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Abstract

Despite the recent popularity of word embed-
ding methods, there is only a small body of
work exploring the limitations of these repre-
sentations. In this paper, we consider one as-
pect of embedding spaces, namely their sta-
bility. We show that even relatively high fre-
quency words (100-200 occurrences) are often
unstable. We provide empirical evidence for
how various factors contribute to the stability
of word embeddings, and we analyze the ef-
fects of stability on downstream tasks.

1 Introduction

Word embeddings are low-dimensional, dense
vector representations that capture semantic prop-
erties of words. Recently, they have gained
tremendous popularity in Natural Language Pro-
cessing (NLP) and have been used in tasks as
diverse as text similarity (Kenter and De Rijke,
2015), part-of-speech tagging (Tsvetkov et al.,
2016), sentiment analysis (Faruqui et al., 2015),
and machine translation (Mikolov et al., 2013a).
Although word embeddings are widely used
across NLP, their stability has not yet been fully
evaluated and understood. In this paper, we ex-
plore the factors that play a role in the stability
of word embeddings, including properties of the
data, properties of the algorithm, and properties of
the words. We find that word embeddings exhibit
substantial instabilities, which can have implica-
tions for downstream tasks.

Using the overlap between nearest neighbors in
an embedding space as a measure of stability (see
section 3 below for more information), we ob-
serve that many common embedding spaces have
large amounts of instability. For example, Figure 1
shows the instability of the embeddings obtained
by training word2vec on the Penn Treebank (PTB)
(Marcus et al., 1993). As expected, lower fre-
quency words have lower stability and higher fre-
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Figure 1: Stability of word2vec as a property of fre-
quency in the PTB. Stability is measured across ten
randomized embedding spaces trained on the training
portion of the PTB (determined using language model-
ing splits (Mikolov et al., 2010)). Each word is placed
in a frequency bucket (x-axis), and each column (fre-
quency bucket) is normalized.

quency words have higher stability. What is sur-
prising however about this graph is the medium-
frequency words, which show huge variance in
stability. This cannot be explained by frequency,
so there must be other factors contributing to their
instability.

In the following experiments, we explore which
factors affect stability, as well as how this stability
affects downstream tasks that word embeddings
are commonly used for. To our knowledge, this
is the first study comprehensively examining the
factors behind instability.

2 Related Work

There has been much recent interest in the applica-
tions of word embeddings, as well as a small, but
growing, amount of work analyzing the properties
of word embeddings.

Here, we explore three different embedding
methods: PPMI (Bullinaria and Levy, 2007),
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word2vec (Mikolov et al., 2013b), and GloVe
(Pennington et al., 2014). Various aspects of the
embedding spaces produced by these algorithms
have been previously studied. Particularly, the ef-
fect of parameter choices has a large impact on
how all three of these algorithms behave (Levy
et al., 2015). Further work shows that the param-
eters of the embedding algorithm word2vec influ-
ence the geometry of word vectors and their con-
text vectors (Mimno and Thompson, 2017). These
parameters can be optimized; Hellrich and Hahn
(2016) posit optimal parameters for negative sam-
pling and the number of epochs to train for. They
also demonstrate that in addition to parameter set-
tings, word properties, such as word ambiguity, af-
fect embedding quality.

In addition to exploring word and algorithmic
parameters, concurrent work by Antoniak and
Mimno (2018) evaluates how document properties
affect the stability of word embeddings. We also
explore the stability of embeddings, but focus on a
broader range of factors, and consider the effect of
stability on downstream tasks. In contrast, Anto-
niak and Mimno focus on using word embeddings
to analyze language (e.g., Garg et al., 2018), rather
than to perform tasks.

At a higher level of granularity, Tan et al. (2015)
analyze word embedding spaces by comparing
two spaces. They do this by linearly transforming
one space into another space, and they show that
words have different usage properties in different
domains (in their case, Twitter and Wikipedia).

