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Lea Frermann3 Anders Søgaard2

1Department of Nordic Studies and Linguistics, University of Copenhagen, Denmark
2Department of Computer Science, University of Copenhagen, Denmark

3Amazon Development Center, Berlin, Germany
barrett@hum.ku.dk {ana, soegaard}@di.ku.dk

lfrerman@amazon.com

Abstract

When learning POS taggers and syntactic
chunkers for low-resource languages, differ-
ent resources may be available, and often
all we have is a small tag dictionary, mo-
tivating type-constrained unsupervised induc-
tion. Even small dictionaries can improve the
performance of unsupervised induction algo-
rithms. This paper shows that performance can
be further improved by including data that is
readily available or can be easily obtained for
most languages, i.e., eye-tracking, speech, or
keystroke logs (or any combination thereof).
We project information from all these data
sources into shared spaces, in which the union
of words is represented. For English unsuper-
vised POS induction, the additional informa-
tion, which is not required at test time, leads to
an average error reduction on Ontonotes do-
mains of 1.5% over systems augmented with
state-of-the-art word embeddings. On Penn
Treebank the best model achieves 5.4% error
reduction over a word embeddings baseline.
We also achieve significant improvements for
syntactic chunk induction. Our analysis shows
that improvements are even bigger when the
available tag dictionaries are smaller.

1 Introduction

It is a core assumption in linguistics that humans
have knowledge of grammar and that they use
this knowledge to generate and process language.
Reading, writing, and talking leave traces of this
knowledge and in psycholinguistics this data is
used to analyze our grammatical competencies.
Psycholinguists are typically interested in falsify-
ing a specific hypothesis about our grammatical
competencies and therefore collect data with this
hypothesis in mind. In NLP, we typically require
big, representative corpora. NLP usually has in-
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duced the models from expensive corpus annota-
tions by professional linguists, but recently, a few
researchers have shown that data traces from hu-
man processing can be used directly to improve
NLP models (Klerke et al., 2016; Barrett et al.,
2016; Plank, 2016).

In this paper, we investigate whether unsuper-
vised POS induction and unsupervised syntactic
chunking can be improved using human text pro-
cessing traces. We also explore what traces are
beneficial, and how they are best combined. Our
work supplements psycholinguistic research by
evaluating human data on larger scale than usual,
but more robust unsupervised POS induction also
contributes to NLP for low-resource languages for
which professional annotators are hard to find, and
where instead, data from native speakers can be
used to augment unsupervised learning.

We explore three different modalities of data
reflecting human processing plus standard, pre-
trained distributional word embeddings for com-
parison, but also because some modalities might
fare better when combined with distributional
vectors. Data reflecting human processing come
from reading (two different eye-tracking corpora),
speaking (prosody), and typing (keystroke log-
ging). We test three different methods of combin-
ing the different word representations: a) canon-
ical correlation analysis (CCA) (Faruqui and
Dyer, 2014b) and b) singular value decompo-
sision and inverted softmax feature projection
(SVD+IS) (Smith et al., 2017) and c) simple con-
catenation of feature vectors.

Contributions We present experiments in unsu-
pervised POS and syntactic chunk induction using
multi-modal word representations, obtained from
records of reading, speaking, and writing. Indi-
vidually, all modalities are known to contain syn-
tactic processing signals, but to the best of our
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knowledge, we are the first to combine them in
one model. Our work extends on previous work
in several respects: (a) We compare using data
traces from gaze, speech, and keystrokes. (b) We
consider three ways of combining such informa-
tion that do not require access to data from all
modalities for all words. (c) While some previ-
ous work assumed access to gaze data at test time,
our models do not assume access to any modali-
ties at test time. (d) We evaluate how much the ad-
ditional information helps, depending on the size
of the available tag dictionary. (e) While related
work on keystrokes and prosody focused on a sin-
gle feature, all our word representations are multi-
dimensional and continuous.

