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Abstract

Recognizing temporal relations among events
and time expressions has been an essential but
challenging task in natural language process-
ing. Conventional annotation of judging tem-
poral relations puts a heavy load on annota-
tors. In reality, the existing annotated corpora
include annotations on only “salient” event
pairs, or on pairs in a fixed window of sen-
tences. In this paper, we propose a new ap-
proach to obtain temporal relations from abso-
lute time value (a.k.a. time anchors), which is
suitable for texts containing rich temporal in-
formation such as news articles. We start from
time anchors for events and time expressions,
and temporal relation annotations are induced
automatically by computing relative order of
two time anchors. This proposal shows sev-
eral advantages over the current methods for
temporal relation annotation: it requires less
annotation effort, can induce inter-sentence re-
lations easily, and increases informativeness
of temporal relations. We compare the em-
pirical statistics and automatic recognition re-
sults with our data against a previous tempo-
ral relation corpus. We also reveal that our
data contributes to a significant improvement
of the downstream time anchor prediction task,
demonstrating 14.1 point increase in overall
accuracy.

1 Introduction

Temporal information extraction is becoming an
active research field in natural language process-
ing (NLP) due to the rapidly growing need for
NLP applications such as timeline generation and
question answering (Llorens et al., 2015; Meng
et al., 2017). It has great potential to create many
practical applications. For example, SemEval-
2015 Task 4 (Minard et al., 2015) collects news
articles about a target entity and the task required
participants automatically ordering the events in-

volving that entity in a timeline. The timeline rep-
resentation of news can help people more easily
comprehend a mass of information. This work
aims to contribute to such timeline applications
by extracting temporal information in specific do-
mains like news articles.

TimeBank! (Pustejovsky et al., 2003) is the
first widely used corpus with temporal informa-
tion annotated in the NLP community. It contains
183 news articles that have been annotated with
events, time expressions and temporal relations
between events and time expressions. The anno-
tation follows the TimeML? specification (Sauri
et al., 2006). Along with the TimeBank and
other temporal information corpora, a series of
competitions on temporal information extraction
(TempEval-1,2,3) (Verhagen et al., 2009, 2010;
UzZaman et al., 2012) are attracting growing re-
search efforts.

A majority of temporal information corpora
adopt temporal links (TLINKSs) to encode tem-
poral information in documents. A TLINK de-
notes a temporal relation between mentions, i.e.,
events, time expressions and document creation
time (DCT) (Setzer, 2002). However, annotat-
ing TLINKS is a painful work, because annotation
candidates are quadratic to the number of men-
tions in a document. The original TimeBank only
annotated those “salient” mention pairs judged
by annotators, while the definition of “salient” is
not necessarily clear. Annotators had to face a
complicated task; identify “salient” mention pairs,
and label temporal relations. For solving this,
many dense annotation schemata are proposed to
force annotators to annotate more or even com-
plete graph pairs. However, dense annotation is
time-consuming and unstable human judgments
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on “salient” pairs are not improved at all. As a
consequence, a high proportion of “vague” or “no-
link” pairs appears in these dense corpora such as
TimeBank-Dense (Cassidy et al., 2014).

In this work, we propose a new approach to ob-
tain temporal relations from time anchors, i.e. ab-
solute time value, of all mentions. We assume
that a temporal relation can be induced by com-
paring the relative temporal order of two time an-
chors (e.g. YYYY-MM-DD) in a time axis. We
use pre-defined rules (Section 3) to generate tem-
poral order (TORDER) relations (e.g. BEFORE,
AFTER, SAME DAY, etc.) by taking two anno-
tated time anchors as input. This proposal requires
the annotation of time anchors, of which the an-
notation effort is linear with the number of men-
tions. This is the first work to obtain temporal re-
lations shifted from the annotation of individual
mentions, which is distinguished from most anno-
tation work of manually annotating mention pairs.

This approach brings several advantages over
the current temporal relation annotation. First, as
long as time anchors of all mentions in a docu-
ment are given, our pre-defined rules can induce
the temporal relations for all the quadratic pairs.
This skips the step of identifying “salient” pairs.
Second, annotating the time anchors is relatively
easy, as the annotation work is linear to the num-
ber of mentions. Third, the automatic generation
rules can provide flexible relation types based on
our definition and this increased informativeness
might contribute positively to downstream tasks.

In our first evaluation (Section 4), we compare
the correspondence and difference between the
new TORDERs and conventional TLINKs. The
comparison of empirical statistics shows the new
data is label balanced, contains informative rela-
tions and reduces “vague” relations. Besides, the
classification performance suggests the new data
achieve reasonable accuracy, although accuracy
numbers are not directly comparable.