Finally, embeddings can be analyzed using
second-order properties of embeddings (e.g., how
a word relates to the words around it). Newman-
Griffis and Fosler-Lussier (2017) validate the use-
fulness of second-order properties, by demonstrat-
ing that embeddings based on second-order prop-
erties perform as well as the typical first-order em-
beddings. Here, we use second-order properties of
embeddings to quantify stability.

3 Defining Stability

We define stability as the percent overlap between
nearest neighbors in an embedding space.! Given
a word W and two embedding spaces A and B,
take the ten nearest neighbors of W in both A
and B. Let the stability of W be the percent

'This metric is concurrently explored in work by Anto-
niak and Mimno (2018).

Model 1 Model 2 Model 3
metropolitan | ballet national
national metropolitan | ballet
egyptian bard metropolitan
rhode chicago institute
society national glimmerglass
debut state egyptian

folk exhibitions intensive
reinstallation | society jazz
chairwoman | whitney state
philadelphia | rhode exhibitions

Table 1: Top ten most similar words for the word inter-
national in three randomly intialized word2vec models
trained on the NYT Arts Domain. Words in all three
lists are in bold; words in only two of the lists are itali-
cized.

overlap between these two lists of nearest neigh-
bors. 100% stability indicates perfect agreement
between the two embedding spaces, while 0% sta-
bility indicates complete disagreement. In order to
find the ten nearest neighbors of a word W in an
embedding space A, we measure distance between
words using cosine similarity.> This definition of
stability can be generalized to more than two em-
bedding spaces by considering the average overlap
between two sets of embedding spaces. Let X and
Y be two sets of embedding spaces. Then, for ev-
ery pair of embedding spaces (x,y), where z € X
and y € Y, take the ten nearest neighbors of W in
both = and y and calculate percent overlap. Let the
stability be the average percent overlap over every
pair of embedding spaces (z,y).

Consider an example using this metric. Ta-
ble 1 shows the top ten nearest neighbors for the
word international in three randomly initialized
word2vec embedding spaces trained on the NYT
Arts domain (see Section 4.3 for a description
of this corpus). These models share some simi-
lar words, such as metropolitan and national, but
there are also many differences. On average, each
pair of models has four out of ten words in com-
mon, so the stability of international across these
three models is 40%.

The idea of evaluating ten best options is also
found in other tasks, like lexical substitution (e.g.,
McCarthy and Navigli, 2007) and word associa-

2We found comparable results for other distance metrics,
such as I' norm, I* norm, and I°° norm, but we report re-
sults from cosine similarity to be consistent with other word
embedding research.
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Figure 2: Stability of GloVe on the PTB. Stability
is measured across ten randomized embedding spaces
trained on the training data of the PTB (determined us-
ing language modeling splits (Mikolov et al., 2010)).
Each word is placed in a frequency bucket (left y-axis)
and stability is determined using a varying number of
nearest neighbors for each frequency bucket (right y-
axis). Each row is normalized, and boxes with more
than 0.01 of the row’s mass are outlined.

tion (e.g., Garimella et al., 2017), where the top
ten results are considered in the final evaluation
metric. To give some intuition for how changing
the number of nearest neighbors affects our stabil-
ity metric, consider Figure 2. This graph shows
how the stability of GloVe changes with the fre-
quency of the word and the number of neighbors
used to calculate stability; please see the figure
caption for a more detailed explanation of how
this graph is structured. Within each frequency
bucket, the stability is consistent across varying
numbers of neighbors. Ten nearest neighbors per-
forms approximately as well as a higher number
of nearest neighbors (e.g., 100). We see this pat-
tern for low frequency words as well as for high
frequency words. Because the performance does
not change substantially by increasing the num-
ber of nearest neighbors, it is computationally less
intensive to use a small number of nearest neigh-

bors. We choose ten nearest neighbors as our met-
ric throughout the rest of the paper.