2 Related work

Eye-tracking data reflect the eye movements
during reading and provide millisecond-accurate
records of the readers fixations. It is well estab-
lished that the duration of the fixations reflect
the processing load of the reader (Rayner, 1998).
Words from closed word classes are usually fix-
ated less often and for shorter time than words
from open word classes (Rayner and Duffy, 1988).
Psycholinguistics, however, is generally not inter-
ested in covering all linguistic categories, and psy-
cholinguists typically do not study corpora, but
focus instead on small suites of controlled exam-
ples in order to explore human cognition. This is
in contrast with NLP. Some studies have, how-
ever, tried to bridge between psycholinguistics and
NLP. Demberg and Keller (2008) found that eye
movements reflected syntactic complexity . Bar-
rett and Søgaard (2015a) and Barrett and Søgaard
(2015b) have tried to–respectively–predict a full
set of syntactic classes and syntactic functions
across domains in supervised setups. Barrett et al.
(2016), which is the work most similar to ours,
used eye-tracking features from the Dundee Cor-
pus (Kennedy et al., 2003), which has been aug-
mented with POS tags by Barrett et al. (2015).
They tried for POS induction both on token-
level and type-level features. They found that eye-
tracking features significantly improved tagging
accuracy and that type-level eye-tracking features
helped more than token-level. We use the same ar-
chitecture as Barrett et al. (2016).

Keystroke logs also reflect the processing du-
rations, but of writing. Pauses, burst and revisions
in keystroke logs are used to investigate the cogni-

tive process of writing (Matsuhashi, 1981; Baaijen
et al., 2012). Immonen and Mäkisalo (2010) found
that for English-Finnish translation and monolin-
gual Finnish text production, predicate phrases are
often preceded by short pauses, whereas adpo-
sitional phrases are more likely to be preceded
by long pauses. Pauses preceding noun phrases
grow with the length of the phrase. They sug-
gest that the difference is explained by the pro-
cessing of the predicate begins before the produc-
tion of the clause starts, whereas noun phrases and
adpositional phrases are processed during writ-
ing. Pre-word pauses from keystroke logs have
been explored with respect to multi-word expres-
sions (Goodkind and Rosenberg, 2015) and have
also been used to aid shallow parsing (Plank,
2016) in a multi-task bi-LSTM setup.

Prosodic features provide knowledge about
how words are pronounced (tone, duration, voice
etc.). Acoustic cues have already been used to im-
prove unsupervised chunking (Pate and Goldwa-
ter, 2011) and parsing (Pate and Goldwater, 2013).
Pate and Goldwater (2011) cluster the acoustic
signal and use cluster label as a discrete feature
whereas Pate and Goldwater (2013) use a quan-
tized word duration feature.

Plank (2016) and Goodkind and Rosen-
berg (2015) also used a single keystroke feature
(keystroke pre-word pause) and the former study
also discretized the feature. Our work, in contrast,
uses acoustic and keystroke features as multi-
dimensional, continuous word representations.

3 Modalities

In our experiments, we begin with five sets of
word representations: prosody, keystroke, gaze as
recorded in the GECO corpus, gaze as recorded in
the Dundee corpus, as well as standard, text-based
word embeddings from eigenwords. See below for
details and references. All modalities except the
pre-trained word embeddings reflect human pro-
cessing of language. For all modalities, we use
type-level-averaged features of lower-cased word
types.

The choice of using type-averaged features is
motivated by Barrett et al. (2016), who tried both
token-level and type-averaged eye-tracking fea-
tures for POS induction and found that type-
level gaze features worked better than token-level.
Type-averaged features also have the advantage of
not relying on access to the auxillary data at test
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Figure 1: The percentage of overlapping word
types for pairs of modalities. Overlapping words
are used for projecting word representations into
a shared space. Read column-wise. E.g. when
combining eigenwords and prosody, only 1.2% of
the 46973 eigenvector word types are overlapping
(bottom left), and 97.8% of the 598 prosody word
types are overlapping (top right).

time. Type-level averages are simply looked up in
an embedding file for all previously seen words.
On the other hand, type-level features obviously
do not represent ambiguities, e.g., beat as a verb
and a noun separately. All our features, except log-
transformed word frequencies were normalized.