Many text processing tasks are often requiring
to know time anchors when events occurred in a
timeline. In Section 5, we evaluate the data in a
downstream time anchor prediction task (Reimers
et al., 2016) by using the temporal relation rec-
ognizers separately trained with TORDERs or
TLINKSs. The main results show that the recog-
nizer trained with our TORDERS significantly out-
performs the recognizer trained with the TLINKSs
by 14.1 point exact match accuracy.

2 Background

2.1 Temporal Relation Annotation

TimeBank started a wave of data-driven tempo-
ral information extraction research in the NLP
community. The original TimeBank only anno-
tated relations judged to be salient by annotators
and resulted in sparse annotations. Subsequent
TempEval-1,2,3 competitions (Verhagen et al.,
2009, 2010; UzZaman et al., 2012) mostly relied
on TimeBank, but also aimed to improve cover-
age by annotating relations between all events and
time expressions in the same sentence. However,
most missing relations between mentions in differ-
ent sentences are not considered.

In order to solve the sparsity issue, re-
searchers started the work towards denser anno-
tation schema. Bramsen et al. (2006) annotated
multi-sentence segments of text to build directed
acyclic graphs. Kolomiyets et al. (2012) anno-
tated temporal dependency structures, though they
only focused on relations between pairs of events.
Do et al. (2012) produced the densest annotation
and the annotator was required to annotate pairs
“as many as possible”. Cassidy et al. (2014) pro-
posed a compulsory mechanism to force annota-
tors to label every pair in a given sentence win-
dow. They performed the annotation (TimeBank-
Dense) on a subset (36 documents) of TimeBank,
which achieved a denser corpus with 6.3 TLINKSs
per event and time expression, comparing to 0.7 in
the original TimeBank corpus. However, it raises
the issue that hand-labeling all dense TLINKS is
extremely time-consuming and the unclear defini-
tion of “salient” is not improved at all.

2.2 Temporal Relation Classification

The majority of the temporal relation classifiers
focus on exploiting a variety of features to improve
the performance in TimeBank. Laokulrat et al.
(2013) extracted lexical and morphological fea-
tures derived from WordNet synsets. Mani et al.
(2006); D’Souza and Ng (2013) incorporated se-
mantic relations between verbs from VerbOcean.
Recently, more researchers move on to di-
verse approaches on the TimeBank-Dense corpus.
Chambers et al. (2014) proposed a multi-sieve
classifier composed of several rule-based and ma-
chine learning based sieves ranked by their pre-
cision. Mirza and Tonelli (2016) started to mine
the value of low-dimensional word embeddings by
concatenating them with traditional sparse feature
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vectors to improve their classifier.

Inspired by the success of the deep learn-
ing work in the similar task: relation extrac-
tion, Cheng and Miyao (2017) proposed the short-
est dependency path based Bi-directional Long
short-term memory (Hochreiter and Schmidhuber,
1997) (Bi-LSTM) to achieve state-of-the-art per-
formance in the TimeBank-Dense corpus, which
is adopted for the experiments in this paper. There
are two reasons to use this classifier: 1) inter-
sentence temporal relations are well treated. 2)
only word, part-of-speech and dependency rela-
tion embeddings are required as input.

2.3 Time Anchor Annotation

A related task: Cross-Document Event Order-
ing (Minard et al., 2015) aims to order the events
involving a target entity in a timeline given writ-
ten news in English. Compared to traditional
TLINKSs, annotating time anchors of events is in-
tuitively more straightforward in such tasks.

Reimers et al. (2016) proposed an annotation
scheme, which requires annotators to infer the ex-
act time of each individual event. They distin-
guished events that occur at a Single-Day from that
span over Multi-Day by setting the granularity as
one day. For Single-Day events, the event time
is written in the format ‘YYYY-MM-DD’ when the
precise event time can be determined. Otherwise,
they required annotators to narrow down the pos-
sible time as precisely as possible. An imprecise
Single-Day event can be annotated as a tuple (af-
ter, before), e.g. ‘(after 1998-10-02, ), ‘(, before
2000-01-31) or ‘(after 1998-10-02, before 2000-
01-31)’. In the case of Multi-Day, an event is an-
notated as a tuple (begin, end), where begin and
end are represented with Single-Day. For instance
of a sentence:

The economy created jobs at a surpris-
ingly robust pace in January, the gov-
ernment reported on Friday, evidence
that America’s economic stamina has
withstood any disruption caused so far
by the financial tumult in Asia.