4 Factors Influencing Stability

As we saw in Figure 1, embeddings are sometimes
surprisingly unstable. To understand the factors
behind the (in)stability of word embeddings, we
build a regression model that aims to predict the
stability of a word given: (1) properties related to
the word itself; (2) properties of the data used to
train the embeddings; and (3) properties of the al-
gorithm used to construct these embeddings. Us-
ing this regression model, we draw observations
about factors that play a role in the stability of
word embeddings.

4.1 Methodology

We use ridge regression to model these various
factors (Hoerl and Kennard, 1970). Ridge re-
gression regularizes the magnitude of the model
weights, producing a more interpretable model
than non-regularized linear regression. This regu-
larization mitigates the effects of multicollinearity
(when two features are highly correlated). Specif-
ically, given N ground-truth data points with M
extracted features per data point, let x,, € R™>*M
be the features for sample n and let y € R be
the set of labels. Then, ridge regression learns a
set of weights w € R'*M by minimizing the least
squares function with /2 regularization, where ) is
a regularization constant:

1 A
L(w) = 9 Z(Yn - WTXn)2 + §HW||2
n=1
We set A = 1. In addition to ridge regression,

we tried non-regularized linear regression. We ob-
tained comparable results, but many of the weights
were very large or very small, making them hard
to interpret.

The goodness of fit of a regression model is
measured using the coefficient of determination
R?. This measures how much variance in the de-
pendent variable y is captured by the independent
variables x. A model that always predicts the ex-
pected value of y, regardless of the input features,
will receive an R? score of 0. The highest possible
R? score is 1, and the R? score can be negative.

Given this model, we create training instances
by observing the stability of a large number of
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words across various combinations of two embed-
ding spaces. Specifically, given a word W and two
embedding spaces A and B, we encode proper-
ties of the word W, as well as properties of the
datasets and the algorithms used to train the em-
bedding spaces A and B. The target value associ-
ated with this features is the stability of the word
W across embedding spaces A and B. We repeat
this process for more than 2,500 words, several
datasets, and three embedding algorithms.

Specifically, we consider all the words present
in all seven of the data domains we are using (see
Section 4.3), 2,521 words in total. Using the fea-
ture categories described below, we generate a fea-
ture vector for each unique word, dataset, algo-
rithm, and dimension size, resulting in a total of
27,794,025 training instances. To get good aver-
age estimates for each embedding algorithm, we
train each embedding space five times, random-
ized differently each time (this does not apply to
PPMI, which has no random component). We
then train a ridge regression model on these in-
stances. The model is trained to predict the stabil-
ity of word W across embedding spaces A and B
(where A and B are not necessarily trained using
the same algorithm, parameters, or training data).
Because we are using this model to learn associa-
tions between certain features and stability, no test
data is necessary. The emphasis is on the model it-
self, not on the model’s performance on a specific
task.

We describe next each of the three main cate-
gories of factors examined in the model. An ex-
ample of these features is given in Table 2.

4.2 Word Properties

We encode several features that capture attributes
of the word W. First, we use the primary and sec-
ondary part-of-speech (POS) of the word. Both
of these are represented as bags-of-words of all
possible POS, and are determined by looking at
the primary (most frequent) and secondary (sec-
ond most frequent) POS of the word in the Brown
corpus3 (Francis and Kucera, 1979). If the word is
not present in the Brown corpus, then all of these
POS features are set to zero.

To get a coarse-grained representation of the

3Here, we use the universal tagset, which consists of
twelve possible POS: adjective, adposition, adverb, conjunc-
tion, determiner / article, noun, numeral, particle, pronoun,
verb, punctuation mark, and other (Petrov et al., 2012).