We run unsupervised induction experiments for
all (25 − 1 = 31) combinations of our five
data sources on the development sets to determine
which data types contribute to the task. We con-
sider three different ways of combining modali-
ties, two of which learn a projection into a shared
space using word overlap as supervision, and one
simply concatenates the embedding spaces. The
combination methods are further described in §4.

We list the number of word types per modal-
ity and percentage of pair-wise overlapping words
in Figure 1. We only use existing data from na-
tive speaking participants, for reproducibility and
in order not to get learner effects ie. biases intro-
duced by non-native speakers. §3.2-3.5 describe
each modality in detail, and how we compute the
word representations. §3.1 describes a set of basic
features used in all of our experiments.

3.1 Basic features

Like Li et al. (2012), we append a small set of ba-
sic features to all our feature sets: features relating
to orthography such as capitalization, digits and
suffix. Furthermore we append log word frequency
and word length. Word frequencies per million are

Modality n found pairs Weigh. av. cor.

Prosody 31 0.369
Keystroke 1082 0.060
GECO 2449 -0.030
Dundee 4066 -0.035
Eigenwords 9828 0.197

Table 1: Results on word association norms from
wordvectors.org Correlation weighted by number
of found pairs per word embedding type.

obtained from British National corpus (BNC) fre-
quency lists (Kilgarriff, 1995). Word length and
word frequency explain around 70% of the vari-
ance in the eye movement (Carpenter and Just,
1983) and are therefore also important for estimat-
ing the impact of gaze features beyond such infor-
mation. Plank (2016) used keystroke features for
shallow chunking and did not find any benefit of
normalizing word length by pre-word pause before
typing each word, but Goodkind and Rosenberg
(2015) did find a strong logarithmic relationship
between word length and pre-word pause as well
as between word frequency and pre-word pause.

3.2 Dundee and GECO eye-tracking corpora

We use two different eye-tracking corpora. The
GECO corpus (Cop et al., 2017) and the Dundee
Corpus (Kennedy et al., 2003) are the two largest
eye movement corpora with respect to word count.
We use the native English part of the GECO cor-
pus and the English part of the Dundee Corpus.
The GECO corpus is publicly available1 and the
Dundee Corpus is available for research purposes.

Participants and data The Dundee Corpus is
described in Kennedy and Pynte (2005). The
Dundee Corpus consists of the eye movements of
10 readers as they read the same 20 newspaper
articles. For GECO, all 14 participants in the na-
tive English part read a full Agatha Christie novel.
Both corpora contain > 50.000 words per reader.
All participants for both corpora are adult, native
speakers of English and skilled readers.

Self-paced reading Both eye-tracking corpora
reflect natural reading by making the reading self-
paced and using naturally-occurring, contextual-
ized text.

1http://expsy.ugent.be/downloads/geco/
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Features Eye movements–like most features re-
flecting human processing–are very susceptible to
experiment-specific effects e.g. instructions and
order effects such as fatigue. Furthermore, the
GECO corpus has a slightly different eye move-
ment feature set than what we have for the Dundee
corpus. Therefore we treat the two eye move-
ment corpora as two individual modalities in or-
der to assess their individual contributions. GECO
has 34 features reflecting word-based processing.
Dundee has 30 word-based features that were ex-
tracted from the raw data and previously used
for POS induction by Barrett et al. (2016). For
GECO, we use the features that are already ex-
tracted by the authors of the corpus. Both corpora
include five word-based features e.g., first fixation
duration (which is a measure said to reflect early
syntactic and semantic integration), total fixation
time and fixation probability. The Dundee Corpus
has more features concerning the context words
whereas GECO has pupil size and many features
distinguishing the different passes over a word.