The Multi-Day event created is annotated as
(begin=1998-01-01, end=1998-01-31). The
Single-Day event reported is annotated as the
same day as DCT (1998-02-06). The imprecise
Multi-Day event disruption is annotated as (be-
gin=(, before1998-02-06), end=(, beforel998-02-
06)) as the event must have occurred before the

. precise date
imprecise date

\

created reported
begin=1998-01-01, end=1998-01-31 1998-02-06

1998-01-31

disruption
begin=before1998-02-06, end=before1998-02-06

1998-01-01 1998-02-06

Timeline

Figure 1: Anchoring events in a timeline

time of this news, but the precise begin and end
dates cannot be inferred from the text. Time
anchors have the capability of anchoring all the
events from a document into the same timeline as
shown in Figure 1. They annotated the time an-
chors of total 1,498 events from 36 documents of
TimeBank-Dense.

In temporal information retrieval, Berberich
et al. (2010) proposed a four-tuple representa-
tion (‘earliest begin’, ‘latest begin’, ‘earliest end’,
‘latest end’) for uncertain time expression (e.g.
‘1990s’) in order to integrate such temporal infor-
mation into language model. In the time anchor
annotation, an event ‘in 1990s’ will be annotated
as a Multi-Day event with imprecise begin and end
points, i.e. (begin=(after 1990-01-01, beforel999-
12-31), end=(after 1990-01-01, beforel999-12-
31)), which is quite similar to their four-tuple rep-
resentation.

3 Automatic generation of TORDERs

TimeML states that TLINKSs present a temporal
relation between event to event, event to time ex-
pression, and event to DCT. The sparse TLINK
coverage in the majority of temporal information
corpora is attributed to the unstable identification
of “salient” pairs by human annotators. Denser
annotation schemata somehow improved sparse-
ness, but the annotation work became very time-
consuming. These issues plague the development
of temporal information extraction work.

Our temporal order (TORDER) proposal is de-
signed with the goal of solving unstable recogni-
tion of “salient” pairs and reducing annotation ef-
fort. We hypothesize that a temporal relation can
be automatically computed by comparing the rela-
tive temporal order between two time anchors (e.g.
YYYY-MM-DD) in a time axis. We propose a set of
pre-defined generation rules, which have the capa-
bility to rigorously induce a TORDER by taking
the two annotated time anchors as input. Annotat-
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TORDER [ Condition TORDER [ Condition
Two precise S1 and Sa A Single-Day S1 and a Multi-Day M (begin,, ends)
BEFORE if S1 < Ss BEFORE if S BEFORE begin,
AFTER if S1 > So AFTER if S1 AFTER ends
SAME DAY if S1 = Sa ISINCLUDED | if S; AFTER/SAME.DAY begin, and Si
A precise Sy and an imprecise S (after,, befores) BEFORE/SAME DAY end;
BEFORE TSy < affer, VAGUE other case
AFTER if S1 > before, Two Multi-Day M (begin, , end1) and My (begin,, ends)
VAGUE other cases BEFORE if end, BEFORE begin.,
Two imprecise Sy (aftery , before; ) and Sa (after,, before, ) AFTER ?f begin, AFTER end;
BEFORE T before;, < aftery SAME_SPAN if begin; SAME_DAY begin, and endy SAME_DAY
AFTER if after, > before, endy )
PVAGUE if before, = before, and after, = after, IS.INCLUDED | if begin, AFTER/SAME_DAY begin, and end,
VAGUE other cases ,BEFO,RE/ SAME_DAY ends (*) )
INCLUDES if beginy BEFORE/SAME DAY begin, and end;
. AFTER/SAME_DAY end> (*)
Table 1: Definition of the temporal orders between two PVAGUE if begin, PVAGUE/SAME DAY begin, and end;
] _ 3 ¢ Y C__ e PVAGUE/SAME,DAY endg (*)
Single-Day events. ‘<’, ‘>’, ‘=" denote one event is in VAGUE othor easen

the left of, right of and same position as the other event
in a left-to-right time axis.

ing time anchors of individual mentions extremely
reduces annotation effort, as it is linear with men-
tion numbers. As long as time anchors are given,
our pre-defined rules can induce the temporal re-
lations for all the quadratic pairs, which skips the
step of identifying “salient” pairs.