Word Properties

Primary part-of-speech Adjective
Secondary part-of-speech Noun

# Parts-of-speech 2

# WordNet senses 3

Syllables 5

Data Properties
Raw frequency in corpus A | 106
Raw frequency in corpus B | 669
Diff. in raw frequency 563

Vocab. size of corpus A 10,508
Vocab. size of corpus B 43,888
Diff. in vocab. size 33,380

Overlap in corpora vocab. 17%

Domains present Arts, Europarl
Do the domains match? False

Training position in A 1.02%

Training position in B 0.15%

Diff. in training position 0.86%

Algorithm Properties

Algorithms present word2vec, PPMI
Do the algorithms match? False

Embedding dimension of A | 100
Embedding dimension of B | 100
Diff. in dimension 0

Do the dimensions match? True

Table 2: Consider the word international in two em-
bedding spaces. Suppose embedding space A is trained
using word2vec (embedding dimension 100) on the
NYT Arts domain, and embedding space B is trained
using PPMI (embedding dimension 100) on Europarl.
This table summarizes the resulting features for this
word across the two embedding spaces.

polysemy of the word, we consider the number of
different POS present. For a finer-grained repre-
sentation, we use the number of different Word-
Net senses associated with the word (Miller, 1995;
Fellbaum, 1998).

We also consider the number of syllables in a
word, determined using the CMU Pronuncing Dic-
tionary (Weide, 1998). If the word is not present
in the dictionary, then this is set to zero.

4.3 Data Properties

Data features capture properties of the training
data (and the word in relation to the training data).
For this model, we gather data from two sources:
New York Times (NYT) (Sandhaus, 2008) and Eu-
roparl (Koehn, 2005). Overall, we consider seven
domains of data: (1) NYT - U.S., (2) NYT - New
York and Region, (3) NYT - Business, (4) NYT -
Arts, (5) NYT - Sports, (6) All of the data from
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Vocab. | Num. Tokens /
Dataset Sentences | Size Vocab. Size
NYT US 13,923 | 5,787 64.37
NYTNY 36,792 | 11,182 80.41
NYT Business 21,048 | 7,212 75.96
NYT Arts 28,161 | 10,508 65.29
NYT Sports 21,610 | 5,967 77.85
AIINYT 121,534 | 24,144 117.98
Europarl 2,297,621 | 43,888 1,394.28

Table 3: Dataset statistics.

domains 1-5 (denoted “All NYT”), and (7) All of
English Europarl. Table 3 shows statistics about
these datasets. The first five domains are chosen
because they are the top five most common cate-
gories of news articles present in the NYT corpus.
They are smaller than “All NYT” and Europarl,
and they have a narrow topical focus. The “All
NYT” domain is more diverse topically and larger
than the first five domains. Finally, the Europarl
domain is the largest domain, and it is focused on
a single topic (European Parliamentary politics).
These varying datasets allow us to consider how
data-dependent properties affect stability.

We use several features related to domain. First,
we consider the raw frequency of word W in both
the domain of data used for embedding space A
and the domain of data for space B. To make
our regression model symmetric, we effectively
encode three features: the higher raw frequency
(between the two), the lower raw frequency, and
the absolute difference in raw frequency.

We also consider the vocabulary size of each
corpus (again, symmetrically) and the percent
overlap between corpora vocabulary, as well as the
domain of each of the two corpora, represented
as a bag-of-words of domains. Finally, we con-
sider whether the two corpora are from the same
domain.

Our final data-level features explore the role
of curriculum learning in stability. It has been
posited that the order of the training data affects
the performance of certain algorithms, and previ-
ous work has shown that for some neural network-
based tasks, a good training data order (curricu-
lum learning strategy) can improve performance
(Bengio et al., 2009). Curriculum learning has
been previously explored for word2vec, where it
has been found that optimizing training data order
can lead to small improvements on common NLP
tasks (Tsvetkov et al., 2016). Of the embedding

algorithms we consider, curriculum learning only
affects word2vec. Because GloVe and PPMI use
the data to learn a complete matrix before build-
ing embeddings, the order of the training data will
not affect their performance. To measure the ef-
fects of training data order, we include as features
the first appearance of word W in the dataset for
embedding space A and the first appearance of W
in the dataset for embedding space B (represented
as percentages of the total number of training sen-
tences)?. We further include the absolute differ-
ence between these percentages.

