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Abstract

This paper explores the time course of lexi-
cal memory retrieval by modeling fluent lan-
guage production. The duration of retrievals
is predicted using the ACT-R cognitive archi-
tecture. In a large-scale observational study of
a spoken corpus, we find that language pro-
duction at a time point preceding a word is
sped up or slowed down depending on activa-
tion of that word. This computational analy-
sis has consequences for the theoretical model
of language production. The results point to
interference between lexical and phonological
stages as well as a quantifiable buffer for lexi-
cal information that opens up the possibility of
non-sequential retrievals.

1 Introduction

Speech varies greatly in fluency, and some of its
speed variation can be traced to the utterance spo-
ken (Jespersen, 1992). Low-frequency words, for
instance, are known to slow down speech (e.g.,
Bell et al., 2009). Variables correlated with flu-
ency give valuable cues to the architecture of the
language processing system. However, a model to
explain these data has yet to emerge.

In this paper, we propose a cognitive model of
fluency, in which lexical memory retrievals may
explain some of the variability in speech rates. In
particular, frequency, context and recent uses to-
gether have the potential to quantify retrieval de-
lays through activation (Anderson, 1991). Acti-
vation, in its most common usage, refers to the
way nodes in semantic networks become easier to
retrieve after adjacent nodes have been activated,
typically through a presentation (Collins and Lof-
tus, 1975). In particular, activation makes a direct
claim that more highly activated words require less
time to retrieve, and vice versa (Anderson, 1983).

The language production process as a whole
likely requires some amount of sequential process-

ing. For instance, the standard model proposes
that an idea is generated, lexicalized, grammati-
cally and morphologically encoded, and only then
phonologically encoded (Bock and Levelt, 2002).
Still, most models of language production pre-
suppose some amount of planning of output (e.g.,
Pickering and Garrod, 2013), so we could instead
divide language production into planning this out-
put and the actual process of outputting. The over-
lap and relationship of these processes is not fully
understood, but given that most output is likely
planned, the scale at which the planning takes
place and the amount of time between planned
output and the actual process of outputting re-
mains unclear. However, if interactions between
processes are observed, then we can likewise see
when they overlap in time.

To summarize, we are suggesting that some of
the variance in speech rate is not due to the lin-
guistic properties of the words currently or about
to be outputted, but the words still in the plan-
ning phase. We propose a model that uses a buffer
of several words between initial retrieval and out-
put, during which grammatical and morphological
encoding take place. We examine this by calcu-
lating retrieval activation for a word and evaluat-
ing the influence of that activation on the empiri-
cal speech timing several words beforehand, using
the Switchboard corpus. The effect of activation
is distributed over preceding words in a way that
is characteristic of a shared-resource, buffer-based
account of language production.

2 Related Work

2.1 Stages of Language Production

Grammatical encoding can be divided into
functional and positional processing steps
(Bock and Levelt, 2002).  The functional step
selects lexical items and assigns functions, while
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the positional step then combines the items to
produces constituents. In our account, we expect
that these mutually dependent steps work in
parallel.

An important early part of functional process-
ing retrieves lexical information, which we will
examine in this paper. We evaluate the conse-
quences of lexical access, which is assumed to be
affected by the cost associated with any retrieval
from declarative memory. Much discussion in this
area has concerned the question whether lexical
access happens in a single stage (Dell et al., 1997)
or in multiple stages and overlaps with grammat-
ical encoding (Caramazza, 1997; Roelofs et al.,
1998; Caramazza, 2006). Here, we follow ACT-
R’s serial and partially symbolic nature, which
in turn leads to some theoretical commitments
to non-parallel processing: language production
is staged and discrete. Nonetheless, each stage
can be composed of several steps, and steps from
syntactic and phonological processing likely in-
terleave. This is compatible with empirical find-
ings and the overall theoretical debate (Ferreira
and Slevc, 2007). The precise timeline of process-
ing is unclear, but as we will argue in this paper,
large-scale speech data can give us usable clues to
that effect.

2.2 Incrementality in Language Production

The second issue we address concerns the timing
of memory retrievals, which is also related to the
idea of incremental processing. It is a commonly
implied assumption that language processing pro-
ceeds incrementally. In grammatical encoding,
this property concerns when and in which order
syntactic choices are made. For instance, all of
them could be made before phonological process-
ing starts (non-incremental case), or they could be
made in order as necessary. Existing high-level
models of language production proceed incremen-
tally at various steps in a chain of content selec-
tion, aggregation and sentence realization (e.g.,
Bock and Levelt, 2002; Guhe, 2007).