3.3 Prosody

The prosody features are described in detail in Fr-
ermann and Frank (2017) and are freely avail-
able.2 They are derived from the Brent (Brent
and Siskind, 2001) and Providence (Demuth
et al., 2006) portions of the CHILDES cor-
pus (MacWhinney, 2000), comprising longitudi-
nal datasets of raw speech directed to 22 children,
and its transcription. Word-level speech-text align-
ments were obtained automatically using forced
alignment. For each token-level audio snippet, a
set of 88 prosody features was extracted based on
a previously established feature set (Eyben et al.,
2016), including standard features derived from
F0–F3 formants, spectral shape and rhythm fea-
tures, intensity and MFCC features among others.
Type-level prosody features were obtained as av-
eraged token-level features for each word type.

3.4 Keystroke features

We extracted keystroke features from the publicly
available data from Killourhy and Maxion (2012).
This data contains key hold times and pauses of all
key presses of 20 subjects as they completed tran-
scription and free composition tasks. We only used
data from the free composition part. A pause is de-
fined by the authors as the duration from keydown

2https://github.com/ColiLea/prosodyAOA

to keydown. The free composition data consists of
a total of 14890 typed words and 2198 word types.

For each word, we extracted the following fea-
tures: (i) average key hold duration of all charac-
ters associated with producing the word, (ii) pre-
word pause, (iii) hold duration of space key before
word, (iv) pause length of space key press pause
before word, and (v) ratio of keypresses used in
the word production to length of the final word.
For each word, we also included these five fea-
tures for up to 3 words before. In total, we have
5 ∗ 4 = 20 keystroke features. We use lower-cased
word type averages, as with the other modalities.

3.5 Eigenwords

Eigenwords are standard, pre-trained word em-
beddings, induced using spectral-learning tech-
niques (Dhillon et al., 2015). We used the 30-
dimensional, pre-trained eigenvectors.3

3.6 Preliminary evaluation

Our application of these word representations and
their combinations is unsupervised POS and syn-
tactic chunk induction, but before presenting our
projection methods in §4 and our experiments in
§5, we present a preliminary evaluation of the dif-
ferent modalities using word association norms.

Table 1 shows the weighted correlation between
cosine distances in the representations and the hu-
man ratings in the word association norm datasets
available at wordvectors.org (Faruqui and
Dyer, 2014a). Eigenwords, not surprisingly, cor-
relates better than the representation based on pro-
cessing data – with the exception of prosody. The
correlation with prosody is non-significant, how-
ever, because of the small sample size.

4 Combining datasets

We now have word representations from differ-
ent, complementary modalities, with very differ-
ent coverages, but all including a small overlap.
We assume that the different modalities contain
complementary human text processing traces be-
cause they reflect different cognitive processes,
which motivates us to combine these different
sources of information. Our assumption is con-
firmed in the evaluation. The fact that we have
very low coverage for some modalities, and the

3http://www.cis.upenn.edu/˜ungar/
eigenwords/
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fact that we have an overlap between all our vo-
cabularies, specifically motivates an approach, in
which we use the intersection of word types to
learn a projection from two or more of these
modalities into a shared space. Obviously, we can
also simply concatenate our representations, but
because of the low coverage of some modalities
and because co-projecting modalities has some
regularization effect, we hypothesize that it is bet-
ter to learn a projection into a shared space. This
hypothesis is verified by the results in §6.

4.1 Concatenating modalities
The simplest way of combining the modalities is
concatenating the corresponding vectors for each
word. The different modalities have different di-
mensionalities, so we would need to perform di-
mensionality reduction to sum or average vectors,
and the non-overlapping words don’t allow for e.g.
taking the outer product, so we simply concatenate
the vectors instead. We use 0 for missing values.