TimeBank contains the normalized date ‘YYYY-
MM-DD’ of time expressions and DCT, but does
not include events’ time. Our proposal of induc-
ing a TORDER by comparing two time anchors
requires the time anchor annotation of events in
the same granularity as time expressions and DCT.
Therefore, annotating the events with ‘YYYY-MM-
DD’ is a reasonable setting and one day is used as
the minimal granularity of annotation. We choose
the annotation (Reimers et al., 2016) of the day-
level time anchors of events as the source of our
automatic TORDER generator. In the case that
a corpus can provide more specific time informa-
tion ‘YYYY-MM-DD, hh-mm-ss’ (e.g. this morn-
ing, three o’clock in the afternoon), our TORDER
generator can be flexible to handle this informa-
tion as long as the time anchors of all mentions
are annotated in the same granularity.

For the clear demonstration of the definition
of the auto-generated temporal order, we sepa-
rately describe the generation of the pairs with
two Single-Day mentions, and the pairs involv-
ing Multi-Day mentions. In this paper, TORDER
labels are written in the upper-case bold font to
be distinguished from TLINK labels written in the
lower-case italic font. Table 1 introduces the defi-
nition of temporal orders between two Single-Day
pairs S7 and So. PVAGUE (i.e. partially vague)
denotes that two imprecise time anchors are equiv-
alent. For instance, we cannot induce a clear
temporal relation between two events both occur-

Table 2: Definition of the temporal orders involving
Multi-Day events M (begin, end). “*’ denotes exclud-
ing the SAME_SPAN case in the current condition.

ring on (,beforel998-02-06), but nevertheless both
events provide partially equivalent date informa-
tion ‘7998-02-06°. It can possibly provide useful
information for the future processes of classifica-
tion or time inference. PVAGUE in the Multi-Day
definition takes the same consideration.

In order to introduce the temporal orders in-
volving Multi-Day events, a Multi-Day event M
is denoted as a tuple of two Single-Day dates
(begin, end). A temporal order between a Single-
Day S1 and Multi-Day M (beging, ends) can be
derived by computing the temporal order of two
Single-Day Sy and beging, or S and ends first.
All the types of temporal orders involving Multi-
Day events are defined in Table 2. One addi-
tional INCLUDES relation that Multi-Day event
includes a Single-Day event can be obtained by re-
versing the symmetric IS_INCLUDED.

The example of automatically computing tem-
poral orders can be demonstrated by using the
events in Figure 1. Both Multi-Day created and
disruption are clearly BEFORE the Single-Day
reported, because reported is AFTER the end
dates of created and disruption. The relation
between created and disruption is induced as
VAGUE, as the imprecise begin, end of disruption
cannot be determined with a relation to created.

In this paper, the definition adopts a similar re-
lation set to TLINK for the purpose that we can
perform fair comparison and evaluation in the next
two sections. However, our inducing proposal
can be very scalable to introduce more tempo-
ral relations. For instance, Allen’s interval al-
gebra (Allen, 1990) defines ‘starts’, ‘finish’ rela-
tions, which are not included in our current defini-
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tion. We can easily extend our definition by detect-
ing whether two time anchors have the equivalent
begin or end points.

Our inducing proposal takes human annotated
time expressions and normalized values as inputs
to generate TORDER relations as the training data
of the next processes (e.g. classification). In
the case of processing raw texts, we can perform
detection and normalization of time expressions
by using existing temporal taggers, e.g. Heidel-
Time (Strotgen and Gertz, 2015), SUTime (Chang
and Manning, 2012), etc.

4 Comparison of TORDERs and
TLINKSs

Fairly evaluating the TORDER’s capability of
encoding temporal order information compared
to the existing data is difficult but necessary
work. This section provides empirical statistics of
TORDER and TLINK annotations, and compare
the performance of automatic recognition. Addi-
tionally, we evaluate these two frameworks in a
downstream task performance in Section 5.

4.1 Correspondences and Differences

Our new TORDERs are formally similar to the
conventional TLINKSs, as both state a temporal
relation between two mentions. BEFORE and
AFTER represent that one mention occurs before
or after in a timeline, which is close to before
and after. INCLUDES and IS_INCLUDED are
more clearly conditioned as a Single-Day or Multi-
Day mention occurs during the other Multi-Day
mention, compared to includes and is_included.
SAME_DAY and SAME_SPAN are designed for
the one-day minimal granularity. Ideally, these
two relations will include simultaneous and other
TLINKSs with two mentions occurring in the same
day. VAGUE and PVAGUE state that our gener-
ation rules cannot induce the relations, similar to
vague (i.e. annotators cannot judge the relations).

