddaughter

maternal

creator

paternal
brother

grandson

heir

nephew
grandmother

king

birthplace

Figure 1: Visualization of the Binarized Embeddings

ing the embeddings indeed carry semantic infor-
mation.

5 Conclusion

In this paper, a novel language model, the bina-
rized embedding language model (BELM) is pro-
posed to solve the problem that NN based lan-
guage models occupy tremendous space. For tra-
ditional RNN based language models, the memory
consumption mainly comes from the embedding
layers (both input and output layers). However,
when the hidden layer size grows, the memory
consumption of the RNN module also becomes
larger. So, the total memory usage relates to both
the vocabulary size and hidden layer size. In the
BELM model, words are represented in the form
of binarized vectors, which only contain parame-
ters of -1 or 1. For further compression, we bina-
rize the long short-term memory language model
combined with the binarized embeddings. Thus,
the total memory usage can be significantly re-
duced. Experiments are conducted on language
modeling and ASR rescoring tasks on various cor-
pora. The results show that the BELM model per-
forms well without any loss of performances at
compression ratios of 2.6 to 11.3, depending on
the hidden and vocabulary size. The BLLM model
compresses the model parameters almost thirty-
two times with a slight loss of performance. We
also evaluate the embeddings on word similarity
tasks. The results show the binarized embeddings
even perform much better than the baseline em-
beddings.

6 Future Work

In the future, we will study how to improve the
performance of the BLLM model. And, we will
research methods to accelerate the training and re-
duce the memory consumption during training.

Acknowledgments

The corresponding author is Kai Yu. This work
has been supported by the National Key Re-
search and Development Program of China under
Grant No.2017YFB1002102, and the China NSFC
projects (No. 61573241). Experiments have been
carried out on the PI supercomputer at Shanghai
Jiao Tong University.

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research
3(Feb):1137–1155.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR) 49(2014):1–47.

Di Cao and Kai Yu. 2017. Deep attentive structured
language model based on lstm. In International
Conference on Intelligent Science and Big Data En-
gineering. Springer, pages 169–180.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. 2015. Binaryconnect: Training deep neural
networks with binary weights during propagations.
In Advances in Neural Information Processing Sys-
tems. pages 3123–3131.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2016. Bina-
rized neural networks: Training deep neural net-
works with weights and activations constrained to+
1 or-1. arXiv preprint arXiv:1602.02830 .

Marcus Edel and Enrico Köppe. 2016. Binarized-
blstm-rnn based human activity recognition. In
Indoor Positioning and Indoor Navigation (IPIN),
2016 International Conference on. IEEE, pages 1–
7.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The con-
cept revisited. In Proceedings of the 10th interna-
tional conference on World Wide Web. ACM, pages
406–414.

2120



Song Han, Huizi Mao, and William J Dally. 2015.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Lu Hou, Quanming Yao, and James T Kwok. 2016.
Loss-aware binarization of deep networks. arXiv
preprint arXiv:1611.01600 .

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized
neural networks. In Advances in neural information
processing systems. pages 4107–4115.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In International
Conference on Machine Learning. pages 448–456.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research 9(Nov):2579–2605.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of English: the penn treebank. MIT
Press.

Tomas Mikolov, Martin Karafit, Lukas Burget, Jan
Cernock, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH 2010, Conference of the International
Speech Communication Association, Makuhari,
Chiba, Japan, September. pages 1045–1048.

Yanmin Qian, Mengxiao Bi, Tian Tan, Kai Yu, Yan-
min Qian, Mengxiao Bi, Tian Tan, and Kai Yu.
2016. Very deep convolutional neural networks for
noise robust speech recognition. IEEE/ACM Trans-
actions on Audio Speech & Language Processing
24(12):2263–2276.

Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. 2016. Xnor-net: Imagenet
classification using binary convolutional neural net-
works. In European Conference on Computer Vi-
sion. Springer, pages 525–542.

Xu Xiang, Yanmin Qian, and Kai Yu. 2017. Binary
deep neural networks for speech recognition. Proc.
Interspeech 2017 pages 533–537.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 .

2121