Ferreira (1996) makes an argument for incre-
mentality, based on the observation that com-
petitive syntactic alternatives facilitate production
rather than making it more difficult. An incremen-
tal account of sentence realization would predict
such an effect, as syntactic “flexibility” introduced
by the alternatives makes it easier to find a work-
able syntactic decision. By contrast, without in-

cremental commitment to each structure, compet-
ing material slows down the process, because it
would lead to combinatory explosion. However,
later results establish nuance. Ferreira and Swets
(2002) show that incremental production is possi-
ble, but it is “under strategic control”; it depends
on semantic information, and it could be modu-
lated by external factors, such as stress.

If processing were fully incremental, then it
would follow that lexical memory retrievals are
also fully incremental. The order words are re-
trieved in would be the same as the order words
are eventually outputted in. However, if other fea-
tures modulate this, then it would imply that incre-
mental processing is instead variable, as suggested
by earlier accounts.

2.3 Speech Rates

Several studies have illustrated the effects of fre-
quency, recency, and context (Bell et al., 2009;
Arnon and Priva, 2014) on speech rates. These
studies motivated our modelling choices, as re-
cency, frequency, and context are also the key
components of the ACT-R theory of memory.

Recent research has found a correlation be-
tween rate of speech and the information content
of that speech. (e.g., Arnon and Cohen Priva,
2013). Thus far, this correlation lacks a precise
theory with a cognitive explanation. By producing
a cognitive model of these speech rates, we pro-
vide evidence for such a theory.

2.4 Lexical Retrieval

This paper examines the time course of lexical re-
trieval for the case of fluent, naturalistic speech.
Different facets of language can interfere with lex-
ical retrieval in different contexts, which provides
evidence toward an architecture: Schriefers et al.
(1990) found that semantic, but not phonological
material can cause interference, suggesting that
the two are represented separately. Ratcliff and
McKoon’s (1989) study focuses on sentence re-
trieval and found that semantic information is also
retrieved in stages. Here, we seek to model the
retrieval process in the context of fluent speech.
There are a number of memory models in the lit-
erature that provide accounts of the timing of lex-
ical access. For instance, classic models such as
Dell’s (1986)’s model of spreading activation dur-
ing language production and Levelt et al.’s (1999)
WEAVER++ model both provide quantitative val-
ues for retrieval times based on the form of a word.
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Figure 1: Our psychological model assumes that language production involves several parallel processes, and that
retrieval of lemmas can interact with concurrent retrieval and/or encoding of phonological representations (dashed
arrows) due to concurrent resource usage. Lemmas are retrieved several words before they are spoken. Their exact
point of retrieval could depend on other factors. Likewise, while we represent phonological retrieval/encoding as
a separate process for clarity, we make no claim to what extent these processes overlap.

Models such as Rapp and Goldrick (2000) focus
on modeling speech errors based on word activa-
tion and context. Our model differs from these
in that it attempts to model retrievals from flu-
ent speech rates, rather than single word lexical
retrieval based on picture naming tasks. Finally,
while speech errors are likely related to failed
lexical memory retrievals, we focus on speech
that was eventually successfully retrieved and pro-
duced.

More relevantly, Dell and O’Seaghdha (1992)
examine the time course of lexical access in lan-
guage production. In particular, they use series
of three words and EEG data to estimate lexi-
cal retrieval time. However, the lab setting it
took place in precluded it as a study of natural-
istic speech. Further, their model of the effects
of word-properties relied on primarily qualitative
attributes, such as semantic or phonetic related-
ness. In particular, they find additional evidence
for lemma and phonological retrieval taking place
in separate stages, based on inhibition and facili-
tation effects. The goal of the present study is to
expand the examined time frame in the hopes of
replicating their argument on naturalistic speech
while viewing effects found throughout, rather
than just a three word window.