4.2 CCA
§4.2 and §4.3 describe two different projection
methods for projecting the representations in the
different modalities into a shared space. We use
the intersection of the lower-cased vocabulary for
the alignment, i.e., as a supervision signal. For ex-
ample, if the words man, dog and speak exist in
both eigenword and keystroke data, from these 2
x 3 vectors, CCA estimate the transformation for
the vectors for house, cat and boy, which (in this
example) only exists in the keystroke data.

Canonical Correlation Analysis (CCA), as orig-
inally proposed by Hotelling (1936), is a method
of finding the optimum linear combination be-
tween two sets of variables, so the set of variables
are transformed onto a projected space while the
correlation is maximized. We use the implemen-
tation of Faruqui and Dyer (2014b) made for cre-
ating bilingual embeddings. We use modalities in-
stead of languages. The size of the projected space
is smaller than or equal to the original dimension.

We incrementally combine modalities and
project them to new, shared spaces using the in-
tersection of the lower-cased vocabulary. We add
them by the order of word type count starting with
the modality with most word types. For the first
projection only, we reduce the size of the projected
space. We set the ratio of the first projected space
(only two modalities) to 0.6 based on POS induc-
tion results on development data using the setup

described in §5.

4.3 SVD and Inverted Softmax

As an alternative to CCA, but closely related, we
also use a projection method proposed and imple-
mented by Smith et al. (2017), which uses sin-
gular value decomposition and inverted softmax
(SVD+IS). This method uses a reference space,
rather than projecting all modalities into a new
space. Smith et al. (2017) apply SVD+IS to obtain
an orthogonal transformation matrix that maps the
source language into the target language. In ad-
dition, in order to estimate their confidence on
the predicted target, they use an inverted softmax
function for determining the probability that a tar-
get word translates back into a source word.

Like for CCA, we incrementally project
datasets onto each other starting with the most
word-type rich modality. We use the highest di-
mensionality of any of our representations (88 di-
mensions).

5 Experiments

This section presents our POS and syntactic chunk
induction experiments. We present the datasets we
used in our experiments, the sequence tagging ar-
chitecture, based on second-order hidden Markov
models, as well as the dictionary we used to con-
strain inference at training and test time.

5.1 Data

For unsupervised POS induction, we use
Ontonotes 5.0 (Weischedel et al., 2013) for
training, development and test. We set all hyper-
parameters on the newswire (NW) domain,
optimizing performance on the development set.
Size of the development set is 154,146 tokens.
We run individual experiments on each of the
seven domains, with these hyper-parameters,
reporting performance on the relevant test set.
The domains are broadcast conversation (BC),
broadcast news (BN), magazines (MZ), newswire
(NW), the Bible (PT), telephone conversations
(TC), and weblogs (WB). We also train and test
unsupervised POS induction on the CoNLL 2007
(Nivre et al., 2007) splits of the Penn Treebank
(Marcus et al., 1993) using the hyper-parameter
settings from Ontonotes. We mapped all POS
labels to Google’s coarse-grained, universal POS
tagset (Petrov et al., 2012). For model selection,
we select based both on best results on Ontonotes
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Rules

DET → NP
VERB → VP

NOUN|PRONOUN|NUM → NP
. → O

ADJ → NP|ADJP
ADV → NP|VP|ADVP|AD
PRT → NP|PRT

CONJ → O|NP
ADP → PP|VP|SBAR

Table 2: Heuristics for expanding our POS dictionary to
chunks

NW development as well as Penn Treebank
development sets.

For syntactic chunk induction, we use the brack-
eting data from Penn Treebank with the standard
splits for syntactic chunking. We tune hyperpa-
rameters for chunking on the development set and
select best models based on the development re-
sult.