4.4 Algorithm Properties

In addition to word and data properties, we encode
features about the embedding algorithms. These
include the different algorithms being used, as
well as the different parameter settings of these
algorithms. Here, we consider three embedding
algorithms, word2vec, GloVe, and PPMI. The
choice of algorithm is represented in our feature
vector as a bag-of-words.

PPMI creates embeddings by first building
a positive pointwise mutual information word-
context matrix, and then reducing the dimension-
ality of this matrix using SVD (Bullinaria and
Levy, 2007). A more recent word embedding al-
gorithm, word2vec (skip-gram model) (Mikolov
et al.,, 2013b) uses a shallow neural network
to learn word embeddings by predicting context
words. Another recent method for creating word
embeddings, GloVe, is based on factoring a matrix
of ratios of co-occurrence probabilities (Penning-
ton et al., 2014).

For each algorithm, we choose common param-
eter settings. For word2vec, two of the parameters
that need to be chosen are window size and mini-
mum count. Window size refers to the maximum
distance between the current word and the pre-
dicted word (e.g., how many neighboring words to
consider for each target word). Any word appear-
ing less than the minimum count number of times
in the corpus is discarded and not considered in the
word2vec algorithm. For both of these features,
we choose standard parameter settings, namely, a
window size of 5 and a minimum count of 5. For
GloVe, we also choose standard parameters. We

*All word2vec experiments reported here are run in a
multi-core setting, which means that these percentages are
approximate. However, comparable results were achieved us-
ing a single-core version of word2vec.
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Feature Weight
Lower training data position of word W -1.52
Higher training data position of W -1.49
Primary POS = Numeral 1.12
Primary POS = Other -1.08
Primary POS = Punctuation mark -1.02
Overlap between corpora vocab. 1.01
Primary POS = Adjective -0.92
Primary POS = Adposition -0.92
Do the two domains match? 0.91
Primary POS = Verb -0.88
Primary POS = Conjunction -0.84
Primary POS = Noun -0.81
Primary POS = Adverb -0.79
Do the two algorithms match? 0.78
Secondary POS = Pronoun 0.62
Primary POS = Determiner -0.48
Primary POS = Particle -0.44
Secondary POS = Particle 0.36
Secondary POS = Other 0.28
Primary POS = Pronoun -0.26
Secondary POS = Verb -0.25
Number of word2vec embeddings -0.21
Secondary POS = Adverb 0.15
Secondary POS = Determiner 0.14
Number of NYT Arts Domain -0.14
Number of NYT All Domain 0.14
Number of GloVe embeddings 0.13
Number of syllables -0.11

Table 4: Regression weights with a magnitude greater
than 0.1, sorted by magnitude.

use 50 iterations of the algorithm for embedding
dimensions less than 300, and 100 iterations for
higher dimensions.

We also add a feature reflecting the embedding
dimension, namely one of five embedding dimen-
sions: 50, 100, 200, 400, or 800.

5 Lessons Learned: What Contributes to
the Stability of an Embedding

Overall, the regression model achieves a coeffi-
cient of determination (R?) score of 0.301 on the
training data, which indicates that the regression
has learned a linear model that reasonably fits the
training data given. Using the regression model,
we can analyze the weights corresponding to each
of the features being considered, shown in Table 4.
These weights are difficult to interpret, because
features have different distributions and ranges.
However, we make several general observations
about the stability of word embeddings.

Observation 1. Curriculum learning is impor-
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Figure 3: Stability of both word2vec and GloVe as
properties of the starting word position in the training
data of the PTB. Stability is measured across ten ran-
domized embedding spaces trained on the training data
of the PTB (determined using language modeling splits
(Mikolov et al., 2010)). Boxes with more than 0.02%
of the total vocabulary mass are outlined.

tant. This is evident because the top two features
(by magnitude) of the regression model capture
where the word first appears in the training data.
Figure 3 shows trends between training data posi-
tion and stability in the PTB. This figure contrasts
word2vec with GloVe (which is order invariant).