3 ACT-R Model

To motivate the corpus-based empirical analysis,
we first describe our high-level model of the lan-
guage production process. Our method primarily
relies on simulating the state of lexical declarative
memory during language production. After we
simulate the memory retrievals for each word, we
can compare this information to the actual empiri-
cal timing data in the corpus. In particular, we rely
on Anderson’s (1983) original account of memory.
This framework was selected rather than newer or
more task-specific frameworks as it is the same
underlying memory model of ACT-R, which has
been used to explain a wide variety of language
phenomena (e.g., Vasishth and Lewis, 2004; Reit-
ter et al., 2011), but also has been used to explain
everything from decision-making (e.g., Marewski
and Mehlhorn, 2011) to visual attention in graphi-
cal user interfaces (e.g., Byrne et al., 1999). Thus,
by using this model, our work naturally builds
upon a large body of work, using the same mech-
anisms to explain a variety of tasks.

Figure 1 illustrates how lemma retrieval of a tar-
get word affects phonological encoding of speak-
ing of an earlier word. Retrieval timing is com-
putationally estimated using the cognitive archi-
tecture ACT-R, and we assume that this retrieval
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time proportionally affects phonological encod-
ing. This can take place strategically, via a
metacognitive process that coordinates these dif-
ferent modules, or via interference because both
processes share declarative memory resources.

Our model of lexical memory is principally
based on Anderson (1983)’s discussion of recency,
frequency, and context effects. Activation (A)
within the context of the ACT-R system is gen-
erally described by the sum of base-level learn-
ing (bll) and spreading activation (sa), which we
adopt for our model as well (Anderson et al.,
2004). Activation, can be defined as a linear com-
bination of spreading activation base-level learn-
ing:

A(z) = sa(z) + bli(z) (1)

For our purposes, we consider x to refer to an
individual word. Base-level learning refers to the
frequency and recency effects. In the base-level
learning equation, it can refer to both because of
the decay parameter, d, which causes more recent
presentations to be more important, with older pre-
sentations (signified by their time of presentation,
t) becoming exponentially less relevant. These
older presentations, when considered together, add
to the equation through their sheer quantity, pro-
viding the frequency effect, defined as:

bll(z) = log <Zt d) )

1€P,

In this equation, P, refers to the list of ’s pre-
sentations, so t; is the time from that presentation
to the present. Naturally, for something with as
many presentations as any given word, it is infea-
sible to computationally manage that sum. How-
ever, the full equation can be approximated using
only the total number of presentations and the &
most recent presentations and n, = |P,| (Petrov,
2006).

(2 —k)(

tl d)

bll(z) ~ log Z 4+

—d) (tn, — tr)
(3)
While Petrov (2006) shows that the equation is
close even for £ = 1, we used £ = 5 to more

closely approximate the original equation. We
then use the ACT-R default for the decay param-
eter, 0.5. Note that it has been suggested (e.g.,

Lewis and Vasishth, 2005; Cole et al., 2017) that
this decay parameter could be different for lan-
guage processing. In this work, we are only con-
cerned with relative, rather than absolute values
for a word’s activation in memory.

In order to compute the total number of pre-
sentations, we relied on a fairly simple estimate.
We multiply the number of seconds a person has
been alive with the average speaking rate and
that word’s frequency to obtain an estimate of the
amount of times a person has encountered that
word; it is difficult to measure the difference be-
tween being exposed to the lexical form of the
word compared to the phonological form, and it
is even harder to measure any subsymbolic expo-
sure due to thought. Still, using this formula, a un-
igram score computed by SRILM (Stolcke, 2002)
applied to the British National Corpus, the aver-
age speaking rate of Switchboard participants (197
words/minute) as computed by Yuan et al. (2006),
and the average age of Switchboard participants
(37) (Godfrey et al., 1992), we can compute a
baseline number of presentations for every word
in Switchboard.

Next, computing spreading activation on a cor-
pus as described in Anderson (1983) would like-
wise be computationally intractable. However,
Pirolli et al. (2006) showed that for large sample
sizes of language, Pointwise-Mutual Information
is nearly identical. Therefore, we use Semilar’s
PMI database computed on the Wikipedia corpus
(Rus et al., 2013; Church and Hanks, 1990).