5.2 Model

We used a modification of the implementation of
a type-constrained, second-order hidden Markov
model with maximum entropy emissions from Li
et al. (2012) (SHMM-ME). It is a second-order
version of the first order maximum entropy HMM
presented in (Berg-Kirkpatrick et al., 2010) with
the important addition that it is constrained by a
crowd-sourced tag dictionary (Wiktionary). This
means that for all words in the Wiktionary, the
model is only allowed to predict one of the tags
listed for it in Wiktionary

The same model was used in Barrett et al.
(2016) to improve unsupervised POS inducing us-
ing gaze data from the Dundee Corpus, and in Bin-
gel et al. (2016) to augment an unsupervised POS
tagger with features from fMRI recordings.

The number of EM iterations used for inducing
our taggers was tuned using eigenvector embed-
dings on the development data, considering values
1..50. PoS performance peaked at iterations 30 and
31. We use 30 in all our POS experiments. For syn-
tactic chunking, we use 48 iterations, which led
to the best performance on the PTB development
data using only eigenword embeddings.

5.3 Wiktionary

The Wiktionary constrains the predicted tags in
our model. The better the Wiktionary, the better
the predictions.

For POS-tagging we used the same Wiktionary

Feature set TA

No embeddings 60.32
Eigenwords 59.26

Best combined models

CCA Dun GECO Pros 63.33*†
SVD+IS GECO Key Pros 62.91*
Concat Eig GECO Key 61.16

Table 3: Chunk tagging accuracy. Best models
from CCA, SVD+IS and concatenation. Model
section on development set. * p < .001 Mcnemar
mid-p test when comparing to no embeddings. †
p < .001 Mcnemar mid-p test when comparing to
Eigenwords.)

dump4 that Li et al. (2012) used in their orig-
inal experiments. The Wiktionary dump associ-
ated word types with Google’s universal parts-of-
speech labels.

For chunking, Wiktionary does not provide
direct information about the possible labels of
words. We instead apply simple heuristics to re-
late POS information to syntactic chunking labels.
Since we already know the relation between words
and POS labels from Wiktionary, we can compute
the transitive closure in order to obtain a dictionary
relating words with syntactic chunking labels. We
present the heuristics in Table 2.

Note that the rules are rather simple. We do not
claim this is the best possible mapping. We are re-
lying on these simple heuristics only to show that
it is possible to learn syntactic chunkers in an un-
supervised fashion by relying on a combination of
features from different modalities and a standard,
crowd-sourced dictionary.

6 Results

All our POS tagging accuracies can be seen in
Table 4. Our first observation is that human pro-
cessing data helps unsupervised POS induction. In
fact, the models augmented with processing data
are consistently better than the baseline without
vector representations, as well as better than only
using distributional word embeddings.

Generally, CCA seems to find the best projec-
tion into a common space for system combina-
tions. For Penn Treebank, the CCA-aligned model
is the best and this result is significant (p <

4https://code.google.com/archive/p/wikily-supervised-
pos-tagger/
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Ontonotes PTB
Feature set BC BN MZ NW PT TC WB avg

No embeddings 83.1 84.41 85.32 84.94 85.14 77.8 85.93 83.81 82.83
Eigenwords 83.16 84.68* 85.48 85.07 85.31 78.07 85.88 83.95 83.38*

Best Ontonotes NW models

CCA Eig Dun 83.45*† 84.99* 85.79* 85.38*† 85.2 77.99 86.38*† 84.17 84.28*†
SVD+IS Dun GECO Key 83.24 84.76 86.22*† 85.33*† 85.44 77.84 85.95 84.11 84.25*†
Concat Eig Dun GECO 83.39*† 84.78* 85.8*† 85.36*† 85.45 78.38* 86.21† 84.19 83.91*†

Best PTB models

CCA Eig Dun 83.45*† 84.99* 85.79* 85.38*† 85.2 77.99 86.38*† 84.17 84.28*†
SVD+IS Dun Key 83.24 84.59 86.12*† 85.28*† 85.39 77.90 85.86 84.05 84.24*†
Concat Eig Pros 83.22 84.54 85.67 85.01 84.98 77.98 85.97 83.91 84.22*†

Table 4: POS tagging accuracies for baselines and the model combinations that performed best on
newswire development data (NW). Best performance per domain is boldfaced. *) p < .001 McNemar
mid-p test when compared to the no embeddings condition for the corresponding test set. †) p < .001
McNemar mid-p test when compared to eigenwords for the corresponding test set.