To further understand the effect of curriculum
learning on the model, we train a regression model
with all of the features except the curriculum
learning features. This model achieves an R?
score of 0.291 (compared to the full model’s score
of 0.301). This indicates that curriculum learning
is a factor in stability.

Observation 2. POS is one of the biggest factors
in stability. Table 4 shows that many of the top
weights belong to POS-related features (both pri-
mary and secondary POS). Table 5 compares aver-
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Primary POS Avg. Stability
Numeral 47%
Verb 31%
Determiner 31%
Adjective 31%
Noun 30%
Adverb 29%
Pronoun 29%
Conjunction 28%
Particle 26%
Adposition 25%
Punctuation mark 22%

Table 5: Percent stability broken down by part-of-
speech, ordered by decreasing stability.

age stabilities for each primary POS. Here we see
that the most stable POS are numerals, verbs, and
determiners, while the least stable POS are punc-
tuation marks, adpositions, and particles.

Observation 3. Stability within domains is
greater than stability across domains. Table 4
shows that many of the top factors are domain-
related. Figure 4 shows the results of the regres-
sion model broken down by domain. This figure
shows the highest stabilities appearing on the di-
agonal of the matrix, where the two embedding
spaces both belong to the same domain. The sta-
bilities are substantially lower off the diagonal.

Figure 4 also shows that “All NYT” general-
izes across the other NYT domains better than
Europarl, but not as well as in-domain data (“All
NYT” encompasses data from US, NY, Business,
Arts, and Sports). This is true even though Eu-
roparl is much larger than “All NYT”.

Observation 4. Overall, GloVe is the most sta-
ble embedding algorithm. This is particularly
apparent when only in-domain data is considered,
as in Figure 5. PPMI achieves similar stability,
while word2vec lags considerably behind.

To further compare word2vec and GloVe, we
look at how the stability of word2vec changes
with the frequency of the word and the number of
neighbors used to calculate stability. This is shown
in Figure 6 and is directly comparable to Figure 2.
Surprisingly, the stability of word2vec varies sub-
stantially with the frequency of the word. For
lower-frequency words, as the number of near-
est neighbors increases, the stability increases ap-
proximately exponentially. For high-frequency
words, the lowest and highest number of nearest
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Figure 5: Percent stability broken down between algo-
rithm (in-domain data only).

neighbors show the greatest stability. This is dif-
ferent than GloVe, where stability remains reason-
ably constant across word frequencies, as shown
in Figure 2. The behavior we see here agrees with
the conclusion of (Mimno and Thompson, 2017),
who find that GloVe exhibits more well-behaved
geometry than word2vec.

Observation 5. Frequency is not a major factor
in stability. To better understand the role that fre-
quency plays in stability, we run separate ablation
experiments comparing regression models with
frequency features to regression models without
frequency features. Our current model (using raw
frequency) achieves an R? score of 0.301. Com-
parably, a model using the same features, but with
normalized instead of raw frequency, achieves a
score of 0.303. Removing frequency from either
regression model gives a score of 0.301. This indi-
cates that frequency is not a major factor in stabil-
ity, though normalized frequency is a larger factor
than raw frequency.

Finally, we look at regression models using only

frequency features. A model using only raw fre-
quency features has an R? score of 0.008, while
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Figure 6: Stability of word2vec on the PTB. Stability
is measured across ten randomized embedding spaces
trained on the training data of the PTB (determined us-
ing language modeling splits (Mikolov et al., 2010)).
Each word is placed in a frequency bucket (left y-axis)
and stability is determined using a varying number of
nearest neighbors for each frequency bucket (right y-
axis). Each row is normalized, and boxes with more
than 0.01 of the row’s mass are outlined.

a model with only normalized frequency features
has an R? score of 0.0059. This indicates that
while frequency is not a major factor in stability, it
is also not negligible. As we pointed out in the in-
troduction, frequency does correlate with stability
(Figure 1). However, in the presence of all of these
other features, frequency becomes a minor factor.