The one-day minimal granularity is the main
reason causing the difference between TORDER
and TLINK types. For a sentence:

I went to sleep after taking a bath.

According to the TimeML specification, sleep is
obviously after bath. But in the one-day gran-
ularity, the relation is shifted to SAME_DAY.
This brings the obstacle that we cannot mea-
sure whether the temporal information encoded in

TORDERSs is more informative than TLINKSs by
directly comparing the classification results.

Our TORDER definition shows the capability of
capturing some relations which cannot be encoded
by TLINK. For instance:

Stocks rose, pushing the Dow Jones
industrial average up 72.24 points, to
8,189.49, leaving the index within 70
points of its record.

These TLINKs among the three events are anno-
tated as vague in TimeBank-Dense, as the annota-
tors cannot state their temporal orders. However,
we can easily obtain SAME_DAY relations, since
their day-level time anchors are the same.
Imprecisely represented time anchors (e.g. after
YYYY-MM-DD) are the major drawback of losing
temporal order information. For instance:

America’s economic stamina has with-
stood any disruption...

The TLINK between withstood and disruption is
annotated as after. While both of them were anno-
tated as the same time anchor (begin=before 1998-
02-06, end= before 1998-02-06), our TORDER
generator induced a PVAGUE relation and tempo-
ral order information is lost.

The hypothesis that our proposal skipping the
unstable manual identification of “salient” pairs
can reduce the VAGUE relations in the new data.
This can be measured by comparing the numbers
of the TORDER and TLINK relations on the same
mention pairs. If the observation of a part of vague
TLINKs induced as non-VAGUE TORDERS in
the new data can be found, it will be the evidence.

Depending on the text domain, TLINKs or
TORDERs can be advantageous in different sce-
narios. TLINKSs can capture the temporal order-
ing information between events, when time ex-
pressions are often absent in the documents such
as novels and narratives. But the annotation work
is time consuming and a part of relations will be
neglected by the unstable human identification of
“salient” pairs. TORDERs have the capability of
capturing more informative relations by skipping
the “salient” pairs recognition and need less anno-
tation effort. But they require that the events can
be anchored in a timeline from a document (e.g.
often the case of news articles) and imprecise time
anchors cause some information loss.
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Figure 2: The label distribution of the TORDER and TLINK relations
b a | s | @ | @ | v TLINKs. 542 vague relations are induced as AF-
BEFORE 1486 | 24 | 0 ] 22 | 26 | 542 TER in the new TORDERS, as well as other rela-
AFTER 19 [ 1242 5 | 26 | 66 | 503 . H £ TLINK
SAME DAY 155 | 93 |83 | 164 | 343 | 647 tion ty.pes. owever, a part o non—vagu.e S
SAME _SPAN 4 0 9 3 6 42 are shifted to VAGUE TORDERs. This matches
INCLUDES 104 | 61 | 2 |225] 25 | 372 our description of the imprecise time anchor is-
ISINCLUDED | 56 | 71 | 1 | 25 | 214 | 333 sue. It is a trade-off between the part of mention
PVAGUE 91 40 |4l 23 | 36 | 336 pairs obtaining richer temporal information and
VAGUE 331 | 261 | 33 | 145 | 136 | 1464

Table 3: The comparison of the numbers of TORDER
and TLINK annotations for the same mention
pairs. b:before, a:after, s:simultaneous, i:includes,
ii:is_included, v:vague.

4.2 Empirical Comparison

Investigating the quality of auto-generated
TORDERSs is important to demonstrate the value
of this research. In this section, we empirically
compare the statistics of the auto-generated
TORDERs and human-annotated TLINKSs. Theo-
retically, a TORDER between two mentions with
any distance in a document can be automatically
computed. However, it is important to make the
new data in a comparable manner to the existing
data. In this paper, we follow the process of
TimeBank-Dense (Cassidy et al., 2014) to gen-
erate the complete graph of the 10,007 mention
pairs in the same and adjacent sentences. The
TORDER data used in this paper are publicly
available® and our scalable generation method can
be easily applied for inducing relations of longer
distance pairs.

Table 3 shows the comparison between the
numbers of the TimeBank-Dense TLINKs and
the new TORDERs. One observation as we ex-
pected is that our approach captures new relations
for a considerable part of the mention pairs that
were judged as v (vague) in the human-annotated

3https://github.com/racerandom/temporalorder

the part of pairs losing information. That is the
reason why we need a downstream task (i.e. Time
Anchors Prediction in Section 5) to measure how
much temporal order information is encoded in
TORDERs and TLINKSs. The shift of TLINK rela-
tions to SAME_DAY due to the one-day minimal
granularity setting can also be clearly observed.