In the ACT-R system, generally only items
currently in working memory affect memory re-
trievals (Anderson et al., 2004). Likewise, we
maintain the n previous words in a buffer to com-
pute their spreading activation to the next word.
We used n = 5 as an estimate for working mem-
ory size in language, as found in a reading task
(Daneman and Carpenter, 1980). For our model,
we compute the spreading activation between re-
trieved word, x, and each word in working mem-
ory, y, as:

S , . p(z,y)
~ mi(r,y) = » log——7~ 4
Ey pmi(z, y) §y ng(x W) 4)

Once we have a value for activation, it’s fairly
simple to compute an estimate for retrieval time
(RT) using the same equations from Anderson
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(1983).

Ke_KA

In this equation, I is an intercept, easily fit-
ted with a linear model. As a parameter, K rep-
resents the cutoff time (in seconds) before there
is a retrieval failure. This equation actually only
represents the time required in the case of suc-
cessful retrievals, which is nonetheless bounded
by K, which in that sense could be thought of as
the maximum possible time for a successful re-
trieval. While retrieval failures are part of nor-
mal ACT-R processing, they are not relevant to our
model. Since our model is formed of already spo-
ken words, they cannot represent retrieval failures.
Thus, while the equation only represents success-
ful retrievals, it is appropriate for our model. We
chose the architectural default of 1.0 for K.

4 Methods
4.1 Corpus Analysis

The empirical speech data was taken from the
Switchboard corpus (Godfrey et al., 1992) which
is part of the Penn Treebank corpus (Marcus et al.,
1993). This dataset consists of telephone conver-
sations between strangers on a random topic, an-
notated to include the start and finish time for ev-
ery word that has been spoken. Using our model of
lexical memory as described in the previous sec-
tion, we trace through the model and compute the
activation of each word at its onset time.

Once the activation was computed for each
word at the point when it was spoken, our goal
was to observe its effect on overall speaking rates.
In order to estimate when x was retrieved, we ex-
amined the speech some number of words back
from word z. If words are spoken systematically
more slowly or quickly based on word x’s acti-
vation and their positional relationship to word x,
then we can assume where words are spoken more
slowly, retrievals are taking place. Where words
are spoken more quickly, retrievals have finished.
Importantly, since this is being computed at ev-
ery sentence position, this should not capture po-
sitional effects. See Figure 1 for a visual depic-
tion of our model of interference during lexical re-
trieval, which allows us to infer retrieval based on
such interference.

While a naive model may expect lexical re-
trieval to occur immediately before grammatical

or phonological encoding, this is not necessarily
the case. Indeed, the amount of time before en-
coding may not be constant and may vary from
word to word.

Our analysis of the corpus requires comput-
ing each word’s delay, which is defined as the
amount of time between the onsets of two sequen-
tial words, including any disfluencies that occur.
As words themselves naturally can require differ-
ent amounts of time to speak, we instead use the
adjusted delay which is computed by taking the
average of all of the durations of that word (as
found in Switchboard) and subtracting it from the
given duration. Thus, the adjusted delay could
be a positive or a negative number, representing
slowdowns and speedups, respectively. Through-
out this paper, we use the term delay to actually
refer to this adjusted delay. The delay referred
to in Figure 1 is thus the adjusted delay: the dif-
ference between the expected delay based on the
word form and the actual observed delay. To be
clear, that means that if a delay term is not zero,
there was a variation from the normal speed of
processing, to either be quicker (negative delay)
or slower (positive delay).

These speedups and slowdowns, and their rela-
tionship to retrieval time, allow us to make an ar-
gument about the interaction between lexical and
phonological processing. From a statistical point
of view, as we are comparing retrieval time and
slowdowns in the same units, our linear model
could be thought of as the percentage of retrieval
time that is behaviorally reflected in language pro-
duction.

4.2 Experiment

Data were analyzed with two related models. Ini-
tially, we tested an inferaction model in order to
test our hypothesis of the interaction between de-
lay and offset (see Table 1). From this informa-
tion, we use exploratory data analysis in the form
of a discrete model, in order to explore the critical
regions of the graph (see Table 2). From this ex-
ploratory data analysis, we present the pooled ver-
sion of the discrete model for easier interpretation
of our found effects (see Table 3). For both mod-
els, the activation of a target word and its expected
retrieval time burden was computed, as were the
delays for the n words preceding the target word.
Importantly, note that in both models, when we re-
fer to the expected retrieval time or activation, we
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are referring to the target word, not any of the pre-
ceding words. Both models are concerned with the
word offset (i), which refers to the number of in-
terceding words between the given delay and the
target word, such that i = 0 refers to the word im-
mediately before the target word.