6 Impact of Stability on Downstream
Tasks

Word embeddings are used extensively as the first
stage of neural networks throughout NLP. Typi-
cally, embeddings are initalized based on a vector
trained with word2vec or GloVe and then further
modified as part of training for the target task. We
study two downstream tasks to see whether stabil-
ity impacts performance.

Since we are interested in seeing the impact of
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Figure 7: Absolute error for word similarity.

word vector stability, we choose tasks that have an
intuitive evaluation at the word level: word simi-
larity and POS tagging.

6.1 Word Similarity

To model word similarity, we use 300-dimensional
word2vec embedding spaces trained on the PTB.
For each pair of words, we take the cosine simi-
larity between those words averaged over ten ran-
domly initialized embedding spaces.

We consider three datasets for evaluating word
similarity: WS353 (353 pairs) (Finkelstein et al.,
2001), MTurk287 (287 pairs) (Radinsky et al.,
2011), and MTurk771 (771 pairs) (Halawi et al.,
2012). For each dataset, we normalize the simi-
larity to be in the range [0, 1], and we take the ab-
solute difference between our predicted value and
the ground-truth value. Figure 7 shows the results
broken down by stability of the two words (we al-
ways consider Word 1 to be the more stable word
in the pair). Word similarity pairs where one of the
words is not present in the PTB are omitted.

We find that these word similarity datasets do
not contain a balanced distribution of words with
respect to stability; there are substantially more
unstable words than there are stable words. How-
ever, we still see a slight trend: As the combined
stability of the two words increases, the average
absolute error decreases, as reflected by the lighter
color of the cells in Figure 7 while moving away
from the (0,0) data point.

6.2 Part-of-Speech Tagging

Part-of-speech (POS) tagging is a substantially
more complicated task than word similarity. We
use a bidirectional LSTM implemented using
DyNet (Neubig et al., 2017). We train nine sets of
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Figure 8: Results for POS tagging. (a) and (b) show
average POS tagging error divided by the number of to-
kens (darker is more errors) while either keeping word
vectors fixed or not during training. (c) shows word
vector shift, measured as cosine similarity between ini-
tial and final vectors. In all graphs, words are bucketed
by frequency and stability.

128-dimensional word embeddings with word2vec
using different random seeds. The LSTM has a
single layer and 50-dimensional hidden vectors.
Outputs are passed through a ranh layer before
classification. To train, we use SGD with a learn-
ing rate of 0.1, an input noise rate of 0.1, and re-
current dropout of 0.4.

This simple model is not state-of-the-art, scor-
ing 95.5% on the development set, but the word
vectors are a central part of the model, provid-
ing a clear signal of their impact. For each word,
we group tokens based on stability and frequency.

Figure 8 shows the results.” Fixing the word vec-
tors provides a clearer pattern in the results, but
also leads to much worse performance: 85.0% on
the development set. Based on these results, it
seems that training appears to compensate for sta-
bility. This hypothesis is supported by Figure 8c,
which shows the similarity between the original
word vectors and the shifted word vectors pro-
duced by the training. In general, lower stability
words are shifted more during training.

Understanding how the LSTM is changing the
input embeddings is useful information for tasks
with limited data, and it could allow us to im-
prove embeddings and LSTM training for these
low-resource tasks.

7 Conclusion and Recommendations

Word embeddings are surprisingly variable, even
for relatively high frequency words. Using a re-
gression model, we show that domain and part-of-
speech are key factors of instability. Downstream
experiments show that stability impacts tasks us-
ing embedding-based features, though allowing
embeddings to shift during training can reduce this
effect. In order to use the most stable embed-
ding spaces for future tasks, we recommend ei-
ther using GloVe or learning a good curriculum
for word2vec training data. We also recommend
using in-domain embeddings whenever possible.
The code used in the experiments described
in this paper is publicly available from http:
//1lit.eecs.umich.edu/downloads.html.
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