Figure 2 shows the label distributions of the
auto-generated TORDERs and the TimeBank-
Dense TLINKs. We investigate the statistics of
Event-Event, Event-Time, and Event-DCT pairs.
The TimeBank-Dense corpus is obviously sparser
due to the high proportion of vague in all three
types of pairs. Our TORDERs show a more
balanced distribution of labels, which suggests
that this method possibly encodes more infor-
mative temporal orders compared to the tradi-
tional TLINKS. In particular, TORDERSs show ex-
tremely rare VAGUE labels in Event-DCT pairs.
When given the precise Single-Day DCT of a doc-
ument, our proposal to compare the temporal or-
der between the time anchor of a event and the
DCT manages to avoid the most unstable judg-
ments made by the human annotators in the Event-
DCT pairs. Although the different definition of
TORDERs from TLINKs makes direct compar-
ison difficult, the more balanced distribution of
TORDERS can possibly provide more informative
classification results to benefit the downstream
tasks.
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Event-DCT | Event-Time | Event-Event

F1 N F1 N F1 N

AFTER 0.585] 65 | 0.509 | 67 | 0426 | 184
BEFORE 0.659 | 65 | 0.452 | 68 | 0.488 | 257
INCLUDES 0.400 | 38 | 0.136 | 27 | 0.158 | 105
IS INCLUDED 0 0 0 20 | 0.077 | 86
SAME DAY 0.631 | 82 | 0.485 | 56 | 0.314 | 131
SAME_SPAN 0 0 0 2 0 0
PVAGUE 0 0 0 1 0.149 | 92
VAGUE 0 18 | 0417 | 119 | 0.487 | 335
Overall 0.557 | 268 | 0.403 | 360 | 0.374 | 1190
Non-VAGUE 0.597 | 250 | 0.390 | 240 | 0.351 | 763

(a) TORDER

Event-DCT | Event-Time | Event-Event

FIl [N | F1 [N | F1 N

after 0.582 | 68 | 0.550 | 64 | 0.443 | 223
before 0.612 | 58 | 0.331 | 91 0.465 | 326
includes 0.170 | 22 | 0.290 | 31 0.126 45
is_included 0.559 | 48 | 0338 | 42 | 0.099 47
simultaneous 0 0 0 6 0 19
vague 0.433 | 72 | 0.557 | 126 | 0.6116 | 530
Overall 0.511 | 268 | 0.441 | 360 | 0.492 | 1190
Non-vague 0.539 | 196 | 0.378 | 234 | 0.395 | 660

(b) TLINK

Table 4: The classification results of Event-Event,
Event-DCT and Event-Time F1-measure on individual
relation types and weighted overall F1. ‘N’ denotes the
number of the relations in the test split.

4.3 Classification Results

Although the classification results of TORDERs
and TLINKSs are not directly comparable, they
can show some evidence whether TORDERS is
functional to provide temporal order information.
Table 4 shows the Bi-LSTM classification re-
sults with the data split4(Chambers et al., 2014)
(27 training/validation documents, 9 testing docu-
ments).

The classification system achieves fairly high
F1 0.631 in Event-DCT and 0.485 in Event-Time
on the SAME_DAY temporal orders, which are
the main information source to predict the precise
time of events. The performance on AFTER, BE-
FORE temporal orders are close to the TLINKSs
in number, but not meaningfully comparable. The
high proportion of vague in the TLINKS results in
biased predictions. When we use a more meaning-
ful evaluation ‘Non-vague’ overall, the TLINKSs
performance drops sharply. Generally, the clas-
sification results suggest that our proposal of auto-
generated TORDERSs has sufficient capability to
encode temporal information, which can be well

*https://github.com/nchambers/caevo/blob/master/src/mai
n/java/caevo/Evaluate.java

classified from the textual inputs.

5 Evaluation in Time Anchor Prediction

In this section, we describe a two-step system
trained with the existing TLINKs and our data
to challenge a downstream time anchor prediction
task. The different performance can be seen as the
evidence whether our auto-generated TORDERs
can capture comparable temporal information to
the human-annotated TLINKSs.