.001) when comparing both to no embeddings and
eigenwords. For Ontonotes 5.0, CCA is better than
the other projection methods in 4/7 domains, but
when averaging, concatenation gets the higher re-
sult.

The standard embeddings are often part of the
best combinations, but the human processing data
contributes with important information; in 4/7 do-
mains as well as on PTB data, we see a signifi-
cantly better performance (p < .001) with a com-
bination of modalities when comparing to eigen-
words.

Aligning Dundee with eigenwords is the best
POS model both according to the Ontonotes 5.0
NW development set and the Penn Treebank de-
velopment set. Dundee is the most frequent modal-
ity in the six best POS induction models with five
appearances. Eigenwords is second most frequent
with four appearances.

The syntactic chunking accuracies are in Ta-
ble 3. Also here CCA is the better combination
method. For chunking, all combined models are
better than no embeddings and eigenwords. The
improvement is significant compared to no embed-
dings for concatenation p < .001. For CCA, the
result is significantly better than no embeddings
and eigenwords.

For chunking, GECO data appears in all best
models and is thus the most frequent modalities.
Keystroke and prosody appears in two best mod-
els each.

Keystroke Dundee GECO

Dundee 16.84
GECO 11.39 1.02
CCA all 13.98 3.72 3.09

Table 5: Graph similarities in [0,∞), 0 = identical.

7 Analysis

7.1 What is in the vectors?

Nearest neighbor graphs We include a detailed
analysis of subgraphs of the nearest neighbor
graphs in the embedding spaces of keystrokes,
Dundee, GECO, and CCA projection of all modal-
ities. Specifically, we consider the nearest neigh-
bor graphs among the 15 most frequent unam-
bigous nouns, according to Wiktionary.5 See Fig-
ure 2 for plots of the nearest neighbor graphs. The
prosody features containing less than 600 word
types only contained 2 of the 15 nouns and is
therefore not included in this analysis.

Projecting word representations into a shared
space using linear methods assumes approximate
isomorphism between the embedding spaces - or
at least their nearest neighbor graphs. We use the
VF2 algorithm (Cordella et al., 2001) to verify that
the subgraphs are not isomorphic, but this can also
be seen directly from Figure 2. Neither keystroke
and gaze embeddings, nor the two different gaze-
induced embeddings are isomorphic.

5Wiktionary is a crowd-sourced, imperfect dictionary, and
one of the ”unambiguous nouns” is spends, which, we as-
sume, you are more likely to encounter as a verb.
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(a) Keystroke (b) Dundee

(c) Geco (d) CCA projection, all modalities
Figure 2: Nearest neighbor graphs for 15 frequent nouns.

Since none of the modalities induce isomor-
phic nearest neighbor graphs, this does not tell
us much about similarities between modalities. To
quantify the similarity of non-isomorphic graphs,
we use eigenvector similarity Shigehalli and Shet-
tar (2011), which we calculate by computing the
Laplacian eigenvalues for the nearest neighbors,
and for each graph, find the smallest k such that
the sum of the k largest eigenvalues is <90% of
the eigenvalues. We then take the smallest k of the
two, and use the sum of the squared differences
between the largest k eigenvalues as our similarity
metric.