In the interaction model, we are interested in the
interaction term between word offset and delay: its
goal is to show how the correlation changes with
offset. In this model, every observation only uses
a single offset, chosen randomly, for each target
word. All of the other observations for that word
are discarded. This is to ensure the observations
are independent. The correlation coefficients of
interest are the correlation of delay as a whole,
and its interaction effect with offset. In general,
the coefficient of offset by itself is likely captur-
ing some distributional information about the data,
rather than anything interesting with how it relates
to memory retrievals. As a linear model:

RT ~ delay * offset

Meanwhile, the discrete model’s observations
consist of a word’s expected retrieval time and the
delays from previous words. Then, we make a lin-
ear model using each of the delays as a predictor.
Note that in this notation, delay; refers to the de-
lay of offset word i. To reiterate, ¢ represents how
many interceding words there are between that off-
set word and the target word. As a linear model,
this would be:

RT ~ delay, + delay; + ... + delay,,

The goal of the interaction model is to show
the robustness of the slope associated with index,
while the goal of the discrete model is to allow
for a non-linear relationship between offset and
the effect of delay on activation, examining up to
25 previous words. Exploring this non-linear rela-
tionship allowed us to infer the critical regions of
this effect. Importantly, the discrete model’s goal
was to explore the significant relationship found in
the interaction model more deeply, rather than to
itself justify the effect.

Under the model shown in Figure 1, we expect
that longer retrieval times of the target word are as-
sociated with slowdowns of speech production at
some time before the target word is spoken. Ear-
lier than that point, the target word should have no
influence on speech production.

Estimate  Std. Error  t-value p-value
(Intercept) 1796 .0002 728.715 < .00001 ***
offset .0015 .0010 1.1512  .011 **
delay .0668 .0048 13.839 < .00001 ***
delay*offset | -.0066 .0005 —12.411 < .00001 ***
F-stat DF p-value  Adj R? Multi R?
102.2 802055 < .00001 0.0005  0.0005

Table 1: Linear regression predicting expected retrieval
time of a target word as a function of the delay in speak-
ing of a previous word at that offset.

Estimate  Std. Error
I 1844 .0002
do -.0033 .0001
dl -.0011 .0001
d2 -.0006 .0001
d3 -.0002 .0001
d4 -.0001 .0001
ds -.0001 .0001
dé .0002 .0001
d7 .0001 .0001
d8 .0002 .0001
do -.0001 .0001
d10 .0002 .0001
di1 .0000 .0001
di12 .0002 .0001
d13 .0000 .0001
d14..d24 | 0.000. 0.000

Table 2: The linear effects model relating each discrete
delay term with expected retrieval time. A higher num-
ber on the delay term signifies the number of words
between the delayed word and the target word. This ex-
ploratory data analysis was done to inform the pooled
model. Also see Figure 2.

5 Results and Discussion

If one focuses on the interaction model, our ex-
periments yield a relatively counterintuitive result:
namely, delay is correlated in the direction oppo-
site to what is expected. One would imagine that
delay and retrieval time should be positively cor-
related: if people are speaking words more slowly
(positive delay), then likewise, their retrieval time
should be higher. However, we discovered a ro-
bust effect in the opposite direction: higher delays
imply shorter expected retrieval times, and shorter
delays imply longer expected retrieval times. In
other words, when people are expected to need the
longest to retrieve words, they actually speak more
quickly, and vice versa.
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Estimate Std. Error  t-value p-value
(Intercept) .1843 .0002 728.715 < .00001 ***
early -.0052 .0010 —46.36 < .00001 ***
early(ns) 0.000 0.000 —0.8200 412
late .0009 .0002 5.448 < .00001 ***
late(ns) .0002 .0002 1.263 .2070
F-stat DF p-value  Adj R? Multi R?
567.9 777924 < .00001 0.003 .003

Table 3: Pooled version of discrete linear model, based
on critical regions from the graph. Regions are broken
at 3, 5, and 14 respectively.