5.1 Task Definition

Predicting the time of events from the news ar-
ticles is an attractive goal, which is a necessary
step towards automatic event timeline extraction.
Reimers et al. (2016) bring the task of time anchor
prediction, which aims to predict the time anchor
of each Single-Day event given a document. They
use a general two-step process to determine the
event anchors as shown in Figure 3. Given a set
of documents with events and time expressions al-
ready annotated, the system first obtains a list of
possible times for each event. Then, the most pre-
cise time is selected for each event.

A serious issue is that their baseline system still
depends on the TimeBank-Dense TLINK classi-
fier and the time anchor annotation is only used
for the final evaluation. That leaves the space
to consider a new method without relying on the
human-annotated TLINKs. Our auto-generated
TORDERs are a natural alternative to TLINKSs
to provide the similar temporal order information
of mention pairs, but with less annotation efforts.
The second-step selection rules just need a slight
modification to replace the previous TLINK types
with the new TORDER types.

5.2 The Two-step System in Experiments

In this work, we adopt a similar two-step archi-
tecture. The first-step temporal order classifier is
designed to provide the temporal relations of the
mention pairs in a document.

The second-step selects the most precise time
by taking all Event-Time and Event-DCT relations
of a target event as input. For instance in Figure 3,
the second-step received a set of relations e.g.
(is_included, DCT), (is_included, Friday) and
(vague, January) of reported. For the system
trained with the TimeBank-Dense TLINKSs, we
adopt the same selection algorithm as described in
(Reimers et al., 2016). When the system is trained
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Event Type | Source TORDER Gold TORDER TLINK Gold TLINK
Exact | Partial | Exact | Partial | Exact | Partial | Exact | Partial
Event-DCT | 0.586 | 0.866 | 0.739 | 0.866 | 0.387 | 0.570 | 0.525 | 0.545
Precise Event-Time | 0.384 | 0.555 | 0.577 | 0.619 | 0.216 | 0.288 | 0.412 | 0.447
All 0.660 | 0.870 | 0.835 | 0.930 | 0444 | 0.611 | 0.595 | 0.617
Event-DCT | 0.351 | 0.631 | 0.530 | 0.647 | 0.234 | 0.395 | 0.364 | 0.449
Imprecise Event-Time | 0.074 | 0.217 | 0.119 | 0.184 | 0.051 | 0.133 | 0.200 | 0.227
All 0.299 | 0.642 | 0.509 | 0.686 | 0.252 | 0.429 | 0.444 | 0.517
Event-DCT | 0.482 | 0.762 | 0.619 | 0.769 | 0.319 | 0.493 | 0.454 | 0.503
Overall Event-Time | 0.259 | 0.419 | 0.393 | 0.444 | 0.149 | 0.255 | 0.326 | 0.358
All 0.501 | 0.769 | 0.646 | 0.822 | 0.360 | 0.530 | 0.528 | 0.573

Table 5: The comparison of the cross-validation performance in the time anchor prediction task. ‘Exact’ and
‘Partial’ denote the two evaluation metrics: exact match and partial match accuracy. ‘Gold’ denotes the oracle
performance of using the gold TORDERs or gold TLINKSs as the input of the second-step.

The economy created jobs at a surprisingly robust pace

in January, the government reported on Friday.
begin=1998-01-01, 1998-02-06
end=1998-01-31

DCT:1998-02-06

‘ First-step: extracting temporal relation

The economy created jobs at a surprisingly robust pace
— AFTER 1S_INCLUDED
in January, the government reported on Friday.
begin=1998-01-01 ~ 1998-02-06

end=1998-01-31 VAGUE 1S_INCLUDED

T DCT:1998-02-06

‘ Second-step: selecting the most precise time

reported: 1998-02-06

Figure 3: The two-step process to determine the event
anchors proposed in (Reimers et al., 2016).

with the TORDERSs, we slightly modified the algo-
rithm by replacing the TLINK relations with sim-
ilar TORDER relations. SAME_DAY replaces si-
multaneous to predict precise dates, although their
definition is quite different.

5.3 Experiment Settings

We perform a 6-fold cross-validation strategy to
predict all the TORDERSs and TLINKSs of the men-
tion pairs in the 36 documents of the TimeBank-
Dense corpus. In each run, we split 30 documents
for training and validation to predict the other 6
test documents.

We define two evaluation metrics, i.e. Exact
Match accuracy and Partial Match accuracy to
measure the performance in this task as follows:

#Number of the exact match predictions

exact match =
#Total number of the test samples

partial match #Number of the partial match predictions
i ch =

#Total number of the test samples

We define two partial match cases: 1) a precise
(1998-02-06) is partial match with an imprecise
(after 1998-02-06), if the date values are the same.
2) (after 1998-02-06) is partial match with (after
1998-02-06, before 1998-02-21), if one is a part of
the other.