Using this metric to quantify graph similarity,
we see in Table 5 that, not surprisingly, the gaze
graphs are the most similar. The projected space
is more similar to the gaze spaces, but balances
gaze and keystroke information. The GECO em-
beddings agree more with the keystrokes than the
Dundee embeddings does.

t-SNE plots We take words that–according to
the Wiktionary–can only have one tag and sort
them by BNC frequency (Kilgarriff, 1995) in de-
scending order. For these words and their POS tags
we get the feature vector of the POS model yield-
ing the highest result on both Ontonotes and PTB:
CCA-projected eigenwords and Dundee features.
For the first 200 occurrences of the frequency-
sorted list, we reduce dimensionality using t-
Distributed Stochastic Neighbor Embedding (t-
SNE) (Maaten and Hinton, 2008) and plot the re-
sult. Figure 3 shows that 200 most frequent con-
tent words cluster with respect to their POS tag,
somewhat distinguishing verbs from nouns and
adjectives from adverbs in CCA space.

7.2 How big a Wiktionary do we need?

Our Wiktionary for English contains POS infor-
mation for 72,817 word types. Word types have
6.2 possible POS categories on average meaning
we have over 450.000 entries in our POS dic-
tionary. For Penn Treebank, 70.0% of wordtypes
of the test set are covered by the dictionary. For
the chunking data, 70.4% of wordtypes of the
test set are covered by the dictionary. The En-
glish Wiktionary is thus much bigger than wik-
tionaries for low-resource language (Garrette and
Baldridge, 2013). How big a dictionary is needed
to achieve good performance, and can we get away
with a smaller dictionary if we have processing
data? This section explores the performance of the
model as a function of the Wiktionary size.

We sorted the Wiktionary by word frequency
obtained from BNC (Kilgarriff, 1995) and in-
creased the Wiktionary size for the best POS sys-
tem starting with 0 (no dictionary). For each Wik-
tionary size, we compare with the baseline with-
out access to processing data and eigenwords. The
learning curve can be seen in Figure 4a and Fig-
ure 4b. We observe that having entries for the most
frequent words is a lot better than having no dic-
tionary, and that the difference between our best
system and the baseline exists across all dictionary
sizes. With 10,000 entries, all systems seems to
reach a plateau.

8 Discussion

Genres and domains When collecting our
human language processing data, we did not
control for genre. Our data sets span child-
directed speech, free text composition, and skilled
adults reading fiction and newspaper articles. The

2035



20 10 0 10 20 30

20

10

0

10

20 NOUN VERB

(a) NOUN and VERB

20 10 0 10 20

30

20

10

0

10

20

30 ADJ VERB

(b) ADJ and VERB
Figure 3: t-SNE plots of CCA-projected
eigen dundee features for pairs of tags.
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Figure 4: Learning curve assuming Wiktionary en-
tries for k most frequent words, comparing our
best PoS induction system against our baseline.
On Ontonotes WB development data, 30 training
iterations.

Dundee corpus (newspaper articles) matches the
genre of at least some of the Ontonotes test set.
Immonen and Mäkisalo (2010) found that for
keystroke, genre does seem to have an effect on
average pause length, be it sentence initial, word
initial, clause initial or phrase initial. Texts orga-
nized linearly–e.g. reports and narratives–require
less pausing than texts with a global approach, like
expository, persuading and generalizing text. Our
results show that human processing features trans-
fer across genres, but within-genre data would
probably be beneficial for results.

Richer representations The type-level features
we use, do not take context into account, and the
datasets we use, are too small to enrich our rep-
resentations. Human processing data is more and
more readily available, however. Eye trackers are
probably built into the next generation of con-
sumer hardware, and speech records and keystroke
logs are recordable with existing technology.

9 Conclusion

We have shown how to improve unsupervised
POS induction and syntactic chunking signifi-
cantly using data reflecting human language pro-
cessing. Our model, which is a second-order hid-
den Markov model, is the first to combine multidi-
mensional, continuous features of eye movements,
prosody and keystroke logs. We have shown that
these features can be combined using projection
techniques, even when they only partially over-
lap in word coverage. None of our models re-
quire access to these features at test time. We ex-
perimented with all combinations of modalities,
and our results indicate that eye tracking is use-
ful for both chunking and POS induction. Finally,
we have shown that the potential impact of human
processing data also applies in a low-resource set-
ting, i.e., when available tag dictionaries are small.
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