—-0.0014 I

—-0.0024

Bax (RT ~dO+d1+...+dn)

-0.003

0 5 10 15 20 25
Index

Figure 2: The discrete model’s linear predictors (see also Ta-
ble 2). Error bars represent normal 95% confidence intervals.
This graph and Figure 3 have similar critical regions, which
informed the pooled model presented in Table 3: 0-2 appear
significant and negative, 3-4 are not significant (slightly neg-
ative), 5-14 are significant and positive, 15+ is not significant.

Examining the effect for larger offsets, however,
we observe that the effect reverses before disap-
pearing. Thus, we see an effect in the expected
direction for the delays of word offsets 4 through
14. This is commensurate with word planning that
takes place several words in advance rather than
immediately before the word; likewise, the effect
also disappears in the interaction model based on
the interaction effect.

See also Figure 2 and Figure 3, which are vi-
sualizations of the discrete and interaction model,
respectively. These graphs show how the relation-
ship between activation of a word and speech de-
lay develops over the offsets, i, before the word.
While Figure 2 has its effects pulled directly from
Table 2, Figure 3 is produced by raw data, defined
by:

_ A =5

These graphs were designed to demonstrate

how the effect switches from positive to negative
as we move back from immediately before the
word to earlier in the utterance. With the interac-
tion model, we wanted to show statistical evidence
for the pattern of effects; the discrete model quan-
tifies the gradual fade to zero. We interpret the
models as follows.

1. There is a strong negative correlation of
the word delays with expected retrieval time
for the words immediately before the target
word. Since retrieval time is a function of ac-
tivation, this would imply that the observable
phonological effect happens later for more
activated words, which are likely retrieved
shortly before their use.

2. There is a weaker but significant positive cor-
relation of the word delays with expected re-
trieval time for words about 5-14 words pre-
ceding the target word. These delays likely
occur for words with less activation, whose
retrievals are likely initiated early to ensure
that there is enough time.

3. For words very far away from the target word,
there is no reliable effect, implying that this
is not just an effect of a cyclical information
distribution.

6 General Discussion

These results confirm some classical findings on
lexical retrieval, while adding a subtle but reliable
new effect. Further, these findings have some im-
plications for incrementality and uniform informa-
tion density.

0.4

0.2

e

RT/Delay
o
o

|
o
N

Index

Figure 3: Smoothed correlation between delay and expected
retrieval time across offset, created using a sample of raw data
(representative of the interaction model). Effect disappears
after offset 15, but full graph is not shown to avoid smoothing
small but significant effects with non-significant effects.
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In our discussion, we will frequently refer to
the activation of a word. Recall that activation in
the ACT-R sense is the inverse of the expected re-
trieval time: higher activation implies a shorter ex-
pected retrieval time. While retrieval time makes
more sense in a time-predictive linear model, it is
easier to interpret our results based on its relation-
ship to activation.

6.1 Lexical Retrieval

It is difficult to separate the lexical retrieval effects
we found into the two categories of retrievals de-
scribed by Levelt (1992): a lemma retrieval and
a later phonological retrieval. However, this is
not to claim that they cannot be, but simply that
our methodology did not easily allow us to. A
commonly implied assumption is that lemma re-
trievals shouldn’t interfere with phonological pro-
cesses (e.g., Schriefers et al., 1990), though it is
difficult to know if a speech slowdown is due to a
phonological or semantic interference due to our
experimental setup. However, since in our exper-
iment, effects are still observed at large distances
from the target words, either phonological forms
can be retrieved in a non-incremental way (pos-
sibly even before lemmas for other words are re-
trieved), or the retrieval of the lemma does inter-
fere with phonological encoding in some way; for
instance, by activating related phonological forms.
Still, we ultimately find the same pattern of effects
as Dell and O’Seaghdha (1992): facilitatory ef-
fects close to the target word, with inhibitory ef-
fects further away. The primary difference is the
time frame, which is possibly due to their experi-
mental setup.

6.2 Process Model

We found a surprising effect: words with higher
activation are not spoken more quickly, but more
slowly. This also applies to the words that imme-
diately precede them. However, if we look fur-
ther back, we see a robust effect in the expected
direction: if the approaching word has a high ac-
tivation, they are said more quickly, but if the
approaching word has a low activation, they are
said more slowly. We argue that this slowdown
is the result of shared resources between phono-
logical and grammatical encoding, and as activa-
tion directly predicts retrieval time, we posit that
word retrievals are part of what causes slowdowns.
The corresponding speedups could be because the
work of planning the sentence up to that point is

then done. The most important prediction of this
is that it means low activation words are retrieved
earlier, which would imply that there is some cog-
nitive strategy facilitating the necessity of initiat-
ing early retrievals for low activation words.