5.4 Main Results

Table 5 summarizes the main results of the two-
step time anchor prediction system trained with
TORDER and TLINK data. ‘Precise’, ‘Impre-
cise’ and ‘Overall’ denote the results of predicting
time anchors of precise events, imprecise events,
and overall performance. ‘Event-DCT’ or ‘Event-
Time’ denotes the second-step selection takes only
Event-DCT or Event-Time pairs as input, which
helps us to investigate how much information is
provided by the different types of pairs for pre-
dicting the final time anchors. The new TORDERSs
show significantly superior out-performance in all
three settings (i.e. only Event-DCT pairs, only
Event-Time pairs, or Event-DCT + Event-Time),
compared to the TLINKs. With both Event-DCT
and Event-Time temporal order information, the
system achieves the highest overall exact match
and partial match accuracy.

The Event-DCT, Event-Time pairs are the
source of temporal information for predicting time
anchors. The system only using the Event-DCT
achieves surprisingly high accuracy, particularly
on the TORDER partial match accuracy of the
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[ | Exact | Partial |

[CAEVO [0442 | 0553 |
Bi-LSTM TLINK | 0.437 | 0.550
Bi-LSTM TORDER | 0.586 | 0.811

Table 6: The comparison to the state-of-the-art dense
TLINK classifier

precise events. The reason is that most events re-
ported in news articles usually occur in precisely
the same day as DCT. Therefore, the TORDER
Event-DCT is benefited from the low proportion
of vague relations, which sharply outperforms
the TLINK Event-DCT by 16.3% overall exact
match. However, the contribution of the Event-
Time to the overall might be underestimated in
this task somehow. The TORDER Event-Time
still beats the TLINKSs by 11% overall exact match
and 16.4% overall partial match. Furthermore,
the Event-Time encoding the temporal informa-
tion within 1-sentence window in our experiments
can be easily strengthen by our TORDER proposal
to introduce more inter-sentence pairs.

5.5 Comparison to a state-of-the-art dense
TLINK classifier

In this section, we perform an additional ex-
periment to make a comparison to a system
with the first-step replaced by a state-of-the-art
dense TLINK classifier CAEVO (Chambers et al.,
2014). We adopt the data split setting in Sec-
tion 4.3 for three classifiers: CAEVO, Bi-LSTM
classifier trained with TLINKs and Bi-LSTM clas-
sifier trained with TORDERsS.

The results are summarized in Table 6. CAEVO
achieves the exact match accuracy slightly bet-
ter than the Bi-LSTM model trained with the
TLINKs. The Bi-LSTM model trained with the
TORDERS sharply outperforms the other two sys-
tems by approximate 14% exact match accuracy
and approximate 26% in partial match accuracy.

6 Conclusion

In this paper, we propose a new approach to ob-
tain temporal relations based on time anchors (i.e.
absolute time value) of mentions in news articles.
Our pre-defined generation rules can automati-
cally induce TORDER relations by comparing the
temporal order of two time anchors in a timeline.
The requirement of our proposal for annotating
time anchors is much easier compared to conven-
tional methods, as the annotation effort is linear

with the number of mentions. The TORDER data
used in this paper are publicly available. The anal-
ysis, empirical comparison and classification re-
sults of the new TORDERs and the TimeBank-
Dense TLINKSs show our new data achieve the low
VAGUE proportion, the informative relation types
and the balanced label distribution. We perform
the second evaluation of using the temporal rela-
tion classifier to complete the downstream task of
time anchor prediction in news articles. The main
results show our TORDERS significantly outper-
form the TLINKSs in this task, which suggests our
proposal has the capability to encode informative
temporal order information with less annotation
effort.

The main limitation of TORDER is that events
are required to be anchored in a timeline. Strotgen
and Gertz (2016) introduce the highly different
characteristics of time expressions in four domains
of text. It suggests that our proposal is difficult
to be applied in some domains. One possible so-
lution is to adopt a hybrid annotation method to
annotate a target event towards the most relevant
event (TLINK-style), when temporal information
is absent in its context. Although this work is mo-
tivated for contributing to timeline applications,
evaluating this proposal in the temporal question
answering is also valuable. SAME_DAY could
be harmful because this task possibly requires to
know the exact order between two events occur-
ring on the same day. It is worth conceiving a
more general solution to improve the limitations
of TORDER in the future work.
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