6.3 Incrementality

These results provide information about the tim-
ing of memory retrievals, given that such retrievals
are related to activation. As activation is inher-
ently related with how long a memory retrieval
should take, it makes sense there are some cog-
nitive strategies for coping with this disparity in
order to produce seemingly fluent dialogue. That
strategy involves buffering: retrieving and storing
the words that will need longer to retrieve, based
on the structure of the sentence.

Further, this type of buffering strategy could be
part of the strategy that Ferreira and Swets (2002)
refer to, when they propose the incrementality of
language production is under “strategic control.”
While a purely incremental strategy might have
interlocutors retrieve in a purely incremental fash-
ion, there are some hiccups: certain words take
longer to retrieve than others. By this logic, if
grammatical encoding proceeds in a purely incre-
mental fashion, then lexical retrieval does not, and
vice versa. Thus, it is reasonable to believe that the
grading of incrementality found in natural human
discourse is not only variable from situation to sit-
uation, but it may be variable amongst competing
processes for any given situation.

6.4 Uniform Information Density

Let’s consider an additional explanation. The
Constant Entropy Rate Hypothesis (Genzel and
Charniak, 2002) posits that lexical material is dis-
tributed across a sentence (and other units) such
that its information is held approximately con-
stant. Could a difficult-to-retrieve, slow word at
position j be likely to be combined with easier-
to-retrieve, high-frequency words at positions j —
4...7—1, causing the significantly increased speech
rate we found there?

The model of buffered retrievals, along with
the empirical evidence, may provide a cognitive
mechanism that results in an approximately con-
stant entropy rate. Thus, Uniform Information
Density (UID, e.g., Jaeger, 2010) could be con-
sidered a consequence of the cognitive procedures
involved in retrieving syntactic-lexical items from
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declarative memory while grammatically encod-
ing those materials retrieved earlier.

7 Future Work

Our work opens up several possible avenues for
future research. While it is unclear if syntax rules
are retrieved from some form of implicit mem-
ory (e.g., Reitter et al., 2011), lexical items clearly
are. Syntactic processing could potentially adapt
to working memory, rather than itself guide lex-
ical retrievals (e.g., Cole and Reitter, 2017). By
this argument, memory retrieval is a largely au-
tomatic, rather than attention-driven process, and
syntax makes use of what is available to produce
fluent dialogue. In this type of model, the constant
size of the retrieval buffer would provide a clear
corollary to Uniform Information Density.

Furthermore, this paper does not clearly differ-
entiate between lemma and phonological retrieval.
Although we do not expect phonological forms
to be retrieved as early as the effects we are see-
ing, we also do not expect lemma retrieval to have
effects on phonological encoding. A computa-
tionally implemented process model could explore
these effects in more detail.

Lastly, this study provides another mechanism
by which non-sequential dependencies in lan-
guage production are observed. It seems possible
that non-incremental language processing can be
explained as a process that involves general mem-
ory mechanisms including cue-based memory re-
trieval. What is in question is whether we really
process local syntax using structured, memory-
hungry models (i.e., with syntax trees); we note
that in natural language processing, skip-grams
can capture local, non-incremental relationships
among words. Thus, the relationship between
working memory, syntax trees, and skip-grams ap-
pears to be of continued interest.

8 Conclusions

In this paper, we explore the process of lexical
memory retrieval in the context of language pro-
duction. In contrast to previous work, we look at a
corpus of natural speech and do not rely on single
word retrievals in an experimental setting. This al-
lows us to observe how certain processes involved
in fluent language production overlap. In particu-
lar, the data support a model according to which
lexical retrievals can happen quite early. By using
the formalism defined by the empirically-validated

ACT-R framework, we show when memory re-
trievals are taking place through the effect on
speaking rates, seeing facilitation early and inhibi-
tion later. We conclude that low-activation words
can be retrieved as early as 14 words before they
are spoken. As low activation words are higher in-
formation and require longer to retrieve, this has
theoretical implications for some empirical find-
ings of language processing.
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